Related
the error is shown above. I am trying to plot a graph that show the amount of tweet within each month of 2016. My question is how can I am able to found out the amount of tweet for each month in order for me to plot a graph to see which month tweeted the most.
library(ggplot2)
library(RColorBrewer)
library(rstudioapi)
current_path = rstudioapi::getActiveDocumentContext()$path
setwd(dirname(current_path ))
print( getwd() )
donaldtrump <- read.csv("random_poll_tweets.csv", stringsAsFactors = FALSE)
print(str(donaldtrump))
time8_ts <- ts(random$time8, start = c(2016,8), frequency = 12)
time7_ts <- ts(random$time7, start = c(2016,7), frequency = 12)
time6_ts <- ts(random$time6, start = c(2016,6), frequency = 12)
time5_ts <- ts(random$time5, start = c(2016,5), frequency = 12)
time4_ts <- ts(random$time4, start = c(2016,4), frequency = 12)
time3_ts <- ts(random$time3, start = c(2016,3), frequency = 12)
time2_ts <- ts(random$time2, start = c(2016,2), frequency = 12)
time1_ts <- ts(random$time1, start = c(2016,1), frequency = 12)
browser_mts <- cbind(time8_ts, time7_ts,time6_ts,time5_ts,time4_ts,time3_ts,time2_ts,time1_ts)
dimnames(browser_mts)[[2]] <- c("8","7","6","5","4","3","2","1")
pdf(file="fig_browser_tweet_R.pdf",width = 11,height = 8.5)
ts.plot(browser_mts, ylab = "Amount of Tweet", xlab = "Month",
plot.type = "single", col = 1:5)
legend("topright", colnames(browser_mts), col = 1:5, lty = 1, cex=1.75)
library(lubridate)
library(dplyr)
donaldtrump$created_at <- donaldtrump$created_at |>
mdy_hm() |>
floor_date(unit = "month")
donaldtrump |> count(created_at)
Just because you are looking at a time series doesn't mean that you must use a time series object.
If you want a plot:
library(ggplot2)
donaldtrump |>
count(created_at) |>
ggplot(aes(created_at, n)) + geom_col() +
labs(x = "Amount of Tweet", y = "Month")
I'm attempting to get a r visualization running in PowerBI. It runs fine in R, but for some reason it never finishes loading in PowerBI (no error message, just the timeout screen after 5 minutes). After some experimenting, I've noticed that if I remove one plotly overlay from the create and save widget section, it will load fine. It doesn't matter which one.
I am new to R and powerBi, so any advice on a workaround would be really appreciated.
source('./r_files/flatten_HTML.r')
############### Library Declarations ###############
libraryRequireInstall("ggplot2");
libraryRequireInstall("plotly");
####################################################
################### Actual code ####################
# plot histogram of risk density using monte carlo output
x = Values[,1]; #grab first column of dataframe as dataframe
# create CDF function and overlay onto histogram
cdf = ecdf(x);
# calculate mean cordinates to draw a mean line for selected data
meancordinates = function(xdata) {
v = sum(xdata)
meanxcord = v/length(xdata)
meancord = list(meanxcord = meanxcord, meanycord = cdf(meanxcord))
return(meancord)
};
mean = meancordinates(x);
# calculate median cordinates to draw a median line for selected data
mediancordinates = function(xdata) {
medianxcord = median(xdata)
mediancord = list(medianxcord = medianxcord, medianycord = cdf(medianxcord))
return(mediancord)
};
median = mediancordinates(x)
# calculate the 80% cordinates to draw a 80% line for selected data
eightycordinates = function(xdata) {
eightyxcord = x[which(abs(cdf(xdata)-0.80) == min(abs(cdf(xdata)-0.80)))]
eightycord = list(eightyxcord = eightyxcord, eightyycord = cdf(eightyxcord))
return(eightycord);
}
eighty = eightycordinates(x);
####################################################
############# Create and save widget ###############
p = plot_ly(x = x, type = "histogram", histnorm = "probability density", name = "Histogram")
p = p %>% add_segments(
x = median$medianxcord, xend = median$medianxcord,
y = 0, yend = median$medianycord,
name = "Median")
p = p %>% add_segments(
x = eighty$eightyxcord, xend = eighty$eightyxcord,
