The question is:
Write a DFA to recognize the regular language L1 = {w ={1,2,3} | the sum of the digits in w is divisible by 5}
More so, based on the input 1 , 2 , 3 the remainder of the sum should be 0 when dividing by 5. I am almost done this question but I can't seem to understand how to find the correct remainder when the input is 3. Since I have done most of the work I have a picture that I will link so you can understand where I am stuck.
Start State: q0
Accept State: q0
My problem is how to control the input 3 so the choices for it will lead to a remainder of 0 when dividing by 5.
Here's some hints:
Have one state for each possible remainder modulo 5.
Given state x and character c, have the transition take you to state (x + c) modulo 5.
Think about what your accept state would be given the meaning of your states.
Hope this helps!
Related
Per DICOM specification, a UID is defined by: 9.1 UID Encoding Rules. In other words the following are valid DICOM UIDs:
"1.2.3.4.5"
"1.3.6.1.4.35045.103501438824148998807202626810206788999"
"1.2.826.0.1.3680043.2.1143.5028470438645158236649541857909059554"
while the following are illegal DICOM UIDs:
".1.2.3.4.5"
"1..2.3.4.5"
"1.2.3.4.5."
"1.2.3.4.05"
"12345"
"1.2.826.0.1.3680043.2.1143.50284704386451582366495418579090595540"
Therefore I know that the string is at most 64 bytes, and should match the following regex [0-9\.]+. However this regex is really a superset, since there are a lot less than (10+1)^64 (=4457915684525902395869512133369841539490161434991526715513934826241L) possibilities.
How would one computes precisely the number of possibilities to respect the DICOM UID rules ?
Reading the org root / suffix rule clearly indicates that I need at least one dot ('.'). In which case the combination is at least 3 bytes (char) in the form: [0-9].[0-9]. In which case there are 10x10=100 possibilities for UID of length 3.
Looking at the first answer, there seems to be something unclear about:
The first digit of each component shall not be zero unless the
component is a single digit.
What this means is that:
"0.0" is valid
"00.0" or "1.01" are not valid
Thus I would say a proper expression would be:
(([1-9][0-9]*)|0)(\.([1-9][0-9]*|0))+
Using a simple C code, I could find:
f(0) = 0
f(1) = 0
f(2) = 0
f(3) = 100
f(4) = 1800
f(5) = 27100
f(6) = 369000
f(7) = 4753000
f(8) = 59049000
The validation of the Root UID part is outside the scope of this question. A second validation step could take care of rejecting some OID that cannot possibly be registered (some people mention restriction on first and second arc for example). For simplicity we'll accept all possible (valid) Root UID.
While my other answer takes good care of this specific application, here is a more generic approach. It takes care of situations where you have a different regular expression describing the language in question. It also allows for considerably longer string lengths, since it only requires O(log n) arithmetic operations to compute the number of combinations for strings of length up to n. In this case the number of strings grows so quickly that the cost of these arithmetic operations will grow dramatically, but that may not be the case for other, otherwise similar situations.
Build a finite state automaton
Start with a regular expression description of your language in question. Translate that regular expression into a finite state automaton. In your case the regular expression can be given as
(([1-9][0-9]*)|0)(\.([1-9][0-9]*|0))+
The automaton could look like this:
Eliminate ε-transitions
This automaton usually contains ε-transitions (i.e. state transitions which do not correspond to any input character). Remove those, so that one transition corresponds to one character of input. Then add an ε-transition to the accepting state(s). If the accepting states have other outgoing transitions, don't add ε-loops to them, but instead add an ε-transition to an accepting state with no outgoing edges and then add the loop to that. This can be seen as padding the input with ε at its end, without allowing ε in the middle. Taken together, this transformation ensures that performing exactly n state transitions corresponds to processing an input of n characters or less. The modified automaton might look like this:
Note that both the construction of the first automaton from the regular expression and the elimination of ε-transitions can be performed automatically (and perhaps even in a single step. The resulting automata might be more complicated than what I constructed here manually, but the principle is the same.
Ensuring unique paths
You don't have to make the automaton deterministic in the sense that for every combination of source state and input character there is only one target state. That's not the case in my manually constructed one either. But you have to make sure that every complete input has only one possible path to the accepting state, since you'll essentially be counting paths. Making the automaton deterministic would ensure this weaker property, too, so go for that unless you can ensure unique paths without this. In my example the length of each component clearly dictates which path to use, so I didn't make it deterministic. But I've included an example with a deterministic approach at the end of this post.
Build transition matrix
Next, write down the transition matrix. Associate the rows and columns with your states (in order a, b, c, d, e, f in my example). For each arrow in your automaton, write the number of characters included in the label of that arrow in the column associated with the source state and the row associated with the target state of that arrow.
