R: data transformation of a column in data frame - r

i have a data.frame as belows
> a <- c(98:103, 998:1003)
> b <- 1:length(a)
> data <- data.frame(a,b)
> data
a b
1 98 1
2 99 2
3 100 3
4 101 4
5 102 5
6 103 6
7 998 7
8 999 8
9 1000 9
10 1001 10
11 1002 11
12 1003 12
I would like to add a column based on column a.
for column a less than 100, i will assign "A" to the new column
for column a in <1000 >=100, i will assign "B" to the new column
and "C" otherwise
My approach is
> data$c <- data$a
>
> A <- 1:99
> B <- 100:999
> for (i in 1:length(a)){
+ if (data[i,1] %in% A){
+ data[i,3] <- "A"
+ } else if (data[i,1] %in% B){
+ data[i,3] <- "B"
+ } else {data[i,3] <- "C"}
+ }
> data
a b c
1 98 1 A
2 99 2 A
3 100 3 B
4 101 4 B
5 102 5 B
6 103 6 B
7 998 7 B
8 999 8 B
9 1000 9 C
10 1001 10 C
11 1002 11 C
12 1003 12 C
>
While my real data with over 500,000 rows. May i have better solution?

Find below a solution using data.table. This version might be especially useful if your key variable (here a) is not numeric.
# Set up data
a <- c(98:103, 998:1003)
b <- 1:length(a)
# Set of values to look for
A <- 1:99
B <- 100:999
# Create data table and set key
DT <- data.table(a,b)
setkey(DT, a)
# Add new variable
DT[J(A), c:="a"]
DT[J(B), c:="b"]
DT[is.na(DT$c), c:="c"]
If your key variable is not numeric, you can change DT[J(A), c:="a"] to DT[A,c:="a"].

Related

Reorder a subset of an R data.frame modifying the row names as well

Given a data.frame:
foo <- data.frame(ID=1:10, x=1:10)
rownames(foo) <- LETTERS[1:10]
I would like to reorder a subset of rows, defined by their row names. However, I would like to swap the row names of foo as well. I can do
sel <- c("D", "H") # rows to reorder
foo[sel,] <- foo[rev(sel),]
sel.wh <- match(sel, rownames(foo))
rownames(foo)[sel.wh] <- rownames(foo)[rev(sel.wh)]
but that is long and complicated. Is there a simpler way?
We can replace the sel values in rownames with the reverse of sel.
x <- rownames(foo)
foo[replace(x, x %in% sel, rev(sel)), ]
# ID x
#A 1 1
#B 2 2
#C 3 3
#H 8 8
#E 5 5
#F 6 6
#G 7 7
#D 4 4
#I 9 9
#J 10 10
Not as concise as ronak-shah's answer, but you could also use order.
# extract row names
temp <- row.names(foo)
# reset of vector
temp[which(temp %in% sel)] <- temp[rev(which(temp %in% sel))]
# reset order of data.frame
foo[order(temp),]
ID x
A 1 1
B 2 2
C 3 3
H 8 8
E 5 5
F 6 6
G 7 7
D 4 4
I 9 9
J 10 10
As noted in the comments, this relies on the row names following a lexicographical order. In instances where this is not true, we can use match.
# set up
set.seed(1234)
foo <- data.frame(ID=1:10, x=1:10)
row.names(foo) <- sample(LETTERS[1:10])
sel <- c("D", "H")
Now, the rownames are
# initial data.frame
foo
ID x
B 1 1
F 2 2
E 3 3
H 4 4
I 5 5
D 6 6
A 7 7
G 8 8
J 9 9
C 10 10
# grab row names
temp <- row.names(foo)
# reorder vector containing row names
temp[which(temp %in% sel)] <- temp[rev(which(temp %in% sel))]
Using, match along with order
foo[order(match(row.names(foo), temp)),]
ID x
B 1 1
F 2 2
E 3 3
D 6 6
I 5 5
H 4 4
A 7 7
G 8 8
J 9 9
C 10 10
your data frame is small so you can duplicate it then change the value of each raw:
footmp<-data.frame(foo)
foo[4,]<-footemp[8,]
foot{8,]<-footemp[4,]
Bob

How to matching missing IDs?