y = 0, yend = eighty$eightyycord,
name = "80%")
p = p %>% add_segments(
x = mean$meanxcord, xend = mean$meanxcord,
y = 0, yend = mean$meanycord,
name = "Mean")
p = p %>% add_lines(x = x, y = cdf(x), name = "CDF");
internalSaveWidget(p, 'out.html');
####################################################
> dput(head(inputData))
structure(list(Date = c("2018:07:00", "2018:06:00", "2018:05:00",
"2018:04:00", "2018:03:00", "2018:02:00"), IIP = c(125.8, 127.5,
129.7, 122.6, 140.3, 127.4), CPI = c(139.8, 138.5, 137.8, 137.1,
136.5, 136.4), `Term Spread` = c(1.580025, 1.89438, 2.020112,
1.899074, 1.470544, 1.776862), RealMoney = c(142713.9916, 140728.6495,
140032.2762, 139845.5215, 139816.4682, 139625.865), NSE50 = c(10991.15682,
10742.97381, 10664.44773, 10472.93333, 10232.61842, 10533.10526
), CallMoneyRate = c(6.161175, 6.10112, 5.912088, 5.902226, 5.949956,
5.925538), STCreditSpread = c(-0.4977, -0.3619, 0.4923, 0.1592,
0.3819, -0.1363)), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))
I want to make my autoregressive plot like this plot:
#------> importing all libraries
library(readr)
install.packages("lubridtae")
library("lubridate")
install.packages("forecast")
library('ggplot2')
library('fpp')
library('forecast')
library('tseries')
#--------->reading data
inputData <- read_csv("C:/Users/sanat/Downloads/exercise_1.csv")
#--------->calculating the lag=1 for NSE50
diff_NSE50<-(diff(inputData$NSE50, lag = 1, differences = 1)/lag(inputData$NSE50))
diff_RealM2<-(diff(inputData$RealMoney, lag = 1, differences = 1)/lag(inputData$RealMoney))
plot.ts(diff_NSE50)
#--------->
lm_fit = dynlm(IIP ~ CallMoneyRate + STCreditSpread + diff_NSE50 + diff_RealM2, data = inputData)
summary(lm_fit)
#--------->
inputData_ts = ts(inputData, frequency = 12, start = 2012)
#--------->area of my doubt is here
VAR_data <- window(ts.union(ts(inputData$IIP), ts(inputData$CallMoneyRate)))
VAR_est <- VAR(y = VAR_data, p = 12)
plot(VAR_est)
I want to my plots to get plotted together in same plot. How do I serparate the var() plots to two separate ones.
Current plot:
My dataset :
dataset
Okay, so this still needs some work, but it should set the right framework for you. I would look more into working with the ggplot2 for future.
Few extra packages needed, namely library(vars) and library(dynlm).
Starting from,
VAR_est <- VAR(y = VAR_data, p = 12)
Now we extract the values we want from the VAR_est object.
y <- as.numeric(VAR_est$y[,1])
z <- as.numeric(VAR_est$y[,2])
x <- 1:length(y)
## second data set on a very different scale
par(mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis
plot(x, y, type = "l") # first plot
par(new = TRUE)
plot(x, z, type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "")
axis(side=4, at = pretty(range(z)))
mtext("z", side=4, line=3)
I will leave you to add the dotted lines on etc...
Hint: Decompose the VAR_est object, for example, VAR_est$datamat, then see which bit of data corresponds to the part of the plot you want.
Used some of this
I'm new to rCharts, in fact this is my first attempt. So please forgive a naive question.
I'm trying to create a simple rCharts visual which has a only one horizontal line (X-axis) and no Y-axis. I want to be able to choose the length and each point in the line has mouseover which represents some data. Also I would like to add colors to some of the special points.
This seems very simple, but I'm having great difficulty in this.
library(rCharts)
age <- c(1:2000)
dot <- rep(1,2000)
name <- paste(letters[0], 1:2000, sep="")
df <- data.frame(age=age,dot=dot,name=name)
n1 <- nPlot(dot~age, data=df, type="scatterChart")
n1$chart(tooltipContent = "#! function(key,x,y,e){var d = e.series.values[e.pointIndex];return 'x:'+ x + 'y:' + y + 'name:' + d.name }!#")
n1
Now this will create a line with mouseover but the line in at y=1 and there are x and y axes also. I want just one line, something like a timeline with special events marked.
Thanks a lot.
