3D: Check point inside elliptical cone - math

I seem to have searched the whole internet trying to find an implementation of checking if a 3d point is within an elliptical cone defined by (origin, length, horizontal angle, vertical angle). Unfortunately without success as I only really found one math solution which I did not understand.
Now I am aware on how to use implement it using a normal cone:
inRange = magnitude(point - origin) <= length;
heading = normalized(point - origin);
return dot(forward, heading) >= cos(angle) && inRange;
However there the height detection is far too tall. I would really like to implement a more realistic vision cone for the AI for a game but this requires having the cone shaped more like a human field of view being more wide than tall.
Thanks a lot for any help:)

Given a 3D elliptic cone, with base at B=(x_B,y_B,z_B), height h along the cone axis k=(k_x,k_y,j_z), major base radius a, minor base radius b and direction along the major axis i=(i_x,i_y,i_z) you need to find if a point P=(x,y,z) lies inside the cone. It is your choice on how to parametrize the major axis direction and I think your are trying to use spherical coordinates with two angles.
Here are the steps to take:
Establish a coordinate system with origin on the base B and with the local x axis along your major axis i. The local z axis should be towards the tip along k. Finally the local y axis should be
j=cross(k,i)=(i_z*k_y-i_y*k_z, i_x*k_z-i_z*k_x, i_y*k_x-i_x*k_y)
j=normalize(j)
Your 3×3 rotation matrix is defined by the columns E=[i,j,k]
Transform your point P=(x,y,z) into the local coordinates with
P2 = transpose(E)*(P-B) = (x2,y2,z2)
Now establish how far along the axis of the cone is with s=(h-z2)/h where s=0 at the tip and s=1 at the base.
If s>1 or s<0 then the point is outside
Otherwise if s>0 you need to check that (x2/(s*a))^2+(y2/(s*b))^2<=1 for the point to be inside.
If s=0 then check that x2=0 and y2=0 for the point being exactly at the tip.
If you cannot do basic vector algebra, like cross products, 3D transformations and normalization that I suggest you have some reading to do before you can understand what is going on here.
Note:
// | i_x i_y i_z |
// transpose(E) = | j_x j_y j_z |
// | k_x k_y k_z |

