collapse rows in 2 different columns in data.table? - r

For dummy dataset
require(data.table)
require(reshape2)
teamid <- c(1,2,3)
member <- c("a,b","","c,g,h")
leader <- c("c", "d,e", "")
dt <- data.table(teamid, member, leader)
Now the dataset looks like this:
teamid member leader
1: 1 a,b c
2: 2 d,e
3: 3 c,g,h
3 Columns. For each team, they have team members, and team leaders in different column. Teams may have only members without leaders, and vice versa.
The following is my ALMOST desired output:
teamid value leader
1: 1 a FALSE
2: 1 b FALSE
3: 1 c TRUE
4: 1 c TRUE
5: 2 d TRUE
6: 2 e TRUE
7: 3 c FALSE
8: 3 g FALSE
9: 3 h FALSE
I want to have the two columns merged into one, and add a tag if one is a team leader.
I have an ugly solution for this,
dt1 <- dt[, strsplit(member, ","), by = teamid]
dt2 <- dt[, strsplit(leader, ","), by = teamid]
setkey(dt1,teamid)
setkey(dt2,teamid)
dt3 <- merge(dt1,dt2, all = TRUE)
dt4 <- melt(dt3, id = 1, measure = c("V1.x", "V1.y"))
dt5 <- dt4[value!="NA_real"]
dt6 <- dt5[, leader := (variable == "V1.y")][, variable := NULL]
setkey(dt6, teamid)
setnames(dt6,value,member)
Issues:
This solution is not efficency I think, first merge and then melt. So any ideas about other ways to do this?
There're duplicated rows, in row 3 and row 4.
When I tried to change column name, an error came up
setnames(dt6,value,member)
Error in setnames(dt6, value, member) : object 'value' not found
Maybe the most important thing,
When I tried to test on my real dataset, which have more 1million rows, 3 columns the following error occured
merge(df1,df2, all = TRUE)
Error in vecseq(f__, len__, if (allow.cartesian) NULL else as.integer(max(nrow(x), :
Join results in 238797 rows; more than 142095 = max(nrow(x),nrow(i)). Check for duplicate key values in i, each of which join to the same group in x over and over again. If that's ok, try including j and dropping by (by-without-by) so that j runs for each group to avoid the large allocation. If you are sure you wish to proceed, rerun with allow.cartesian=TRUE. Otherwise, please search for this error message in the FAQ, Wiki, Stack Overflow and datatable-help for advice.
Any suggestion? Thanks a lot!

Melt first.
result <- melt(dt,id="teamid", variable.name="status", value.name="member")
result <- result[nchar(member)>0,strsplit(member,","),by=list(teamid,status)]
setnames(result,"V1","member")
setkey(result,teamid,status)
result
# teamid status member
# 1: 1 member a
# 2: 1 member b
# 3: 1 leader c
# 4: 2 leader d
# 5: 2 leader e
# 6: 3 member c
# 7: 3 member g
# 8: 3 member h
If you want to get rid of the status column and add a "tag" to the member column, you can do it this way:
result[status=="leader",member:=paste0(member,"*")]
result[,status:=NULL]
result
# teamid member
# 1: 1 a
# 2: 1 b
# 3: 1 c*
# 4: 2 d*
# 5: 2 e*
# 6: 3 c
# 7: 3 g
# 8: 3 h

A slightly simpler approach may be
crew <- dt[, .(strsplit(member, ","))]
crew <- unlist(crew)
leads <- dt[, .(strsplit(leader, ","))]
leads <- unlist(leads)
dt_long <- data.table(people=c(crew, leads),
status = rep(c("crew", "leader"), c(length(crew), length(leader))))
It gives me
people status
1: a crew
2: b crew
3: c crew
4: g crew
5: h crew
6: c leader
7: d leader
8: e leader

You can try a tidyverse solution now
dt %>%
separate_rows(member) %>%
separate_rows(leader) %>%
gather(status, member, -teamid) %>%
distinct() %>%
filter(member != "") %>%
mutate(member=ifelse(status == "leader", paste0(member, "*"), member)) %>%
select(-status)
teamid member
1 1 a
2 1 b
3 3 c
4 3 g
5 3 h
6 1 c*
7 2 d*
8 2 e*