Well, turning off the y-axis is fairly simple. I added some other ideas to the code.
library(rCharts)
age <- c(1:2000)
dot <- c(
rep(1,1000),
rep(2,1000)
)
name <- c(
rep(letters[1], 1000),
rep(letters[2], 1000)
)
df <- data.frame(age=age,dot=dot,name=name)
n1 <- nPlot(dot~age, data=df, group = "name", type="scatterChart")
n1$chart(
tooltipContent = "#! function(key,x,y,e){
var d = e.series.values[e.pointIndex]
return 'x:'+ x + 'y:' + y + 'name:' + d.name
}!#",
showYAxis = FALSE, #turns off y axis
forceY = c(0,4) #forces y axis to 0 min and 4 max
)
n1
While I think this solves the issue, I am anticipating some things. One is if you define each point, then the data will become large. We could change to lineChart to minimize data sent, but then the tooltip only shows on the points defined. I am sure there is a way to bind an event to the path to show a tooltip then also, but it is beyond my abilities. I would guess you might like the x to be a date format. I'll be happy to demo an example of that also if you would like.
n2 <- nPlot(
dot~age
, data=data.frame(
name = c(rep("A",2),rep("B",2)),
dot = c(1,1,2,2),
age = c(1,1000,1000,2000)
)
, group = "name"
, type="lineChart"
)
n2$chart(
tooltipContent = "#! function(key,x,y,e){
var d = e.series.values[e.pointIndex]
return 'x:'+ x + 'y:' + y + 'name:' + d.name
}!#",
showYAxis = FALSE, #turns off y axis
forceY = c(0,4) #forces y axis to 0 min and 4 max
)
n2
Here is the additional code based on the comments
require(dplyr)
require(magrittr)
require(rCharts)
data <- jsonlite::fromJSON('[
[5,
0, "a1"], [480, 0, "a2"], [250, 0, "a3"], [100, 0, "a4"], [330, 0, "a5"],
[410, 0, "a6"], [475,
0, "a7"], [25, 0, "a8"], [85, 0, "a9"], [220, 0, "a10"],
[600, 0, "a11"]
]') %>% as.data.frame(stringsAsFactors = F) %>%
set_colnames(c("x","y","name")) %>%
mutate(x = as.numeric(x)) %>%
mutate(y = as.numeric(y))
data$grp <- c(rep("A",3),rep("B",5),rep("Z",3))
n1 <- nPlot(
y~x
,group = "grp"
,data = data
,type="scatterChart"
,height=200
)
n1$chart(
tooltipContent = "#! function(key,x,y,e){
var d = e.series.values[e.pointIndex]
var mytip = [];
mytip.push('<h1>name:'+ d.name + '</h1>');
mytip.push('<p>x:' + x + '</p>');
mytip.push('<p>y:' + y + '</p>');
return mytip.join('');
}!#",
showYAxis = FALSE, #turns off y axis
forceY = c(-1,1) #forces y axis to 0 min and 4 max
,showDistX = TRUE #turn on markers on the x axis
,showDistY = FALSE
)
n1$yAxis(
showMaxMin = FALSE
,axisLabel = NULL
)
n1
note: there is a bug in the fisheye that interferes with the tooltip; we can remove to get tooltips to appear immediately
Let me know how this works.
I am looking for good R code (or package) that uses ggplot2 to create wind roses that show the frequency, magnitude and direction of winds.
I'm particularly interested in ggplot2 as building the plot that way gives me the chance to leverage the rest of the functionality in there.
Test data
Download a year of weather data from the 80-m level on the National Wind Technology's "M2" tower. This link will create a .csv file that is automatically downloaded. You need to find that file (it's called "20130101.csv"), and read it in.
# read in a data file
data.in <- read.csv(file = "A:/drive/somehwere/20130101.csv",
col.names = c("date","hr","ws.80","wd.80"),
stringsAsFactors = FALSE))
This would work with any .csv file and will overwrite the column names.
Sample data
If you don't want to download that data, here are 10 data points that we will use to demo the process:
data.in <- structure(list(date = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "1/1/2013", class = "factor"), hr = 1:9, ws.80 = c(5,
7, 7, 51.9, 11, 12, 9, 11, 17), wd.80 = c(30, 30, 30, 180, 180,
180, 269, 270, 271)), .Names = c("date", "hr", "ws.80", "wd.80"
), row.names = c(NA, -9L), class = "data.frame")
For sake of argument we'll assume that we are using the data.in data frame, which has two data columns and some kind of date / time information. We'll ignore the date and time information initially.