Related

Align IMU orientations and then get relative rotations

I am using two IMUs of the same type (BHI160, i.e. orientation is relative to the north and on alignment with north, the IMU's local y-axis points into the north direction) on two objects, let's say pens, with the added difficulty that if I place the two objects in parallel, both IMUs' z-axes point upwards, but one IMU is rotated 180° around the z-axis relative to the other.
Now, if I understand the math here correctly, the quaternion data I receive from an IMU is the half-angle-rotation relative to the north direction, so that q * north_dir * q_inv = IMU_y_axis (with north_dir and IMU_y_axis being 3D vectors in global space, or pure quaternions for the sake of this computation).
Due to the rotation of the IMUs, I would assume that when both pens are pointing in the same direction, I should be able to compute the second pen's orientation as q_2 = q_rot_z * q_1, where q_rot_z equals a 90° rotation around the z-axis -- following the intuition that if I point both pens towards the north, I would obtain the global direction of pen 2's y-axis (i.e. pen 1's y-axis rotated around the z-axis by 180°) by computing q_rot_z * north_dir * q_rot_z_inv
Is it thus correct that if I want to know the relative rotation of the pen tips (say, the rotation I need to go from the first pen's tip to the tip of the second one), I need to compute q_r = q_2 * q_rot_z_inv * q_1_inv in order to get from tip 1 to tip 2 by computing q_r * q_1? Or does the "prior" rotation around the z-axis not matter in this case and I only need to compute q_r = q_2 * q_1_inv as usual?
Edit:
this is basically an extension of this question, but I would like to know if the same answer also applies in my case or whether the known relative IMU rotation would in my case need to be included as well
Let's go through this step by step. You have a global coordinate system G, which is aligned to the north direction. It does not really matter how it is aligned or if it is aligned at all.
Then we have to IMUs with their respective coordinate systems I1 and I2. The coordinate systems are given as the rotation from the global system to the local systems. In the following, we will use the notation R[G->I1] for that. This represents a rotation from G to I1. If you transform any vector in G with this rotation, you will get the same vector in I1 expressed in the coordinate system G. Let's denote the transformation of a vector v with transform T by T ° v. The following figure illustrates this:
In this figure, I have added a translation to the transform (which quaternions can of course not represent). This is just meant to make the point clearer. So, we have a vector v. The same vector can lie in either coordinate system G or I. And the transformed vector R[G->I] ° v represents the v of I in the coordinate system of G. Please make sure that this is actually the rotation that you get from the IMUs. It is also possible that you get the inverse transform (this would be the system transform view, whereas we use the model transform view). This changes little in the following derivations. Therefore, I will stick to this first assumption. If you need the inverse, just adjust the formulas accordingly.
As you already know, the operation R ° v can be done by turning v into a pure quaternion, calculating R * v * conjugate(R), and turning it into a vector again (or work with pure quaternions throughout the process).
Now the pens come into play. The pen has an intrinsic coordinate system, which you can define arbitrarily. From your descriptions, it seems as if you want to define it such that the pen's local y-axis points towards the tip. So, we have an additional coordinate system per pen with the according rotation R[I1->P1] and R[I2->P2]. We can concatenate the rotations to find the global orientations (* is quaternion multiplication):
R[G->P1] = R[G->I1] * R[I1->P1]
R[G->P2] = R[G->I2] * R[I2->P2]
In the way that you defined the pen's local coordinate system, we know that R[I1->P1] is the identity (the local coordinate system is aligned with the IMU) and that R[I2->P2] is a rotation of 180° about the z-axis. So, this simplifies to:
R[G->P1] = R[G->I1]
R[G->P2] = R[G->I2] * RotateZ(180°)
Note that the z-rotation is performed in the local coordinate system of the IMU (it is multiplied at the right side). I don't know why you think that it should be 90°. It is really a rotation of 180°.
If you want to find the relative rotation between the tips, you first need to define in which coordinate system the rotation should be expressed. Let's say we want to express the rotation in the coordinate system of P1. Then, what you want to find is a rotation R[P1->P2], such that
R[G->P1] * R[P1->P2] = R[G->P2]
This solves to
R[P1->P2] = conjugate(R[G->P1]) * R[G->P2]
If you plug the above definitions in, you would get:
R[P1->P2] = conjugate(R[G->I1]) * R[G->I2] * RotateZ(180°)
And that's it.
It is pretty likely that you want something slightly different. That's why I explained it in such detail, so you will be able to modify the calculations accordingly.

How to find view point coordinates?

I have azimuth , elevation and direction vector of the sun.. i want to place a view point on sun ray direction with some distance. Can anyone describe or provide a link to a resource that will help me understand and implement the required steps?
I used cartesian coordinate system to find direction vector from azimuth and elevation.and then for find
viewport origin.image for this question
x = distance
y = distance* tan azimuth
z = distance * tan elevation.
i want to find that distance value... how?
azimutal coordinate system is referencing to NEH (geometric North East High(Up)) reference frame !!!
in your link to image it is referencing to -Y axis which is not true unless you are not rendering the world but doing some nonlinear graph-plot projection so which one it is?
btw here ECEF/WGS84 and NEH you can find out how to compute NEH for WGS84
As I can see you have bad computation between coordinates so just to be clear this is how it looks like:
on the left is global Earth view and one NEH computed for its position (its origin). In the middle is surface aligned side view and on the right is surface aligned top view. Blue magenta green are input azimutal coordinates, Brown are x,y,z cartesian projections (where the coordinate is on its axis) so:
Dist'= Dist *cos(Elev );
z = Dist *sin(Elev );
x = Dist'*cos(Azimut);
y =-Dist'*sin(Azimut);
if you use different reference frame or axis orientations then change it accordingly ...
I suspect you use 4x4 homogenous transform matrices
for representing coordinate systems and also to hold your view-port so look here:
transform matrix anatomy
constructing the view-port
You need X,Y,Z axis vectors and O origin position. O you already have (at least you think) and Z axis is the ray direction so you should have it too. Now just compute X,Y as alignment to something (else the view will rotate around the ray) I use NEH for that so:
view.Z=Ray.Dir // ray direction
view.Y=NEH.Z // NEH up vector
view.X=view.Y x view.Z // cross product make view.X axis perpendicular to Y ansd Z
view.Y=view.Z x view.X // just to make all three axises perpendicular to each other
view.O=ground position - (distance*Ray.Dir);
To make it a valid view_port you have to:
view = inverse(view)*projection_matrix;
You need inverse matrix computation for that
if you want the whole thing
Then you also want to add the Sun/Earth position computation in that case look here:
complete Earth-Sun position by Kepler's equation
The distance
Now that is clear what is behind you just need to set the distance if you want to set it to Sun then it will be distance=1.0 AU; (astronomical unit) but that is huge distance and if you have perspective your earth will be very small instead use some closer distance to match your view size look here:
How to position the camera so that the object always has the same size