Related

Complex filtering with data.table R

I am trying to select information by different group in a data.frame (or data.table), but didn't find the proper way of doing it. Consider the following example:
DF <- data.table(value=c(seq(5,1,-1),c(5,5,3,2,1)),group=rep(c("A","B"),each=5),status=rep(c("D","A","A","A","A"),2))
value group status
1: 5 A D
2: 4 A A
3: 3 A A
4: 2 A A
5: 1 A A
6: 5 B D
7: 5 B A
8: 3 B A
9: 2 B A
10: 1 B A
I'd like now to get the max value by group when the status is alive ("A"). I have tried this:
DF[,.I[value==max(value[status!="D"])],by=group]
group V1
1: A 2
2: B 6
3: B 7
But the 6th row is status "D" (dead) and I'd like to avoid that row. I can't subset the data like this:
DF[status!="D",.I[value==max(value[status!="D"])],by=group]
as I need to compute different stats by groups, such as (doesn't work):
DF[,list("max"=max(value[status!="D"],na.rm=T),"group"=group[.I[value==max(value[status=="D"],na.rm=T)]]),by=group]]
Any hint would be greatly appreciated!
If we need an index based on 'status' that are not 'D' and 'value' is max of 'value' grouped by 'group'
i1 <- DF[status != "D", .I[value == max(value)], by = group]$V1
Use the index for further summarizing
DF[i1, .SD[value == max(value)], group]

R: Examine to see if a Datatable is subset of another Datatable

How I can check to see if a data table is subset of another data table, regardless of the row and column order? For instance, imagine someone rbinded the DT_x and DT_y with removing the duplicate and created DT_Z. Now, I want to know how I can compare DT_x and DT_Z and get the result which show/state that the DT_z is a subset of DT_Z?
as very simple example:
DT1 <- data.table(a= LETTERS[1:10], v=1:10)
DT2 <- data.table(a= LETTERS[1:6], v=1:6)
DT1
a v
1: A 1
2: B 2
3: C 3
4: D 4
5: E 5
6: F 6
7: G 7
8: H 8
9: I 9
10: J 10
DT2
a v
1: A 1
2: B 2
3: C 3
4: D 4
5: E 5
6: F 6
I am sure all.equal(DT1, DT2) will not answer my question.
I think you can use data.table's fintersect() and fsetequal():
is_df1_subset_of_df2 <- function(df1, df2) {
intersection <- data.table::fintersect(df1, df2)
data.table::fsetequal(df1, intersection)
}
The first line picks the elements in df1 that exists in df2.
The second line checks if that set is all of df1.

Expand data.table with combinations of two columns given condition in another column