I have a large table with 50000 obs. The following mimic the structure:
ID <- c(1,2,3,4,5,6,7,8,9)
a <- c("A","B",NA,"D","E",NA,"G","H","I")
b <- c(11,2233,12,2,22,13,23,23,100)
c <- c(12,10,12,23,16,17,7,9,7)
df <- data.frame(ID ,a,b,c)
Where there are some missing values on the vector "a". However, I have some tables where the ID and the missing strings are included:
ID <- c(1,2,3,4,5,6,7,8,9)
a <- c("A","B","C","D","E","F","G","H","I")
key <- data.frame(ID,a)
Is there a way to include the missing strings from key into the column a using the ID?
Another options is to use data.tables fast binary join and update by reference capabilities
library(data.table)
setkey(setDT(df), ID)[key, a := i.a]
df
# ID a b c
# 1: 1 A 11 12
# 2: 2 B 2233 10
# 3: 3 C 12 12
# 4: 4 D 2 23
# 5: 5 E 22 16
# 6: 6 F 13 17
# 7: 7 G 23 7
# 8: 8 H 23 9
# 9: 9 I 100 7
If you want to replace only the NAs (not all the joined cases), a bit more complicated implemintation will be
setkey(setDT(key), ID)
setkey(setDT(df), ID)[is.na(a), a := key[.SD, a]]
You can just use match; however, I would recommend that both your datasets are using characters instead of factors to prevent headaches later on.
key$a <- as.character(key$a)
df$a <- as.character(df$a)
df$a[is.na(df$a)] <- key$a[match(df$ID[is.na(df$a)], key$ID)]
df
# ID a b c
# 1 1 A 11 12
# 2 2 B 2233 10
# 3 3 C 12 12
# 4 4 D 2 23
# 5 5 E 22 16
# 6 6 F 13 17
# 7 7 G 23 7
# 8 8 H 23 9
# 9 9 I 100 7
Of course, you could always stick with factors and factor the entire "ID" column and use the labels to replace the values in column "a"....
factor(df$ID, levels = key$ID, labels = key$a)
## [1] A B C D E F G H I
## Levels: A B C D E F G H I
Assign that to df$a and you're done....
Named vectors make nice lookup tables:
lookup <- a
names(lookup) <- as.character(ID)
lookup is now a named vector, you can access each value by lookup[ID] e.g. lookup["2"] (make sure the number is a character, not numeric)
## should give you a vector of a as required.
lookup[as.character(ID_from_big_table)]

