fill up a matrix one random cell at a time - r

I am filling a 10x10 martix (mat) randomly until sum(mat) == 100
I wrote the following.... (i = 2 for another reason not specified here but i kept it at 2 to be consistent with my actual code)
mat <- matrix(rep(0, 100), nrow = 10)
mat[1,] <- c(0,0,0,0,0,0,0,0,0,1)
mat[2,] <- c(0,0,0,0,0,0,0,0,1,0)
mat[3,] <- c(0,0,0,0,0,0,0,1,0,0)
mat[4,] <- c(0,0,0,0,0,0,1,0,0,0)
mat[5,] <- c(0,0,0,0,0,1,0,0,0,0)
mat[6,] <- c(0,0,0,0,1,0,0,0,0,0)
mat[7,] <- c(0,0,0,1,0,0,0,0,0,0)
mat[8,] <- c(0,0,1,0,0,0,0,0,0,0)
mat[9,] <- c(0,1,0,0,0,0,0,0,0,0)
mat[10,] <- c(1,0,0,0,0,0,0,0,0,0)
i <- 2
set.seed(129)
while( sum(mat) < 100 ) {
# pick random cell
rnum <- sample( which(mat < 1), 1 )
mat[rnum] <- 1
##
print(paste0("i =", i))
print(paste0("rnum =", rnum))
print(sum(mat))
i = i + 1
}
For some reason when sum(mat) == 99 there are several steps extra...I would assume that once i = 91 the while would stop but it continues past this. Can somone explain what I have done wrong...
If I change the while condition to
while( sum(mat) < 100 & length(which(mat < 1)) > 0 )
the issue remains..

Your problem is equivalent to randomly ordering the indices of a matrix that are equal to 0. You can do this in one line with sample(which(mat < 1)). I suppose if you wanted to get exactly the same sort of output, you might try something like:
set.seed(144)
idx <- sample(which(mat < 1))
for (i in seq_along(idx)) {
print(paste0("i =", i))
print(paste0("rnum =", idx[i]))
print(sum(mat)+i)
}
# [1] "i =1"
# [1] "rnum =5"
# [1] 11
# [1] "i =2"
# [1] "rnum =70"
# [1] 12
# ...

See ?sample
Arguments:
x: Either a vector of one or more elements from which to choose,
or a positive integer. See ‘Details.’
...
If ‘x’ has length 1, is numeric (in the sense of ‘is.numeric’) and
‘x >= 1’, sampling _via_ ‘sample’ takes place from ‘1:x’. _Note_
that this convenience feature may lead to undesired behaviour when
‘x’ is of varying length in calls such as ‘sample(x)’. See the
examples.
In other words, if x in sample(x) is of length 1, sample returns a random number from 1:x. This happens towards the end of your loop, where there is just one 0 left in your matrix and one index is returned by which(mat < 1).

The iteration repeats on level 99 because sample() behaves very differently when the first parameter is a vector of length 1 and when it is greater than 1. When it is length 1, it assumes you a random number from 1 to that number. When it has length >1, then you get a random number from that vector.
Compare
sample(c(99,100),1)
and
sample(c(100),1)
Of course, this is an inefficient way of filling your matrix. As #josilber pointed out, a single call to sample could do everything you need.

The issue comes from how sample and which do the sampling when you have only a single '0' value left.
For example, do this:
mat <- matrix(rep(1, 100), nrow = 10)
Now you have a matrix of all 1's. Now lets make two numbers 0:
mat[15]<-0
mat[18]<-0
and then sample
sample(which(mat<1))
[1] 18 15
by adding a size=1 argument you get one or the other
now lets try this:
mat[18]<-1
sample(which(mat<1))
[1] 3 13 8 2 4 14 11 9 10 5 15 7 1 12 6
Oops, you did not get [1] 15 . Instead what happens in only a single integer (15 in this case) is passed tosample. When you do sample(x) and x is an integer, it gives you a sample from 1:x with the integers in random order.

Related

How to find the number of columns of an R matrix that contains values greater than or equal to a given number?

I have a matrix with 52 columns, and 5,000 rows. I want to find the number of columns that contain a value less than or equal to a value (for example, how many columns out of 52 contain a number less than or equal to 10)
I was trying rowSum but I cannot remember / find a way to make this work.
Thanks!
A possible solution:
m <- matrix(1:9, 3, 3)
sum(colSums(m <= 5) != 0)
#> [1] 2
How about writing your own function?
Here's the code.
count_rows = function(df, val)
{
checks = 0
for (i in 1:ncol(df))
{
if(any(df[,i] > 0))
checks = checks + 1
}
return (checks)
}
A = matrix(runif(100), 10, 10)
count_rows(A, 0.5)
Say the matrix mat of dimensions 5000x52
set.seed(1234)
mat <- matrix(trunc(runif(5000*52)*1e5) , 5000 , 52)
dim(mat)
#> [1] 5000 52
then we can find how many columns out of 52 contains a number less than or equal to 10 using
sum(apply(mat , 2 , \(x) any(x <= 10)))
#> 24

How to add possible divisor numbers?