I have a data.table that gives me the connections between locations (origin and destination) for different bus routes (route_id).
library(data.table)
library(magrittr)
# data for reproducible example
dt <- data.table( origin = c('A','B','C', 'F', 'G', 'H'),
destination = c('B','C','D', 'G', 'H', 'I'),
freq = c(2,2,2,10,10,10),
route_id = c(1,1,1,2,2,2), stringsAsFactors=FALSE )
# > dt
# origin destination freq route_id
# 1: A B 2 1
# 2: B C 2 1
# 3: C D 2 1
# 4: F G 10 2
# 5: G H 10 2
# 6: H I 10 2
For the purposes of what I'd want to do, if there is a route_id that gives a connection A-B and a connection B-C, then I want to add to the data a connection A-C for that same route_id and so on.
Problems: So far, I've created a simple code that does this job but:
it uses a for loop that takes a long time (my real data has hundreds of thousands observations)
it still does not cope well with direction. The direction of the connections matter here. So although there is a B-C connection in the original data, there should be no C-B in the output.
My slow solution
# loop
# a) get a data subset corresponding to each route_id
# b) get all combinations of origin-destination pairs
# c) row bind the new pairs to original data
for (i in unique(dt$route_id)) {
temp <- dt[ route_id== i,]
subset_of_pairs <- expand.grid(temp$origin, temp$destination) %>% setDT()
setnames(subset_of_pairs, c("origin", "destination"))
dt <- rbind(dt, subset_of_pairs, fill=T)
}
# assign route_id and freq to new pairs
dt[, route_id := route_id[1L], by=origin]
dt[, freq := freq[1L], by=route_id]
# Keepe only different pairs that are unique
dt[, origin := as.character(origin) ][, destination := as.character(destination) ]
dt <- dt[ origin != destination, ][order(route_id, origin, destination)]
dt <- unique(dt)
Desired output
origin destination freq route_id
1: A B 2 1
2: A C 2 1
3: A D 2 1
4: B C 2 1
5: B D 2 1
6: C D 2 1
7: F G 10 2
8: F H 10 2
9: F I 10 2
10: G H 10 2
11: G I 10 2
12: H I 10 2
One way:
res = dt[, {
stops = c(origin, last(destination))
pairs = combn(.N + 1L, 2L)
.(o = stops[pairs[1,]], d = stops[pairs[2,]])
}, by=route_id]
route_id o d
1: 1 A B
2: 1 A C
3: 1 A D
4: 1 B C
5: 1 B D
6: 1 C D
7: 2 F G
8: 2 F H
9: 2 F I
10: 2 G H
11: 2 G I
12: 2 H I
This is assuming that c(origin, last(destination)) is a full list of stops in order. If dt does not contain enough info to construct a complete order, the task becomes much more difficult.
If vars from dt are needed, an update join like res[dt, on=.(route_id), freq := i.freq] works.
Tasks like this always risk running out of memory. In this case, the OP has up to a million rows containing groups of up to 341 stops, so the end result could be as large as 1e6/341*choose(341,2) = 170 million rows. That's manageable, but in general this sort of analysis does not scale.
How it works
Generally, data.table syntax can be treated just like a loop over groups:
DT[, {
...
}, by=g]
This has a few advantages over loops:
Nothing created in the ... body will pollute the workspace.
All columns can be referenced by name.
Special symbols .N, .SD, .GRP and .BY are available, along with .() for list().
In the code above, pairs finds pairs of indices taken from 1 .. #stops (=.N+1 where .N is the number of rows in the subset of the data associated with a given route_id). It is a matrix with the first row corresponding to the first element of a pair; and the second row with the second. The ... should evaluate to a list of columns; and here list() is abbreviated as .().
Further improvements
I guess the time is mostly devoted to computing combn many times. If multiple routes have the same #stops, this can be addressed by computing beforehand:
Ns = dt[,.N, by=route_id][, unique(N)]
cb = lapply(setNames(,Ns), combn, 2)
Then grab pairs = cb[[as.character(.N)]] in the main code. Alternately, define a pairs function that uses memoization to avoid recomputing.

Group a data.table using a column which is list

I have a really big problem and looping through the data.table to do what I want is too slow, so I am trying to get around looping. Let assume I have a data.table as follows:
a <- data.table(i = c(1,2,3), j = c(2,2,6), k = list(c("a","b"),c("a","c"),c("b")))
> a
i j k
1: 1 2 a,b
2: 2 2 a,c
3: 3 6 b
And I want to group based on the values in k. So something like this:
a[, sum(j), by = k]
right now I am getting the following error:
Error in `[.data.table`(a, , sum(i), by = k) :
The items in the 'by' or 'keyby' list are length (2,2,1). Each must be same length as rows in x or number of rows returned by i (3).
The answer I am looking for is to group first all the rows having "a" in column k and calculate sum(j) and then all rows having "b" and so on. So the desired answer would be:
k V1
a 4
b 8
c 2
Any hint how to do it efficiently? I cant melt the column K by repeating the rows since the size of the data.table would be too big for my case.
I think this might work:
a[, .(k = unlist(k)), by=.(i,j)][,sum(j),by=k]
k V1
1: a 4
2: b 8
3: c 2
If we are using tidyr, a compact option would be
library(tidyr)
unnest(a, k)[, sum(j) ,k]
# k V1
#1: a 4
#2: b 8
#3: c 2
Or using the dplyr/tidyr pipes
unnest(a, k) %>%
group_by(k) %>%
summarise(V1 = sum(j))
# k V1
# <chr> <dbl>
#1 a 4
#2 b 8
#3 c 2
Since by-group operations can be slow, I'd consider...
dat = a[rep(1:.N, lengths(k)), c(.SD, .(k = unlist(a$k))), .SDcols=setdiff(names(a), "k")]
i j k
1: 1 2 a
2: 1 2 b
3: 2 2 a
4: 2 2 c
5: 3 6 b
We're repeating rows of cols i:j to match the unlisted k. The data should be kept in this format instead of using a list column, probably. From there, as in #MikeyMike's answer, we can dat[, sum(j), by=k].
In data.table 1.9.7+, we can similarly do
dat = a[, c(.SD[rep(.I, lengths(k))], .(k = unlist(k))), .SDcols=i:j]

