A slightly changed example from the R help for do():
by_cyl <- group_by(mtcars, cyl)
models <- by_cyl %>% do(mod = lm(mpg ~ disp, data = .))
coefficients<-models %>% do(data.frame(coef = coef(.$mod)[[1]]))
In the dataframe coefficients, there is the first coefficient of the linear model for each cyl group. My question is how can I produce a dataframe that contains not only a column with the coefficients, but also a column with the grouping variable.
===== Edit: I extend the example to try to make more clear my problem
Let's suppose that I want to extract the coefficients of the model and some prediction. I can do this:
by_cyl <- group_by(mtcars, cyl)
getpars <- function(df){
fit <- lm(mpg ~ disp, data = df)
data.frame(intercept=coef(fit)[1],slope=coef(fit)[2])
}
getprediction <- function(df){
fit <- lm(mpg ~ disp, data = df)
x <- df$disp
y <- predict(fit, data.frame(disp= x), type = "response")
data.frame(x,y)
}
pars <- by_cyl %>% do(getpars(.))
prediction <- by_cyl %>% do(getprediction(.))
The problem is that the code is redundant because I am fitting the model two times. My idea was to build a function that returns a list with all the information:
getAll <- function(df){
results<-list()
fit <- lm(mpg ~ disp, data = df)
x <- df$disp
y <- predict(fit, data.frame(disp= x), type = "response")
results$pars <- data.frame(intercept=coef(fit)[1],slope=coef(fit)[2])
results$prediction <- data.frame(x,y)
results
}
The problem is that I don't know how to use do() with the function getAll to obtain for example just a dataframe with the parameters (like the dataframe pars).
Like this?
coefficients <-models %>% do(data.frame(coef = coef(.$mod)[[1]], group = .[[1]]))
yielding
coef group
1 40.87196 4
2 19.08199 6
3 22.03280 8
Using the approach of Hadley Wickham in this video:
library(dplyr)
library(purrr)
library(broom)
fitmodel <- function(d) lm(mpg ~ disp, data = d)
by_cyl <- mtcars %>%
group_by(cyl) %>%
nest() %>%
mutate(mod = map(data, fitmodel),
pars = map(mod, tidy),
pred = map(mod, augment))
pars <- by_cyl %>% unnest(pars)
prediction <- by_cyl %>% unnest(pred)
Related
I have this function that I got from a textbook that runs a couple of linear regressions and then saves the P-Value for each regression.
I would also like to save the T-Statistic as well but I am having a hard time finding the right syntax to enter for the select function.
Here is the current function.
models <- lapply(paste(factors, ' ~ a + b + c + d + e + f + g + h+ j -',factors),
function(f){ lm(as.formula(f), data = df) %>% # Call lm(.)
summary() %>% # Gather the output
"$"(coef) %>% # Keep only the coefs
data.frame() %>% # Convert to dataframe
filter(rownames(.) == "(Intercept)") %>% # Keep only the Intercept
dplyr::select(Estimate,`Pr...t..`)}) # Keep the coef & p-value
I know that I have to change the very last part of the function: dplyr::select(Estimate,`Pr...t..`) but after all my research and trial and error I am still stuck.
Here is a reproducible example using the mtcars data.
library(dplyr)
df <- mtcars
df <- df %>%
select(1,2,3,4,5,6,7)
factors <- c("mpg", "cyl", "disp", "hp", "drat", "wt")
models <- lapply(paste(factors, ' ~ mpg + cyl + disp + hp + drat + wt -',factors),
function(f){ lm(as.formula(f), data = df) %>% # Call lm(.)
summary() %>% # Gather the output
"$"(coef) %>% # Keep only the coefs
data.frame() %>% # Convert to dataframe
filter(rownames(.) == "(Intercept)") %>% # Keep only the Intercept
dplyr::select(Estimate,`Pr...t..`)} # Keep the coef & p-value
)
final <- matrix(unlist(models), ncol = 2, byrow = T) %>% # Switch from list to dataframe
data.frame(row.names = factors
Your example works for me. You can make this a little bit more "tidy" as follows:
library(broom)
sumfun <- function(f) {
lm(as.formula(f), data = df) %>%
tidy() %>%
filter(term == "(Intercept)") %>%
dplyr::select(estimate, p.value)
}
pp <- paste(factors, ' ~ mpg + cyl + disp + hp + drat + wt -',factors)
names(pp) <- factors
final <- purrr::map_dfr(pp, sumfun, .id = "factor")
code below first prints out lm for mpg ~ disp then for mpg ~ disp + wt. I would like to create another loop over the models (note that the second lm is my personalize model, and for the simplicity, we can assume it is lm). how can I loop over different models?