How do I retrieve maximum sum of possible divisors numbers
I have a below function which will give possible divisors of number
Code
divisors <- function(x) {
y <- seq_len(ceiling(x / 2))
y[x %% y == 0]
}
Example
Divisors of 99 will give the below possible values.
divisors(99)
[1] 1 3 9 11 33
My expected Logic :
Go from last digit to first digit in the divisors value
The last number is 33, Here next immediate number divisible by 33 is 11 . So I selected 11 , now traversing from 11 the next immediate number divisible by 11 is 1. So selected 1. Now add all the numbers.
33 + 11 + 1 = 45
Move to next number 11, Now next immediate number divisible by 11 is 1. So selected 1. Now add all the numbers.
11 + 1 = 12
Here immediate
Move to next number 9, Now next immediate number divisible by 11 is 1. So selected 1. Now add all the numbers.
9 + 3 + 1 = 13
Move to next number 3, Now next immediate number divisible by 3 is 1. So selected 1. Now add all the numbers.
3+1=4
Now maximum among these is 45.
Now I am struggling to write this logic in R . Help / Advice much appreciated.
Note : Prime numbers can be ignored.
update
For large integers, e.g., the maximum integer .Machine$integer.max (prime number), you can run the code below (note that I modified functions divisors and f a bit)
divisors <- function(x) {
y <- seq(x / 2)
y[as.integer(x) %% y == 0]
}
f <- function(y) {
if (length(y) <= 2) {
return(as.integer(sum(y)))
}
l <- length(y)
h <- y[l]
yy <- y[-l]
h + f(yy[h %% yy == 0])
}
and you will see
> n <- .Machine$integer.max - 1
> x <- divisors(n)
> max(sapply(length(x):2, function(k) f(head(x, k))))
[1] 1569603656
You can define a recursive function f that gives successive divisors
f <- function(y) {
if (length(y) == 1) {
return(y)
}
h <- y[length(y)]
yy <- y[-length(y)]
c(f(yy[h %% yy == 0]), h)
}
and you will see all possible successive divisor tuples
> sapply(rev(seq_along(x)), function(k) f(head(x, k)))
[[1]]
[1] 1 11 33
[[2]]
[1] 1 11
[[3]]
[1] 1 3 9
[[4]]
[1] 1 3
[[5]]
[1] 1
Then, we apply f within sapply like below
> max(sapply(rev(seq_along(x)), function(k) sum(f(head(x, k)))))
[1] 45
which gives the desired output.
You can also use the following solution. It may sound a little bit complicated and of course there is always an easier, more efficient solution. However, I thought this could be useful to you. I will take it from your divisors output:
> x
[1] 1 3 9 11 33
# First I created a list whose first element is our original x and from then on
# I subset the first element till the last element of the list
lst <- lapply(0:(length(x)-1), function(a) x[1:(length(x)-a)])
> lst
[[1]]
[1] 1 3 9 11 33
[[2]]
[1] 1 3 9 11
[[3]]
[1] 1 3 9
[[4]]
[1] 1 3
[[5]]
[1] 1
Then I wrote a custom function in order to implement your conditions and gather your desired output. For this purpose I created a function factory which in fact is a function that creates a function:
As you might have noticed the outermost function does not take any argument. It only sets up an empty vector out to save our desired elements in. It is created in the execution environment of the outermost function to shield it from any changes that might affect it in the global environment
The inner function is the one that takes our vector x so in general we call the whole setup like fnf()(x). First element of of our out vector is in fact the first element of the original x(33). Then I found all divisors of the first element whose quotient were 0. After I fount them I took the second element (11) as the first one was (33) and stored it in our out vector. Then I modified the original x vector and omitted the max value (33) and repeated the same process
Since we were going to repeat the process over again, I thought this might be a good case to use recursion. Recursion is a programming technique that a function actually calls itself from its body or from inside itself. As you might have noticed I used fn inside the function to repeat the process again but each time with one fewer value
This may sound a bit complicated but I believed there may be some good points for you to pick up for future exploration, since I found them very useful, hoped that's the case for you too.
fnf <- function() {
out <- c()
fn <- function(x) {
out <<- c(out, x[1])
z <- x[out[length(out)]%%x == 0]
if(length(z) >= 2) {
out[length(out) + 1] <<- z[2]
} else {
return(out)
}
x <- x[!duplicated(x)][which(x[!duplicated(x)] == z[2]):length(x[!duplicated(x)])]
fn(x)
out[!duplicated(out)]
}
}
# The result of applying the custom function on `lst` would result in your
# divisor values
lapply(lst, function(x) fnf()(sort(x, decreasing = TRUE)))
[[1]]
[1] 33 11 1
[[2]]
[1] 11 1
[[3]]
[1] 9 3 1
[[4]]
[1] 3 1
[[5]]
[1] 1
In the end we sum each element and extract the max value
Reduce(max, lapply(lst, function(x) sum(fnf()(sort(x, decreasing = TRUE)))))
[1] 45
Testing a very large integer number, I used dear #ThomasIsCoding's modified divisors function:
divisors <- function(x) {
y <- seq(x / 2)
y[as.integer(x) %% y == 0]
}
x <- divisors(.Machine$integer.max - 1)
lst <- lapply(0:(length(x)-1), function(a) x[1:(length(x)-a)])
Reduce(max, lapply(lst, function(x) sum(fnf()(sort(x, decreasing = TRUE)))))
[1] 1569603656
You'll need to recurse. If I understand correctly, this should do what you want:
fact <- function(x) {
x <- as.integer(x)
div <- seq_len(abs(x)/2)
factors <- div[x %% div == 0L]
return(factors)
}
maxfact <- function(x) {
factors <- fact(x)
if (length(factors) < 3L) {
return(sum(factors))
} else {
return(max(factors + mapply(maxfact, factors)))
}
}
maxfact(99)
[1] 45