Projection of 3D Coordinates onto a 2D image with known points

I'm writing a .NET program that allows a user to register an image by identifying specific points on an image and then specifying the real world coordinates associated with each of those points.
http://www.ironbyte.ca/temp/mountain.jpg
The image registration process also requires the user to specify the coordinates of the camera.
What I'd the like to be able to do after the image is registered is draw other points on the image based on their real-world coordinates.
I've done a great deal of reading on perspective projections but I'm struggling to get things working. I must admit that my math skills are not what they should be which is part of the struggle. Where I am getting stuck is trying to determine focal length and distance to the display surface:
Referred to as the Viewer's Position (e [x,y,z]) in this article: http://en.wikipedia.org/wiki/3D_projection#Perspective_projection
I've also been referring to this article as well:
http://www.shotlink.com/Tour/WebTemplate/shotlinknew.nsf/2c47cc31e412bc4985256e6e00287832/c1743b40acf6aa03852575b7007122b0/$FILE/Plotting%203D%20ShotLink%20Data%20on%202D%20Images.pdf
which extracts the focal length from the field of view, which appears to be know beforehand, but is not in my case.
So I guess my question then is, is there a way I can work in reverse to determine focal length and/or field of view based on the position of the known points on my image? Or am I looking at this the wrong way and maybe there is an easier way to accomplish the end goal?
EDIT: I got myself confused by mixing units on the schema. I thus reworked a bit my answer.
It sounds feasible to me, if we look at the maths behind the projection.
Here is a not-so-rigorous schema of the situation for the horizontal coordinate (I'm mixing real world coordinates and pixels one to try to illustrate your situation):
With:
D, one of the points given by the users, with (x,y,z) its projected position with respects to the relative coordinate system defined by the camera (so after applying its translation and rotation)
E the camera point - origin of the coordinate system described above.
B the resulting point in your picture plane, with u and v in pixels. The picture plane has for dimensions w x h pixels.
f the focal length (same unit as for x, y, z...) in pixels, F its value in the real-world unit, and α the horizontal half-angle of view - the values you want to evaluate
You can see that the triangles ECD and EBM are similar, so using the Side-Splitter Theorem, we get:
EM / EC = MB / CD <=> f / z = u / x (we are comparing ratio, so no problem if the left member of the equation uses a real-world unit while the right one uses pixels are real-world values divided by pixels one)
We thus get:
f = u / x * z
Now if you want α F, I think you'll need to know the dimensions r_x x r_y (real-world unit) of your camera's sensor, since:
tan(α) = (r_x / 2) / f F = r_x / (w / 2) * f
But as for α, you can get it through:
tan(α) = (w / 2) / f
If you want to do the parallel with the Wikipedia article you're pointing out, we've been using:
Where:
(d_x,d_y,d_z) = (x,y,z), position of the point in the camera system
(s_x,s_y) = (w,h), size of your printable surface
(r_x,r_y,r_z) = (r_x,r_y,f), characteristics of your recording surface
(b_x,b_y) = (u,v), position on your printable surface
I was able to solve this problem using an implementation of the Tsai algorithm (http://en.wikipedia.org/wiki/Camera_resectioning#Algorithms) which can compute a projection matrix using a minimum of 4 known points. Basically, I allow the user to specify the world coordinates of a point and then click on the image to specify the image coordinates. The algorithm uses these mappings (the more mappings, the more accurate the solution is), along with the image width and height to calculate a projection matrix. This projection matrix can then be used to project additional points onto the image using world coordinates.