data("mtcars")
formulas <- list(
mpg ~ disp,
mpg ~ disp + wt
)
models <- list(lm, lm)
res <- vector("list", length = length(formulas))
for(i in seq_along(formulas)){
res[[i]] <- lm(formulas[[i]], data = mtcars)
}
res
or
lapply(formulas, lm, data = mtcars)
You may use nested lapply -
lapply(models, function(x) lapply(formulas, function(y) x(y, data = mtcars)))
I like to use tidyverse's purrr for such multi-model approaches:
pacman::p_load(dplyr, purrr)
data("mtcars")
d <- crossing(formula = c(mpg ~ disp, mpg ~ disp + wt),
model = list("lm", "glm")) %>%
mutate(result = pmap(.l = list(model, formula),
.f = function(m, f) do.call(m, args = list(formula = f, data = substitute(mtcars)))))
We could use outer in base R and should be fast
out <- c(outer(models, formulas, Vectorize(function(x, y) list(x(y, data = mtcars)))))
I have a dataframe that I want to run linear models on by group, then use the broom package to extract the slope and r squared for each model. So far I am trying this:
library(tidyverse)
library(broom)
#read in the dataset
data(mtcars)
#add a group variable
mtcars <- mtcars %>% as_tibble() %>% mutate(LC = 1)
#create a second group
mtcars2 <- mtcars
mtcars2 <- mtcars2 %>% mutate(LC = 2)
#bind together
mtcars <- rbind(mtcars, mtcars2)
#groupby and run regressions
all_regress <- mtcars %>% group_by(LC) %>%
do(mod1 = lm(mpg ~ disp, data = .),
mod2 = lm(mpg ~ wt, data = .))
#use broom the extract the slope and rsq per group
glance <-all_regress %>% mutate(tidy = map(mod1, broom::tidy),
glance = map(mod1, broom::glance),
augment = map(mod1, broom::augment),
rsq = glance %>% map_dbl('r.squared'),
slope = tidy %>% map_dbl(function(x) x$estimate[2]))
but this fails with:
Error: Problem with `mutate()` input `tidy`.
x No tidy method for objects of class qr
ℹ Input `tidy` is `map(mod1, broom::tidy)`.
ℹ The error occurred in row 1.
If I do this without groups such as:
#read in the dataset
data(mtcars)
mtcars <- mtcars %>% as_tibble()
#run regressions
all_regress <- mtcars %>%
do(mod1 = lm(mpg ~ disp, data = .),
mod2 = lm(mpg ~ wt, data = .))
#use broom the extract the slope and rsq per group
glance <- all_regress %>% mutate(tidy = map(mod1, broom::tidy),
glance = map(mod1, broom::glance),
augment = map(mod1, broom::augment),
rsq = glance %>% map_dbl('r.squared'),
slope = tidy %>% map_dbl(function(x) x$estimate[2]))
there is no error.
I think simply adding ungroup() achieves what you need:
all_regress <- mtcars %>% group_by(LC) %>%
do(mod1 = lm(mpg ~ disp, data = .),
mod2 = lm(mpg ~ wt, data = .)) %>% ungroup()
#use broom the extract the slope and rsq per group
glance <-all_regress %>% mutate(tidy = map(mod1, broom::tidy),
glance = map(mod1, broom::glance),
augment = map(mod1, broom::augment),
rsq = glance %>% map_dbl('r.squared'),
slope = tidy %>% map_dbl(function(x) x$estimate[2]))
I used this approach, its longer but i think theres more control in the individual steps. Finally i created a tibble with lists columns containing each model.
library(tidyverse)
library(broom)
#read in the dataset
data(mtcars)
#add a group variable
mtcars <- mtcars %>% as_tibble() %>% dplyr::select(-c(vs, am, gear, carb, cyl)) %>% mutate(LC = 1)
#create a second group
mtcars2 <- mtcars
mtcars2 <- mtcars2 %>% mutate(LC = 2)
#bind together
mtcars <- bind_rows(mtcars2, mtcars)
#group_split and run regressions
all_regress <- mtcars %>% group_split(LC) %>%
map(~ list(mod1 = lm(mpg ~ disp, data = .),
mod2 = lm(mpg ~ wt, data = .)))