Monte Carlo Simulation with Replacement Based On Sum of A Column

I am trying to simulate an unlikely situation in a videogame using a Monte Carlo simulation. I'm extremely new at coding and thought this would be a fun situation to simulate.
There are 3 targets and they are being attacked 8 times independently. My problem comes with how to deal with the fact that one of the columns cannot be attacked more than 6 times, when there are 8 attacks.
I would like to take any attack aimed at column 2 select one of the other 2 columns at random to attack instead, but only if column 2 has been attacked 6 times already.
Here is my attempt to simulate with 5000 repeats, for example.
#determine number of repeats
trial <- 5000
#create matrix with a row for each trial
m <- matrix(0, nrow = trial, ncol = 3)
#The first for loop is for each row
#The second for loop runs each attack independently, sampling 1:3 at random, then adding one to that position of the row.
#The function that is called by ifelse() when m[trial, 2] > 6 = TRUE is the issue.
for (trial in 1:trial){
for (attack in 1:8) {
target <- sample(1:3, 1)
m[trial, target] <- m[trial, target] + 1
ifelse(m[trial, 2] > 6, #determines if the value of column 2 is greater than 6 after each attack
function(m){
m[trial, 2] <- m[trial, 2] - 1 #subtract the value from the second column to return it to 6
newtarget <- sample(c(1,3), 1) #select either column 1 or 3 as a new target at random
m[trial, newtarget] <- m[trial, newtarget] + 1 #add 1 to indicate the new target has been selected
m}, #return the matrix after modification
m) #do nothing if the value of the second column is <= 6
}
}
For example, if I have the matrix below:
> matrix(c(2,1,5,7,1,0), nrow = 2, ncol = 3)
[,1] [,2] [,3]
[1,] 2 5 1
[2,] 1 7 0
I would like the function to look at the 2nd line of the matrix, subtract 1 from 7, and then add 1 to either column 1 or 3 to create c(2,6,0) or c(1,6,1). I would like to learn how to do this within the loop, but it could be done afterwards as well.
I think I am making serious, fundamental error with how to use function(x) or ifelse.
Thank you.
Here's an improved version of your code:
set.seed(1)
trial <- 5000
#create matrix with a row for each trial
m <- matrix(0, nrow = trial, ncol = 3)
#The first for loop is for each row
#The second for loop runs each attack independently, sampling 1:3 at random, then adding one to that position of the row.
#The function that is called by ifelse() when m[trial, 2] > 6 = TRUE is the issue.
for (i in 1:trial){
for (attack in 1:8) {
target <- sample(1:3, 1)
m[i, target] <- m[i, target] + 1
#determines if the value of column 2 is greater than 6 after each attack
if(m[i, 2] > 6){
#subtract the value from the second column to return it to 6
m[i, 2] <- m[i, 2] - 1
#select either column 1 or 3 as a new target at random
newtarget <- sample(c(1,3), 1)
#add 1 to indicate the new target has been selected
m[i, newtarget] <- m[i, newtarget] + 1
}
}
}
# Notice the largest value in column 2 is no greater than 6.
apply(m, 2, max)
set.seed is used to make the results reproducible (usually just used for testing). The ifelse function has a different purpose than the normal if-else control flow. Here's an example:
x = runif(100)
ifelse(x < 0.5, 0, x)
You'll notice any element in x that is less than 0.5 is now zero. I changed your code to have an if block. Notice that m[i, 2] > 6 returns a single TRUE or FALSE whereas in the small example above, x < 0.5 a vector of logicals is returned. So ifelse can take a vector of logicals, but the if block requires there be only a single logical.
You were on the right track with using function, but it just isn't necessary in this case. Often, but not always, you'll define a function like this:
f = function(x)
x^2
But just returning the value doesn't mean what you want is changed:
x = 5
f(5) # 25
x # still 5
For more on this, look up function scope in R.
Lastly, I changed the loop to be i in 1:trial instead of trial in 1:trial. You probably wouldn't notice any issues in your case, but it is better practice to use a separate variable than that which makes up the range of the loop.
Hope this helps.
P.S. R isn't really known for it's speed when looping. If you want to make things goes faster, you'll typically need to vectorize your code.