⎛ 0 0 0 0 0 0⎞
⎜ 9 10 0 0 0 0⎟
⎜10 10 0 10 10 0⎟
⎜ 0 0 1 0 0 0⎟
⎜ 0 0 0 9 10 0⎟
⎝ 0 0 0 10 10 1⎠
Read result off that matrix
Now applying this matrix with a column vector once has the following meaning: if the number of possible ways to arrive in a given state is encoded in the input vector, the output vector gives you the number of ways one transition later. Take the 64th power of that matrix, concentrate on the first column (since ste start situation is encoded as (1,0,0,0,0,0), meaning only one way to end up in the start state) and sum up all the entries that correspond to accepting states (only the last one in this case). The bottom left element of the 64th power of this matrix is
1474472506836676237371358967075549167865631190000000000000000000000
which confirms my other answer.
Compute matrix powers efficiently
In order to actually compute the 64th power of that matrix, the easiest approach would be repeated squaring: after squaring the matrix 6 times you have an exponent of 26 = 64. If in some other scenario your exponent (i.e. maximal string length) is not a power of two, you can still perform exponentiation by squaring by multiplying the relevant squares according to the bit pattern of the exponent. This is what makes this approach take O(log n) arithmetic operations to compute the result for string length n, assuming a fixed number of states and therefore fixed cost for each matrix squaring.
Example with deterministic automaton
If you were to make my automaton deterministic using the usual powerset construction, you'd end up with
and sorting the states as a, bc, c, d, cf, cef, f one would get the transition matrix
⎛ 0 0 0 0 0 0 0⎞
⎜ 9 10 0 0 0 0 0⎟
⎜ 1 0 0 0 0 0 0⎟
⎜ 0 1 1 0 1 1 0⎟
⎜ 0 0 0 1 0 0 0⎟
⎜ 0 0 0 9 0 10 0⎟
⎝ 0 0 0 0 1 1 1⎠
and could sum the last three elements of the first column of its 64th power to obtain the same result as above.
Single component
Start by looking for ways to form a single component. The corresponding regular expression for a single component is
0|[1-9][0-9]*
so it is either zero or a non-zero digit followed by arbitrary many zero digits. (I had missed the possible sole zero case at first, but the comment by malat made me aware of this.) If the total length of such a component is to be n, and you write h(n) to denote the number of ways to form such a component of length exactly n, then you can compute that h(n) as
h(n) = if n = 1 then 10 else 9 * 10^(n - 1)
where the n = 1 case allows for all possible digits, and the other cases ensure a non-zero first digit.
One or more components
Subsection 9.1 only writes that a UID is a bunch of dot-separated number components, as outlined above. So in regular expressions that would be
(0|[1-9][0-9]*)(\.(0|[1-9][0-9]*))*
Suppose f(n) is the number of ways to write a UID of length n. Then you have
f(n) = h(n) + sum h(i) * f(n-i-1) for i from 1 to n-2
The first term describes the case of a single component, while the sum takes care of the case where it consists of more than one component. In that case you have a first component of length i, then a dot which accounts for the -1 in the formula, and then the remaining digits form one or more components which is expressed via the recursive use of f.
Two or more components
As the comment by cneller indicates, the part of section 9 before subsection 9.1 indicates that there has to be at least two components. So the proper regular expression would be more like
(0|[1-9][0-9]*)(\.(0|[1-9][0-9]*))+
with a + at the end indicating that we want at least one repetition of the parenthesized expression. Deriving an expression for this simply means leaving out the one-component-only case in the definition of f:
g(n) = sum h(i) * f(n-i-1) for i from 1 to n-2
If you sum all the g(n) for n from 3 (the minimal possible UID length) through 64 you get the number of possible UIDs as
1474472506836676237371358967075549167865631190000000000000000000000
or approximately 1.5e66. Which is considerably less than the 4.5e66 you get from your computation, in terms of absolute difference, although it's definitely on the same order of magnitude. By the way, your estimate doesn't explicitely mention UIDs shorter than 64, but you can always consider padding them with dots in your setup. I did the computation using a few lines of Python code:
f = [0]
g = [0]
h = [0, 10] + [9 * (10**(n-1)) for n in range(2, 65)]
s = 0
for n in range(1, 65):
x = 0
if n >= 3:
for i in range(1, n - 1):
x += h[i] * f[n-i-1]
g.append(x)
f.append(x + h[n])
s += x
print(h)
print(f)
print(g)
print(s)
So in my text book there is this example of a recursive function using f#
let rec gcd = function
| (0,n) -> n
| (m,n) -> gcd(n % m,m);;
with this function my text book gives the example by executing:
gcd(36,116);;
and since the m = 36 and not 0 then it ofcourse goes for the second clause like this:
gcd(116 % 36,36)
gcd(8,36)
gcd(36 % 8,8)
gcd(4,8)
gcd(8 % 4,4)
gcd(0,4)
and now hits the first clause stating this entire thing is = 4.
What i don't get is this (%)percentage sign/operator or whatever it is called in this connection. for an instance i don't get how
116 % 36 = 8
I have turned this so many times in my head now and I can't figure how this can turn into 8?
I know this is probably a silly question for those of you who knows this but I would very much appreciate your help the same.
% is a questionable version of modulo, which is the remainder of an integer division.
In the positive, you can think of % as the remainder of the division. See for example Wikipedia on Euclidean Divison. Consider 9 % 4: 4 fits into 9 twice. But two times four is only eight. Thus, there is a remainder of one.