How to calculate a point on a circle knowing the radius and center point

I have a complicated problem and it involves an understanding of Maths I'm not confident with.
Some slight context may help. I'm building a 3D train simulator for children and it will run in the browser using WebGL. I'm trying to create a network of points to place the track assets (see image) and provide reference for the train to move along.
To help explain my problem I have created a visual representation as I am a designer who can script and not really a programmer or a mathematician:
Basically, I have 3 shapes (Figs. A, B & C) and although they have width, can be represented as a straight line for A and curves (B & C). Curves B & C are derived (bend modified) from A so are all the same length (l) which is 112. The curves (B & C) each have a radius (r) of 285.5 and the (a) angle they were bent at was 22.5°.
Each shape (A, B & C) has a registration point (start point) illustrated by the centre of the green boxes attached to each of them.
What I am trying to do is create a network of "track" starting at 0, 0 (using standard Cartesian coordinates).
My problem is where to place the next element after a curve. If it were straight track then there is no problem as I can use the length as a constant offset along the y axis but that would be boring so I need to add curves.
Fig. D. demonstrates an example of a possible track layout but please understand that I am not looking for a static answer (based on where everything is positioned in the image), I need a formula that can be applied no matter how I configure the track.
Using Fig. D. I tried to work out where to place the second curved element after the first one. I used the formula for plotting a point of the circumference of a circle given its centre coordinates and radius (Fig. E.).
I had point 1 as that was simply a case of setting the length (y position) of the straight line. I could easily work out the centre of the circle because that's just the offset y position, the offset of the radius (r) (x position) and the angle (a) which is always 22.5° (which, incidentally, was converted to Radians as per formula requirements).
After passing the values through the formula I didn't get the correct result because the formula assumed I was working anti-clockwise starting at 3 o'clock so I had to deduct 180 from (a) and convert that to Radians to get the expected result.
That did work and if I wanted to create a 180° track curve I could use the same centre point and simply deducted 22.5° from the angle each time. Great. But I want a more dynamic track layout like in Figs. D & E.
So, how would I go about working point 5 in Fig. E. because that represents the centre point for that curve segment? I simply have no idea.
Also, as a bonus question, is this the correct way to be doing this or am I over-complicating things?
This problem is the only issue stopping me from building my game and, as you can appreciate, it is a bit of a biggie so I thank anyone for their contribution in advance.
As you build up the track, the position of the next piece of track to be placed needs to be relative to location and direction of the current end of the track.
I would store an (x,y) position and an angle a to indicate the current point (with x,y starting at 0, and a starting at pi/2 radians, which corresponds to straight up in the "anticlockwise from 3-o'clock" system).
Then construct
fx = cos(a);
fy = sin(a);
lx = -sin(a);
ly = cos(a);
which correspond to the x and y components of 'forward' and 'left' vectors relative to the direction we are currently facing. If we wanted to move our position one unit forward, we would increment (x,y) by (fx, fy).
In your case, the rule for placing a straight section of track is then:
x=x+112*fx
y=y+112*fy
The rule for placing a curve is slightly more complex. For a curve turning right, we need to move forward 112*sin(22.5°), then side-step right 112*(1-cos(22.5°), then turn clockwise by 22.5°. In code,
x=x+285.206*sin(22.5*pi/180)*fx // Move forward
y=y+285.206*sin(22.5*pi/180)*fy
x=x+285.206*(1-cos(22.5*pi/180))*(-lx) // Side-step right
y=y+285.206*(1-cos(22.5*pi/180))*(-ly)
a=a-22.5*pi/180 // Turn to face new direction
Turning left is just like turning right, but with a negative angle.
To place the subsequent pieces, just run this procedure again, calculating fx,fy, lx and ly with the now-updated value of a, and then incrementing x and y depending on what type of track piece is next.
There is one other point that you might consider; in my experience, building tracks which form closed loops with these sort of pieces usually works if you stick to making 90° turns or rather symmetric layouts. However, it's quite easy to make tracks which don't quite join up, and it's not obvious to see how they should be modified to allow them to join. Something to bear in mind perhaps if your program allows children to design their own layouts.
Point 5 is equidistant from 3 as 2, but in the opposite direction.