The ggplot function
I've coded the function below. I'm interested in other people's experience or suggestions on how to improve this.
# WindRose.R
require(ggplot2)
require(RColorBrewer)
plot.windrose <- function(data,
spd,
dir,
spdres = 2,
dirres = 30,
spdmin = 2,
spdmax = 20,
spdseq = NULL,
palette = "YlGnBu",
countmax = NA,
debug = 0){
# Look to see what data was passed in to the function
if (is.numeric(spd) & is.numeric(dir)){
# assume that we've been given vectors of the speed and direction vectors
data <- data.frame(spd = spd,
dir = dir)
spd = "spd"
dir = "dir"
} else if (exists("data")){
# Assume that we've been given a data frame, and the name of the speed
# and direction columns. This is the format we want for later use.
}
# Tidy up input data ----
n.in <- NROW(data)
dnu <- (is.na(data[[spd]]) | is.na(data[[dir]]))
data[[spd]][dnu] <- NA
data[[dir]][dnu] <- NA
# figure out the wind speed bins ----
if (missing(spdseq)){
spdseq <- seq(spdmin,spdmax,spdres)
} else {
if (debug >0){
cat("Using custom speed bins \n")
}
}
# get some information about the number of bins, etc.
n.spd.seq <- length(spdseq)
n.colors.in.range <- n.spd.seq - 1
# create the color map
spd.colors <- colorRampPalette(brewer.pal(min(max(3,
n.colors.in.range),
min(9,
n.colors.in.range)),
palette))(n.colors.in.range)
if (max(data[[spd]],na.rm = TRUE) > spdmax){
spd.breaks <- c(spdseq,
max(data[[spd]],na.rm = TRUE))
spd.labels <- c(paste(c(spdseq[1:n.spd.seq-1]),
'-',
c(spdseq[2:n.spd.seq])),
paste(spdmax,
"-",
max(data[[spd]],na.rm = TRUE)))
spd.colors <- c(spd.colors, "grey50")
} else{
spd.breaks <- spdseq
spd.labels <- paste(c(spdseq[1:n.spd.seq-1]),
'-',
c(spdseq[2:n.spd.seq]))
}
data$spd.binned <- cut(x = data[[spd]],
breaks = spd.breaks,
labels = spd.labels,
ordered_result = TRUE)
# clean up the data
data. <- na.omit(data)
# figure out the wind direction bins
dir.breaks <- c(-dirres/2,
seq(dirres/2, 360-dirres/2, by = dirres),
360+dirres/2)
dir.labels <- c(paste(360-dirres/2,"-",dirres/2),
paste(seq(dirres/2, 360-3*dirres/2, by = dirres),
"-",
seq(3*dirres/2, 360-dirres/2, by = dirres)),
paste(360-dirres/2,"-",dirres/2))
# assign each wind direction to a bin
dir.binned <- cut(data[[dir]],
breaks = dir.breaks,
ordered_result = TRUE)
levels(dir.binned) <- dir.labels
data$dir.binned <- dir.binned
# Run debug if required ----
if (debug>0){
cat(dir.breaks,"\n")
cat(dir.labels,"\n")
cat(levels(dir.binned),"\n")
}
# deal with change in ordering introduced somewhere around version 2.2
if(packageVersion("ggplot2") > "2.2"){
cat("Hadley broke my code\n")
data$spd.binned = with(data, factor(spd.binned, levels = rev(levels(spd.binned))))
spd.colors = rev(spd.colors)
}
# create the plot ----
p.windrose <- ggplot(data = data,
aes(x = dir.binned,
fill = spd.binned)) +
geom_bar() +
scale_x_discrete(drop = FALSE,
labels = waiver()) +
coord_polar(start = -((dirres/2)/360) * 2*pi) +
scale_fill_manual(name = "Wind Speed (m/s)",
values = spd.colors,
drop = FALSE) +
theme(axis.title.x = element_blank())
# adjust axes if required
if (!is.na(countmax)){
p.windrose <- p.windrose +
ylim(c(0,countmax))
}
# print the plot
print(p.windrose)
# return the handle to the wind rose
return(p.windrose)
}
Proof of Concept and Logic
We'll now check that the code does what we expect. For this, we'll use the simple set of demo data.