If there are negative operands, % effectively ignores the signs to calculate the remainder and then uses the sign of the dividend as the sign of the result. This corresponds to the remainder of an integer division that rounds to zero, i.e. -2 / 3 = 0.
This is a mathematically unusual definition of division and remainder that has some bad properties. Normally, when calculating modulo n, adding or subtracting n on the input has no effect. Not so for this operator: 2 % 3 is not equal to (2 - 3) % 3.
I usually have the following defined to get useful remainders when there are negative operands:
/// Euclidean remainder, the proper modulo operation
let inline (%!) a b = (a % b + b) % b
So far, this operator was valid for all cases I have encountered where a modulo was needed, while the raw % repeatedly wasn't. For example:
When filling rows and columns from a single index, you could calculate rowNumber = index / nCols and colNumber = index % nCols. But if index and colNumber can be negative, this mapping becomes invalid, while Euclidean division and remainder remain valid.
If you want to normalize an angle to (0, 2pi), angle %! (2. * System.Math.PI) does the job, while the "normal" % might give you a headache.
Because
116 / 36 = 3
116 - (3*36) = 8
Basically, the % operator, known as the modulo operator will divide a number by other and give the rest if it can't divide any longer. Usually, the first time you would use it to understand it would be if you want to see if a number is even or odd by doing something like this in f#
let firstUsageModulo = 55 %2 =0 // false because leaves 1 not 0
When it leaves 8 the first time means that it divided you 116 with 36 and the closest integer was 8 to give.
Just to help you in future with similar problems: in IDEs such as Xamarin Studio and Visual Studio, if you hover the mouse cursor over an operator such as % you should get a tooltip, thus:
Module operator tool tip
Even if you don't understand the tool tip directly, it'll give you something to google.
I have an assignment with this symbol on it: [Image of unfamiliar symbol
Basically the question asks "Write a recursive Java method which, given a positive integer n, computes and returns the sum of the integers from 1 to n as follows".
I do not need any help on the recursion itself, I really just need to understand what that symbol means (Link Included), so I can answer the question properly.
My Question: What meaning does the symbol possess? What is my instructor expecting as a valid response?
NOTE: I do NOT want anyone to attempt to answer the actual assignment question. I ONLY want know understand what the symbol being used means and what should be returned in my recursion method.
IT is the sigma symbol which means take the sum from i = 1 to n.
so your output comes as 1 + 2 + 3 + ..... + n
This explanation is to left hand side of the equation. others are the same.
It's a summation symbol
The sum of each i starting from i = 1 to i == n equals the sum of each i starting from i = 1 to i == n/2 plus the sum of of each i starting from i = n/2 + 1 to i == n
i want to know is it possible to validate that deviding two number has remaining zero in result or not?
for example dividing number 4 on number two has zero in remaining.
4/2=0 (this is true)
but 4/3=1 (this is not true)
is there any expression for validation such case?
Better Question :
Is There any validation expression to validate this sentence ?
Remainder is zero
thank you
You can use a Modulo operator. The modulo operation finds the remainder of division of one number by another
y mod x
5 mod 2 =1 (2x2=4, 5-4=1)
9 mod 3 = 0 (3*3=9)
You can think of it, how many times does x fit in y and then take the remainder.
In computing the modulo operator is integrated in most programming languages, along with division, substraction etc. Check modulo and then your language on google (probably its mod).
This is called the modulo function. It essentially gives the remainder of a division of two integer number. So you can test for the modulo funtion returning zero. For example, in Python you would write
if a % b == 0:
# a can be divided by b with zero remainder
I was reading about horizontal and vertical parity check codes. One of the properties of these codes is that the final parity check (the lower right bit) is equal to modulo 2 sum of horizontal parity checks and also equal to modulo 2 of sum of vertical parity checks.
I did not understand, why this is true. I can see them in the examples but i really cant come up with any formal/intuitive proof about the same.
Any help/hints will be appreciated.
Thanks,
Chander
Each row and column is sum modulo 2. And result is sum of all numbers mod 2. It does not matter how you count.
Rule is:
((a mod c) + (b mod c)) mod c == (a+b) mod c
This is because every wrong bit propagates the parity either horizontally either vertically..
think about having your matrix of bits:
A B C D
E F G H
I J K L
M N O P
now some of these bits are wrongly transmitted, so you have a total of y errors that are layed around but you don't know where inside the matrix.
If you go by rows (so you calculate horizontal parity) you will be sure that the sum of every row parity modulo 2 will be 0 if you have an even number of errors in that row, 1 otherwise. You will be also sure of the fact that you are considering all of them since you do this work for every row.
Finally if you suppose to correct a bit from a row and alter another one in another one the final result won't change, since you basically remove 1 from a rows to add it elsewhere.
Then think about doing it by columns, you will end up with the same exact behaviour, the only difference is that errors can be distribuited in a different way but adding vertical parity together modulo 2 will take into account same considerations. Since the number of total errors is the same it will be an even number or an odd number either for rows and columns.