Normal Vector of Three Points

Hey math geeks, I've got a problem that's been stumping me for a while now. It's for a personal project.
I've got three dots: red, green, and blue. They're positioned on a cardboard slip such that the red dot is in the lower left (0,0), the blue dot is in the lower right (1,0), and the green dot is in the upper left. Imagine stepping back and taking a picture of the card from an angle. If you were to find the center of each dot in the picture (let's say the units are pixels), how would you find the normal vector of the card's face in the picture (relative to the camera)?
Now a few things I've picked up about this problem:
The dots (in "real life") are always at a right angle. In the picture, they're only at a right angle if the camera has been rotated around the red dot along an "axis" (axis being the line created by the red and blue or red and green dots).
There are dots on only one side of the card. Thus, you know you'll never be looking at the back of it.
The distance of the card to the camera is irrelevant. If I knew the depth of each point, this would be a whole lot easier (just a simple cross product, no?).
The rotation of the card is irrelevant to what I'm looking for. In the tinkering that I've been doing to try to figure this one out, the rotation can be found with the help of the normal vector in the end. Whether or not the rotation is a part of (or product of) finding the normal vector is unknown to me.
Hope there's someone out there that's either done this or is a math genius. I've got two of my friends here helping me on it and we've--so far--been unsuccessful.
i worked it out in my old version of MathCAD:
Edit: Wording wrong in screenshot of MathCAD: "Known: g and b are perpendicular to each other"
In MathCAD i forgot the final step of doing the cross-product, which i'll copy-paste here from my earlier answer:
Now we've solved for the X-Y-Z of the
translated g and b points, your
original question wanted the normal of
the plane.
If cross g x b, we'll get the
vector normal to both:
| u1 u2 u3 |
g x b = | g1 g2 g3 |
| b1 b2 b3 |
= (g2b3 - b2g3)u1 + (b1g3 - b3g1)u2 + (g1b2 - b1g2)u3
All the values are known, plug them in
(i won't write out the version with g3
and b3 substituted in, since it's just
too long and ugly to be helpful.
But in practical terms, i think you'll have to solve it numerically, adjusting gz and bz so as to best fit the conditions:
g · b = 0
and
|g| = |b|
Since the pixels are not algebraically perfect.
Example
Using a picture of the Apollo 13 astronauts rigging one of the command module's square Lithium Hydroxide cannister to work in the LEM, i located the corners:
Using them as my basis for an X-Y plane:
i recorded the pixel locations using Photoshop, with positive X to the right, and positive Y down (to keep the right-hand rule of Z going "into" the picture):
g = (79.5, -48.5, gz)
b = (-110.8, -62.8, bz)
Punching the two starting formulas into Excel, and using the analysis toolpack to "minimize" the error by adjusting gz and bz, it came up with two Z values:
g = (79.5, -48.5, 102.5)
b = (-110.8, -62.8, 56.2)
Which then lets me calcuate other interesting values.
The length of g and b in pixels:
|g| = 138.5
|b| = 139.2
The normal vector:
g x b = (3710, -15827, -10366)
The unit normal (length 1):
uN = (0.1925, -0.8209, -0.5377)
Scaling normal to same length (in pixels) as g and b (138.9):
Normal = (26.7, -114.0, -74.7)
Now that i have the normal that is the same length as g and b, i plotted them on the same picture:
i think you're going to have a new problem: distortion introduced by the camera lens. The three dots are not perfectly projected onto the 2-dimensional photographic plane. There's a spherical distortion that makes straight lines no longer straight, makes equal lengths no longer equal, and makes the normals slightly off of normal.
Microsoft research has an algorithm to figure out how to correct for the camera's distortion:
A Flexible New Technique for Camera Calibration
But it's beyond me:
We propose a flexible new technique to
easily calibrate a camera. It is well
suited for use without specialized
knowledge of 3D geometry or computer
vision. The technique only requires
the camera to observe a planar pattern
shown at a few (at least two)
different orientations. Either the
camera or the planar pattern can be
freely moved. The motion need not be
known. Radial lens distortion is
modeled. The proposed procedure
consists of a closed-form solution,
followed by a nonlinear refinement
based on the maximum likelihood
criterion. Both computer simulation
and real data have been used to test
the proposed technique, and very good
results have been obtained. Compared
with classical techniques which use
expensive equipments such as two or
three orthogonal planes, the proposed
technique is easy to use and flexible.
It advances 3D computer vision one
step from laboratory environments to
real world use.
They have a sample image, where you can see the distortion:
(source: microsoft.com)
Note
you don't know if you're seeing the "top" of the cardboard, or the "bottom", so the normal could be mirrored vertically (i.e. z = -z)
Update