Using .BY with a lookup table--unexpected results

I'd like to create a variable in dt according to a lookup table k. I'm getting some unexpected results depending on how I extract the variable of interest in k.
dt <- data.table(x=c(1:10))
setkey(dt, x)
k <- data.table(x=c(1:5,10), b=c(letters[1:5], "d"))
setkey(k, x)
dt[,b:=k[.BY, list(b)],by=x]
dt #unexpected results
# x b
# 1: 1 1
# 2: 2 2
# 3: 3 3
# 4: 4 4
# 5: 5 5
# 6: 6 6
# 7: 7 7
# 8: 8 8
# 9: 9 9
# 10: 10 10
dt <- data.table(x=c(1:10))
setkey(x, x)
dt[,b:=k[.BY]$b,by=x]
dt #expected results
# x b
# 1: 1 a
# 2: 2 b
# 3: 3 c
# 4: 4 d
# 5: 5 e
# 6: 6 NA
# 7: 7 NA
# 8: 8 NA
# 9: 9 NA
# 10: 10 d
Can anyone explain why this is happening?
You don't have to use by=. here at all.
First solution:
Set appropriate keys and use X[Y] syntax from data.table:
require(data.table)
dt <- data.table(x=c(1:10))
setkey(dt, "x")
k <- data.table(x=c(1:5,10), b=c(letters[1:5], "d"))
setkey(k, "x")
k[dt]
# x b
# 1: 1 a
# 2: 2 b
# 3: 3 c
# 4: 4 d
# 5: 5 e
# 6: 6 NA
# 7: 7 NA
# 8: 8 NA
# 9: 9 NA
# 10: 10 d
OP said that this creates a new data.table and it is undesirable for him.
Second solution
Again, without by:
dt <- data.table(x=c(1:10))
setkey(dt, "x")
k <- data.table(x=c(1:5,10), b=c(letters[1:5], "d"))
setkey(k, "x")
# solution
dt[k, b := i.b]
This does not create a new data.table and gives the solution you're expecting.
To explain why the unexpected result happens:
For the first case you do, dt[,b:=k[.BY, list(b)],by=x]. Here, k[.BY, list(b)] itself returns a data.table. For example:
k[list(x=1), list(b)]
# x b
# 1: 1 a
So, basically, if you would do:
k[list(x=dt$x), list(b)]
That would give you the desired solution as well. To answer why you get what you get when you do b := k[.BY, list(b)], since, the RHS returns a data.table and you're assigning a variable to it, it takes the first element and drops the rest. For example, do this:
dt[, c := dt[1], by=x]
# you'll get the whole column to be 1
For the second case, to understand why it works, you'll have to know the subtle difference between, accessing a data.table as k[6] and k[list(6)], for example:
In the first case, k[6], you are accessing the 6th element of k, which is 10 d. But in the second case, you're asking for a J, join. So, it searches for x = 6 (key column) and since there isn't any in k, it returns 6 NA. In your case, since you use k[.BY] which returns a list, it is a J operation, which fetches the right value.
I hope this helps.

Resources