Selecting rows by offsetting

I have this data frame, lets call it my_df.
It looks like this:
my_df <- data.frame(rnorm(n = 30,sd=.5),rep(c("a","b","c"),each=10))
names(my_df) <- c("num","let")
head(my_df)
num let
1 0.01202600 a
2 1.09025768 a
3 -0.08656178 a
4 -0.04847073 a
5 -0.63750258 a
6 0.58846135 a
What I want to do is select all of the rows when my_df$let == "b" as well as the five rows before the first row when my_df$let == "b", and the five rows after the last row when my_df == "b". So basically my_df[6:25,].
The data I'm actually working with is hundreds of thousands of lines long and I don't know what rows is what, and besides that each set of data doesn't match up row wise and I can't take the time to go through each set of data individually. I've been using a subset to select the data I want, but I don't know how to select the additional rows outside of the subset (1000 rows before and after).
Here's my subset for what I'm doing:
#The following lines seperate pXX_NoNegative into individual field sections
p04_HighWeeds <- subset(p04_NoNegative, subset = p04_NoNegative$GS_Field == "High Weeds")
I want to select all of the rows that the above code selects, but I also want 100 rows before that, and 1000 rows after that.
If you need any additional information that may help you please ask.
Here's another idea using dplyr:
library(dplyr)
my_df %>% filter(lead(let == "b", 5) | lag(let == "b", 5))
Or as per #akrun suggestion using the devel version of data.table:
setDT(my_df)[shift(let == "b", 5) | shift(let == "b", type = "lead", 5)]
Which gives:
# num let
#1 0.36723709 a
#2 0.24743170 a
#3 -0.33339924 a
#4 -0.57024317 a
#5 0.03390278 a
#6 -0.43495096 b
#7 -0.85107347 b
#8 0.53048931 b
#9 -0.26739611 b
#10 -0.96029355 b
#11 -0.71737408 b
#12 0.34324685 b
#13 0.12319646 b
#14 0.75207703 b
#15 0.18134006 b
#16 -0.02230777 c
#17 0.42646106 c
#18 -0.11055478 c
#19 0.06013187 c
#20 0.50782158 c
Normally splitting a data frame into a list of data frames based on some categorization is straightforward -- you would use split(my_df, my_df$let) in your case. However with the added complication that you want some number of rows before or after I would operate over the set of unique categorizations, selecting the rows you want in each case:
before <- 5
after <- 5
ret <- setNames(lapply(unique(my_df$let), function(x) {
positions <- which(my_df$let == x)
start.pos <- max(1, min(positions)-before)
end.pos <- min(nrow(my_df), max(positions)+after)
my_df[start.pos:end.pos,]
}), unique(my_df$let))
You can grab the observations for any category you want out of the returned list:
ret$b # Also works: ret[["b"]]
# num let
# 6 -0.197901427 a
# 7 0.194607192 a
# 8 -0.107318203 a
# 9 -0.365313233 a
# 10 -0.188926562 a
# 11 0.636272295 b
# 12 -0.058791973 b
# 13 -0.231029510 b
# 14 0.519441716 b
# 15 0.239510912 b
# 16 0.107025658 b
# 17 -0.446644081 b
# 18 0.145052077 b
# 19 -0.426090749 b
# 20 -0.356062993 b
# 21 -0.155012203 c
# 22 -0.007968255 c
# 23 -0.504253089 c
# 24 0.081624303 c
# 25 -0.657008233 c
I recently answered a nearly identical question: Select n rows after specific number. Adapting the single-segment solution to your data:
set.seed(1); my_df <- data.frame(rnorm(n = 30,sd=.5),rep(c("a","b","c"),each=10));
names(my_df) <- c("num","let");
brange <- range(which(my_df$let=='b'));
my_df$offb <- c((1-brange[1]):-1,rep(0,diff(brange)+1),1:(nrow(my_df)-brange[2]));
my_df;
## num let offb
## 1 -0.313226905 a -10
## 2 0.091821662 a -9
## 3 -0.417814306 a -8
## 4 0.797640401 a -7
## 5 0.164753886 a -6
## 6 -0.410234192 a -5
## 7 0.243714526 a -4
## 8 0.369162353 a -3
## 9 0.287890676 a -2
## 10 -0.152694194 a -1
## 11 0.755890584 b 0
## 12 0.194921618 b 0
## 13 -0.310620290 b 0
## 14 -1.107349944 b 0
## 15 0.562465459 b 0
## 16 -0.022466805 b 0
## 17 -0.008095132 b 0
## 18 0.471918105 b 0
## 19 0.410610598 b 0
## 20 0.296950661 b 0
## 21 0.459488686 c 1
## 22 0.391068150 c 2
## 23 0.037282492 c 3
## 24 -0.994675848 c 4
## 25 0.309912874 c 5
## 26 -0.028064370 c 6
## 27 -0.077897753 c 7
## 28 -0.735376192 c 8
## 29 -0.239075028 c 9
## 30 0.208970780 c 10
subset(my_df,offb>=-5&offb<=5);
## num let offb
## 6 -0.410234192 a -5
## 7 0.243714526 a -4
## 8 0.369162353 a -3
## 9 0.287890676 a -2
## 10 -0.152694194 a -1
## 11 0.755890584 b 0
## 12 0.194921618 b 0
## 13 -0.310620290 b 0
## 14 -1.107349944 b 0
## 15 0.562465459 b 0
## 16 -0.022466805 b 0
## 17 -0.008095132 b 0
## 18 0.471918105 b 0
## 19 0.410610598 b 0
## 20 0.296950661 b 0
## 21 0.459488686 c 1
## 22 0.391068150 c 2
## 23 0.037282492 c 3
## 24 -0.994675848 c 4
## 25 0.309912874 c 5