Guy found an error in the derived algebraic formulas. Fixing it leads to formulas that i, don't think, have a simple closed form. This isn't too bad, since it can't be solved exactly anyway; but numerically.
Here's a screenshot from Excel where i start with the two knowns rules:
g · b = 0
and
|g| = |b|
Writing the 2nd one as a difference (an "error" amount), you can then add both up and use that value as a number to have excel's solver minimize:
This means you'll have to write your own numeric iterative solver. i'm staring over at my Numerical Methods for Engineers textbook from university; i know it contains algorithms to solve recursive equations with no simple closed form.
From the sounds of it, you have three points p1, p2, and p3 defining a plane, and you want to find the normal vector to the plane.
Representing the points as vectors from the origin, an equation for a normal vector would be
n = (p2 - p1)x(p3 - p1)
(where x is the cross-product of the two vectors)
If you want the vector to point outwards from the front of the card, then ala the right-hand rule, set
p1 = red (lower-left) dot
p2 = blue (lower-right) dot
p3 = green (upper-left) dot
# Ian Boyd...I liked your explanation, only I got stuck on step 2, when you said to solve for bz. You still had bz in your answer, and I don't think you should have bz in your answer...
bz should be +/- square root of gx2 + gy2 + gz2 - bx2 - by2
After I did this myself, I found it very difficult to substitute bz into the first equation when you solved for gz, because when substituting bz, you would now get:
gz = -(gxbx + gyby) / sqrt( gx2 + gy2 + gz2 - bx2 - by2 )
The part that makes this difficult is that there is gz in the square root, so you have to separate it and combine the gz together, and solve for gz Which I did, only I don't think the way I solved it was correct, because when I wrote my program to calculate gz for me, I used your gx, and gy values to see if my answer matched up with yours, and it did not.
So I was wondering if you could help me out, because I really need to get this to work for one of my projects. Thanks!
Just thinking on my feet here.
Your effective inputs are the apparent ratio RB/RG [+], the apparent angle BRG, and the angle that (say) RB makes with your screen coordinate y-axis (did I miss anything). You need out the components of the normalized normal (heh!) vector, which I believe is only two independent values (though you are left with a front-back ambiguity if the card is see through).[++]
So I'm guessing that this is possible...
From here on I work on the assumption that the apparent angle of RB is always 0, and we can rotate the final solution around the z-axis later.
Start with the card positioned parallel to the viewing plane and oriented in the "natural" way (i.e. you upper vs. lower and left vs. right assignments are respected). We can reach all the interesting positions of the card by rotating by \theta around the initial x-axis (for -\pi/2 < \theta < \pi/2), then rotating by \phi around initial y-axis (for -\pi/2 < \phi < \pi/2). Note that we have preserved the apparent direction of the RB vector.
Next step compute the apparent ratio and apparent angle after in terms of \theta and \phi and invert the result.[+++]
The normal will be R_y(\phi)R_x(\theta)(0, 0, 1) for R_i the primitive rotation matrix around axis i.
[+] The absolute lengths don't count, because that just tells you the distance to card.
[++] One more assumption: that the distance from the card to view plane is much large than the size of the card.
[+++] Here the projection you use from three-d space to the viewing plane matters. This is the hard part, but not something we can do for you unless you say what projection you are using. If you are using a real camera, then this is a perspective projection and is covered in essentially any book on 3D graphics.
right, the normal vector does not change by distance, but the projection of the cardboard on a picture does change by distance (Simple: If you have a small cardboard, nothing changes.
If you have a cardboard 1 mile wide and 1 mile high and you rotate it so that one side is nearer and the other side more far away, the near side is magnified and the far side shortened on the picture. You can see that immediately that an rectangle does not remain a rectangle, but a trapeze)
The mostly accurate way for small angles and the camera centered on the middle is to measure the ratio of the width/height between "normal" image and angle image on the middle lines (because they are not warped).
We define x as left to right, y as down to up, z as from far to near.
Then
x = arcsin(measuredWidth/normWidth) red-blue
y = arcsin(measuredHeight/normHeight) red-green
z = sqrt(1.0-x^2-y^2)
I will calculate tomorrow a more exact solution, but I'm too tired now...
You could use u,v,n co-oridnates. Set your viewpoint to the position of the "eye" or "camera", then translate your x,y,z co-ordinates to u,v,n. From there you can determine the normals, as well as perspective and visible surfaces if you want (u',v',n'). Also, bear in mind that 2D = 3D with z=0. Finally, make sure you use homogenious co-ordinates.

Resources