# try the default settings
p0 <- plot.windrose(spd = data.in$ws.80,
dir = data.in$wd.80)
This gives us this plot:
So: we've correctly binned the data by direction and wind speed, and have coded up our out-of-range data as expected. Looks good!
Using this function
Now we load the real data. We can load this from the URL:
data.in <- read.csv(file = "http://midcdmz.nrel.gov/apps/plot.pl?site=NWTC&start=20010824&edy=26&emo=3&eyr=2062&year=2013&month=1&day=1&endyear=2013&endmonth=12&endday=31&time=0&inst=21&inst=39&type=data&wrlevel=2&preset=0&first=3&math=0&second=-1&value=0.0&user=0&axis=1",
col.names = c("date","hr","ws.80","wd.80"))
or from file:
data.in <- read.csv(file = "A:/blah/20130101.csv",
col.names = c("date","hr","ws.80","wd.80"))
The quick way
The simple way to use this with the M2 data is to just pass in separate vectors for spd and dir (speed and direction):
# try the default settings
p1 <- plot.windrose(spd = data.in$ws.80,
dir = data.in$wd.80)
Which gives us this plot:
And if we want custom bins, we can add those as arguments:
p2 <- plot.windrose(spd = data.in$ws.80,
dir = data.in$wd.80,
spdseq = c(0,3,6,12,20))
Using a data frame and the names of columns
To make the plots more compatible with ggplot(), you can also pass in a data frame and the name of the speed and direction variables:
p.wr2 <- plot.windrose(data = data.in,
spd = "ws.80",
dir = "wd.80")
Faceting by another variable
We can also plot the data by month or year using ggplot's faceting capability. Let's start by getting the time stamp from the date and hour information in data.in, and converting to month and year:
# first create a true POSIXCT timestamp from the date and hour columns
data.in$timestamp <- as.POSIXct(paste0(data.in$date, " ", data.in$hr),
tz = "GMT",
format = "%m/%d/%Y %H:%M")
# Convert the time stamp to years and months
data.in$Year <- as.numeric(format(data.in$timestamp, "%Y"))
data.in$month <- factor(format(data.in$timestamp, "%B"),
levels = month.name)
Then you can apply faceting to show how the wind rose varies by month:
# recreate p.wr2, so that includes the new data
p.wr2 <- plot.windrose(data = data.in,
spd = "ws.80",
dir = "wd.80")
# now generate the faceting
p.wr3 <- p.wr2 + facet_wrap(~month,
ncol = 3)
# and remove labels for clarity
p.wr3 <- p.wr3 + theme(axis.text.x = element_blank(),
axis.title.x = element_blank())
Comments
Some things to note about the function and how it can be used:
The inputs are:
vectors of speed (spd) and direction (dir) or the name of the data frame and the names of the columns that contain the speed and direction data.
optional values of the bin size for wind speed (spdres) and direction (dirres).
palette is the name of a colorbrewer sequential palette,
countmax sets the range of the wind rose.
debug is a switch (0,1,2) to enable different levels of debugging.
I wanted to be able to set the maximum speed (spdmax) and the count (countmax) for the plots so that I can compare windroses from different data sets
If there are wind speeds that exceed (spdmax), those are added as a grey region (see the figure). I should probably code something like spdmin as well, and color-code regions where the wind speeds are less than that.
Following a request, I implemented a method to use custom wind speed bins. They can be added using the spdseq = c(1,3,5,12) argument.
You can remove the degree bin labels using the usual ggplot commands to clear the x axis: p.wr3 + theme(axis.text.x = element_blank(),axis.title.x = element_blank()).
At some point recently ggplot2 changed the ordering of bins, so that the plots didn't work. I think this was version 2.2. But, if your plots look a bit weird, change the code so that test for "2.2" is maybe "2.1", or "2.0".
Here is my version of the code. I added labels for directions (N, NNE, NE, ENE, E....) and made the y label to show frequency in percent instead of counts.