Creating a dataframe grouping observations according to labels

I have an x vector with categorical variables and a y vector of numerical variables, both of the same length.
I need to create a data-frame in which all numerical observations in y are separated into groups by a categorical label in x so the end result would look something like:
x obs1 obs2 obs3
a 1 3 5
b 6 7 8
c 3 4 6
Now both aggregate and tapply require a FUN specification but I don't want to do operations on the variables.
x= {random sampling from letters of the alphabet}
y= {random numbers}
Remember, everything is a function in R. So things like c() are just function calls.
x <- rep(letters[1:3], each=3)
y <- c(1, 3, 5, 6, 7, 8, 3, 4, 6)
foo <- tapply(y, x, c)
# > foo
# $a
# [1] 1 3 5
# $b
# [1] 6 7 8
# $c
# [1] 3 4 6
Then you can use this silly pattern to get the data.frame you're looking for:
do.call(rbind, foo)
# [,1] [,2] [,3]
# a 1 3 5
# b 6 7 8
# c 3 4 6
I am not clear about something from your example: is it possible for there to be different numbers of y-values for each category in x? For example, would you consider basic data like this:
> x <- c(rep(c("a", "b", "c"), 3), "c", "c")
> y <- sample(1:20, 11)
> df <- data.frame(x, y)
> df
x y
1 a 16
2 b 4
3 c 9
4 a 2
5 b 12
6 c 17
7 a 7
8 b 10
9 c 11
10 c 1
11 c 8
Here there are more values for category c. This is not entirely what you are looking for, but it might be a start:
> library(reshape2)
> dcast(df, x ~ y)
Using y as value column: use value.var to override.
x 1 2 4 7 8 9 10 11 12 16 17
1 a NA 2 NA 7 NA NA NA NA NA 16 NA
2 b NA NA 4 NA NA NA 10 NA 12 NA NA
3 c 1 NA NA NA 8 9 NA 11 NA NA 17
The values for each of the categories appear on the right rows... the NAs are a nuisance though. How would you want the data to appear in this case? Something like
1 a 2 7 16
2 b 4 10 12
3 c 1 8 9 11 17
This will not work, of course, because each row must have the same number of columns, so you would end up with NAs for the last two elements in the top two rows.
However, I suspect that a list would probably be the best solution in this case anyway, in which case, consider this:
> dl <- split(y, x)
> dl[["a"]]
[1] 16 2 7
> dl$b
[1] 4 12 10
> dl[["c"]]
[1] 9 17 11 1 8
You can then operate on the elements of this list. As with all things R, there are a variety of ways to do this. For example, to get the output as a list:
> lapply(dl, sum)
$a
[1] 25
$b
[1] 26
$c
[1] 46
Or with output as a vector
> sapply(dl, sum)
a b c
25 26 46
Or, alternatively, to get the output as a data frame:
> library(plyr)
> ldply(dl, sum)
.id V1
1 a 25
2 b 26
3 c 46
These mechanisms afford a far greater degree of generality than functions like rowSum() since you can apply essentially arbirary functions to each of the elements in the original list.

R building a subset based on value in previous row

I have a problem figuering this out:
suppose this is how my data looks like:
Num condition y
1 a 1
2 a 2
3 a 3
4 b 4
5 b 5
6 b 6
7 c 7
8 c 8
9 c 9
10 b 10
11 b 11
12 b 12
I now want to make calculation (e.g., mean) on b, depending on whether value was in the row before b, in this example a or c?
Thanks for any help!!!
Angelika
Is this what you want?
# in order to separate between different runs of condition 'b',
# get length and value of runs of equal values of 'condition'
rl <- rle(x = df$condition)
df$run <- rep(x = seq_len(length(rl$lengths)), times = rl$lengths)
# calculate sum of y, on data grouped by condition and run, and where condition is 'b'
aggregate(y ~ condition + run, data = df, subset = condition == "b", sum)
You can add a "lagged" condition column to your dataframe (assuming DF) using
> DF <- within(DF, lag_cond <- c(NA, head(as.character(condition), -1)))
Result:
Num condition y lag_cond
1 a 1 <NA>
2 a 2 a
3 a 3 a
4 b 4 a
5 b 5 b
6 b 6 b
7 c 7 b
8 c 8 c
9 c 9 c
10 b 10 c
11 b 11 b
12 b 12 b
Now you can identify rows you want like this:
> DF[with(DF, condition=="b" & lag_cond %in% c("a","c")),]
Num condition y lag_cond
4 b 4 a
10 b 10 c

Resources