# example <- all_regress[[2]][[1]] %>% glance()
#the list has 2 levels with 2 models each
data <- all_regress %>%
map(~
map(.x, function(model){
#column lists are needed because each function output different objects
tibble(mod = list(model),
tidy = list(broom::tidy(model)),
glance = list(broom::glance(model)),
augment = list(broom::augment(model))) %>%
mutate(
rsq = list(glance[[1]]$r.squared),
slope = list(tidy[[1]]$estimate[2]))
} ))
data_final <-
data %>% map2(unique(mtcars$LC), ~
map2(.x, .y, function(each_model, lc){
mutate(each_model, LC = lc)
}))
final_format <- #because of the list structure i need to bind the two datasets in each level and then bind them again.
map(data_final, ~reduce(.x, rbind)) %>% reduce(rbind)
#acces the data
final_format[1, 1][[1]]
I am trying to run a multiple linear regression but i am getting the same coefficients for all my grouped variables
names<- rep(LETTERS[1:25], each = 20)
daysp<- runif(1:500,1,500)
startdate <-sample(seq(as.Date('1999/01/01'), as.Date('2020/01/01'), by="day"), 500)
enddate<- sample(seq(as.Date('2010/01/01'), as.Date('2020/01/01'), by="day"), 500)
class <- rep(LETTERS[1:4], each = 125)
amt<- runif(1:500,10000,500000)
2ndclass <- rep(LETTERS[5:8], each = 125)
df<-data.frame(names,daysp,startdate,enddate,class,amt,2ndclass)
Changed to factor class and 2ndclass
fitted_models = df %>% group_by(names) %>% do(model = lm(daysp ~ startdate + enddate
+ class + 2ndclass + amt, data=df))
fitted_models$models
How can i run the regressions and get different coefficients for each group?
data = df explicitly uses the entire data frame df, ignoring any grouping. Use . to refer to the data that is piped in, which will let do use the groups. See the example at the bottom of ?do for reference:
## From ?do
by_cyl <- mtcars %>% group_by(cyl)
models <- by_cyl %>% do(mod = lm(mpg ~ disp, data = .))
Though, versions of dplyr > 1.0 will prefer using nest_by (also demonstrated on the ?do help page):
models <- mtcars %>%
nest_by(cyl) %>%
mutate(mod = list(lm(mpg ~ disp, data = data)))
models %>% summarise(broom::tidy(mod))
It is fairly straightforward to use the augment function from the Broom package in R to add predictions back into a tibble. Viz.
df <- iris %>%
nest(data = everything()) %>%
mutate(model = map(data, function(x) lm(Sepal.Length ~ Sepal.Width, data = x)),
pred = map2(model, data, ~augment(.x, newdata = .y))) %>%
unnest(pred)
However, when I take a linear model trained on one set of data and try and predict on new data I receive the following error.
mod <- lm(Sepal.Length ~ Sepal.Width, data = iris)
df2 <- iris %>%
mutate(Sepal.Width = Sepal.Width + rnorm(1)) %>%
nest(data = everything()) %>%
mutate(pred = map2(mod, data, ~augment(.x, newdata = .y)))
# Error: Problem with `mutate()` input `pred`.
# x No augment method for objects of class numeric
# i Input `pred` is `map2(mod, data, ~augment(.x, newdata = .y))`.
How should I use augment to fit new data? Is using an external model object (in the example above this is mod) the best practice or is there a more elegant way?
Since there is only one model we can do this without using map.
library(dplyr)
df1 <- iris %>%
mutate(Sepal.Width = Sepal.Width + rnorm(1)) %>%
tidyr::nest(data = everything()) %>%
summarise(pred = broom::augment(mod, newdata = data[[1]]),
mod = list(mod),
data = data)
Having just posted the question, I think I have an answer. I won't accept the answer for 48 hours just in case someone contradicts or provides a more comprehensive one.
In the example, map2 expects mod as a vector or list but it is a model object. Putting mod into the tibble as a list object suppresses the error and correctly calculates predictions.
mod <- lm(Sepal.Length ~ Sepal.Width, data = iris)
df2 <- iris %>%
mutate(Sepal.Width = Sepal.Width + rnorm(1)) %>%
nest(data = everything()) %>%
mutate(mod = list(mod)) %>% #! this is the additional step
mutate(pred = map2(mod, data, ~augment(.x, newdata = .y))) %>%
unnest(pred)
Alternatively, coerce the external model object as list.
...
mutate(pred = map2(list(mod), data, ~augment(.x, newdata = .y))) %>%
...