Click here to see figure of wind Rose with directions and frequency (%)
# WindRose.R
require(ggplot2)
require(RColorBrewer)
require(scales)
plot.windrose <- function(data,
spd,
dir,
spdres = 2,
dirres = 22.5,
spdmin = 2,
spdmax = 20,
spdseq = NULL,
palette = "YlGnBu",
countmax = NA,
debug = 0){
# Look to see what data was passed in to the function
if (is.numeric(spd) & is.numeric(dir)){
# assume that we've been given vectors of the speed and direction vectors
data <- data.frame(spd = spd,
dir = dir)
spd = "spd"
dir = "dir"
} else if (exists("data")){
# Assume that we've been given a data frame, and the name of the speed
# and direction columns. This is the format we want for later use.
}
# Tidy up input data ----
n.in <- NROW(data)
dnu <- (is.na(data[[spd]]) | is.na(data[[dir]]))
data[[spd]][dnu] <- NA
data[[dir]][dnu] <- NA
# figure out the wind speed bins ----
if (missing(spdseq)){
spdseq <- seq(spdmin,spdmax,spdres)
} else {
if (debug >0){
cat("Using custom speed bins \n")
}
}
# get some information about the number of bins, etc.
n.spd.seq <- length(spdseq)
n.colors.in.range <- n.spd.seq - 1
# create the color map
spd.colors <- colorRampPalette(brewer.pal(min(max(3,
n.colors.in.range),
min(9,
n.colors.in.range)),
palette))(n.colors.in.range)
if (max(data[[spd]],na.rm = TRUE) > spdmax){
spd.breaks <- c(spdseq,
max(data[[spd]],na.rm = TRUE))
spd.labels <- c(paste(c(spdseq[1:n.spd.seq-1]),
'-',
c(spdseq[2:n.spd.seq])),
paste(spdmax,
"-",
max(data[[spd]],na.rm = TRUE)))
spd.colors <- c(spd.colors, "grey50")
} else{
spd.breaks <- spdseq
spd.labels <- paste(c(spdseq[1:n.spd.seq-1]),
'-',
c(spdseq[2:n.spd.seq]))
}
data$spd.binned <- cut(x = data[[spd]],
breaks = spd.breaks,
labels = spd.labels,
ordered_result = TRUE)
# figure out the wind direction bins
dir.breaks <- c(-dirres/2,
seq(dirres/2, 360-dirres/2, by = dirres),
360+dirres/2)
dir.labels <- c(paste(360-dirres/2,"-",dirres/2),
paste(seq(dirres/2, 360-3*dirres/2, by = dirres),
"-",
seq(3*dirres/2, 360-dirres/2, by = dirres)),
paste(360-dirres/2,"-",dirres/2))
# assign each wind direction to a bin
dir.binned <- cut(data[[dir]],
breaks = dir.breaks,
ordered_result = TRUE)
levels(dir.binned) <- dir.labels
data$dir.binned <- dir.binned
# Run debug if required ----
if (debug>0){
cat(dir.breaks,"\n")
cat(dir.labels,"\n")
cat(levels(dir.binned),"\n")
}
# create the plot ----
p.windrose <- ggplot(data = data,
aes(x = dir.binned,
fill = spd.binned
,y = (..count..)/sum(..count..)
))+
geom_bar() +
scale_x_discrete(drop = FALSE,
labels = c("N","NNE","NE","ENE", "E",
"ESE", "SE","SSE",
"S","SSW", "SW","WSW", "W",
"WNW","NW","NNW")) +
coord_polar(start = -((dirres/2)/360) * 2*pi) +
scale_fill_manual(name = "Wind Speed (m/s)",
values = spd.colors,
drop = FALSE) +
theme(axis.title.x = element_blank()) +
scale_y_continuous(labels = percent) +
ylab("Frequencia")
# adjust axes if required
if (!is.na(countmax)){
p.windrose <- p.windrose +
ylim(c(0,countmax))
}
# print the plot
print(p.windrose)
# return the handle to the wind rose
return(p.windrose)
}
Have you ever tried windRose function from Openair package? It's very easy and you can set intervals, statistics and etc.
windRose(mydata, ws = "ws", wd = "wd", ws2 = NA, wd2 = NA,
ws.int = 2, angle = 30, type = "default", bias.corr = TRUE, cols
= "default", grid.line = NULL, width = 1, seg = NULL, auto.text
= TRUE, breaks = 4, offset = 10, normalise = FALSE, max.freq =
NULL, paddle = TRUE, key.header = NULL, key.footer = "(m/s)",
key.position = "bottom", key = TRUE, dig.lab = 5, statistic =
"prop.count", pollutant = NULL, annotate = TRUE, angle.scale =
315, border = NA, ...)
pollutionRose(mydata, pollutant = "nox", key.footer = pollutant,
key.position = "right", key = TRUE, breaks = 6, paddle = FALSE,
seg = 0.9, normalise = FALSE, ...)