Putting generated data in a matrix format

I have one question about putting a simulated data in a matrix format, but I cannot suitably write its program in R, and constantly receive an error, I guess my "rep" definition and final "Matrix" expression are somehow wrong, but I do not know how to fix them. Here my specific question is:
I would like to produce a matrix contains generated values. I have 20000 generated values for x and y. As the output, I like to have a (2000 by 10) matrix that each column of the matrix contains the output of following for loop.
My R.code:
x=rnorm(2e4,5,6)
vofdiv=quantile(x,probs=seq(0,1,0.1))
y=rnorm(2e4,4,6)
Matrix=rep(NULL,2000)
for(i in 1:10)
{
Matrix[i]=y[(x>=vofdiv[i] & x<vofdiv[i+1])] #The i(th) col of matrix
}
Matrix # A 2000*10 Matrix, as the final output
I highly appreciate that someone helps me!
You have several problems here.
First of all, the correct way to define an empty matrix of size 2e4*10, would be
Matrix <- matrix(NA, 2e4, 10)
Although you could potentially create a matrix using your way(rep) and then use dim, something like
Matrix <- rep(NA, 2e5)
dim(Matrix) <- c(2e4, 10)
Second problem is, when trying to insert into a column in a matrix, you need to index it correctly, i.e.,
Matrix[, i] <-
instead of
Matrix[i] <-
The latter will index Matrix as if it was a vector (which is it basically is). In other words, it will convert a 2000*10 matrix to a 20000 length single vector and index it.
The third problem is, that when your loop reaches i = 11 and you are running x<vofdiv[i+1] you are always excluding the last values which are x == vofdiv[11], thus you are always getting less than 2000 values:
for(i in 1:10)
{
print(length(y[ (x >= vofdiv[i] & x < vofdiv[i+1])]))
}
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 2000
# [1] 1999 <----
Thus, it will give you an error if you will try to replace 2000 length vector with 1999 length one, because a matrix in R can't contain different dimensions for each column.
The workaround would be to add = to your last statement, such as
Matrix <- matrix(NA, 2e4, 10)
for(i in 1:10)
{
Matrix[, i] <- y[x >= vofdiv[i] & x <= vofdiv[i + 1]]
}

The number of data points in matrix and vector forms

Supposed that X contains 1000 rows with m columns, where m equal to 3 as follows:
set.seed(5)
X <- cbind(rnorm(1000,0,0.5), rnorm(1000,0,0.5), rnorm(1000,0,0.5))
Variable selection is performed, then the condition will be checked before performing the next operation as follows.
if(nrow(X) < 1000){print(a+b)}
,where a is 5 and b is 15, so if nrow(X) < 1000 is TRUE, then 20 will be printed out.
However, in case that X happens to be a vector because only one column is selected,
how can I check the number of data points when X can be either a matrix or vector ?
What I can think of is that
if(is.matrix(X)){
n <- nrow(X)
} else {
n <- length(X)}
if(n < 1000){print(a+b)}
Anyone has a better idea ?
Thank you
You can use NROW for both cases. From ?NROW
nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the same treating a vector as 1-column matrix.
So that means that even if the subset is dropped down to a vector, as long as x is an array, vector, or data frame NROW will treat it as a one-column matrix.
sub1 <- X[,2:3]
is.matrix(sub1)
# [1] TRUE
NROW(sub1)
# [1] 1000
sub2 <- X[,1]
is.matrix(sub2)
# [1] FALSE
NROW(sub2)
# [1] 1000
So if(NROW(X) < 1000L) a + b should work regardless of whether X is a matrix or a vector. I use <= below, since X has exactly 1000 rows in your example.
a <- 5; b <- 15
if(NROW(sub1) <= 1000L) a + b
# [1] 20
if(NROW(sub2) <= 1000L) a + b
# [1] 20
A second option would be to use drop=FALSE when you make the variable selection. This will make the subset remain a matrix when the subset is only one column. This way you can use nrow with no worry. An example of this is
X[, 1, drop = FALSE]

Resources