I downloaded the R package RVAideMemoire in order to use the G.test.
> head(bio)
Date Trt Treated Control Dead DeadinC AliveinC
1 23Ap citol 1 3 1 0 13
2 23Ap cital 1 5 3 1 6
3 23Ap gerol 0 3 0 0 9
4 23Ap mix 0 5 0 0 8
5 23Ap cital 0 5 1 0 13
6 23Ap cella 0 5 0 1 4
So, I make subsets of the data to look at each treatment, because the G.test result will need to be pooled for each one.
datamix<-subset(bio, Trt=="mix")
head(datamix)
Date Trt Treated Control Dead DeadinC AliveinC
4 23Ap mix 0 5 0 0 8
8 23Ap mix 0 5 1 0 8
10 23Ap mix 0 2 3 0 5
20 23Ap mix 0 0 0 0 18
25 23Ap mix 0 2 1 0 15
28 23Ap mix 0 1 0 0 12
So for the G.test(x) to work if x is a matrix, it must be constructed as 2 columns containing numbers, with 1 row per population. If I use the apply() function I can run the G,test on each row if my data set contains only two columns of numbers. I want to look only at the treated and control for example, but I'm not sure how to omit columns so the G.test can ignore the headers, and other columns. I've tried using the following but I get an error:
apply(datamix, 1, G.test)
Error in match.fun(FUN) : object 'G.test' not found
I have also thought about trying to use something like this rather than creating subsets.
by(bio, Trt, rowG.test)
The G.test spits out this, when you compare two numbers.
G-test for given probabilities
data: counts
G = 0.6796, df = 1, p-value = 0.4097
My other question is, is there someway to add all the df and G values that I get for each row (once I'm able to get all these numbers) for each treatment? Is there also some way to have R report the G, df and p-values in a table to be summed rather than like above for each row?
Any help is hugely appreciated.
You're really close. This seems to work (hard to tell with such a small sample though).
by(bio,bio$Trt,function(x)G.test(as.matrix(x[,3:4])))
So first, the indices argument to by(...) (the second argument) is not evaluated in the context of bio, so you have to specify bio$Trt instead of just Trt.
Second, this will pass all the columns of bio, for each unique value of bio$Trt, to the function specified in the third argument. You need to extract only the two columns you want (columns 3 and 4).
Third, and this is a bit subtle, passing x[,3:4] to G.test(...) causes it to fail with an unintelligible error. Looking at the code, G.test(...) requires a matrix as it's first argument, whereas x[,3:4] in the code above is a data.frame. So you need to convert with as.matrix(...).
Related
I'm sorry if the question looks silly, but I have a small data set which I would like to manipulate with function "survfit" of R package "survival", and, well, I don't know to set a proper dataframe usable by "survfit"; data are as follows:
time number_at_risk number_death number_censored
1 25 10 0 2
2 28 8 1 0
3 33 7 1 0
4 37 6 0 1
5 41 5 1 0
6 43 4 0 1
7 48 3 0 3
And now, if I run the usual syntax survfit(Surv(time, number_censored) ~ 1, data = data), it gives me the warning In Surv(time, number_censored) : Invalid status value, converted to NA.
Obviously, the data are not properly organized. So, how should I set my dataframe?
Thanks.
time must be a vector with the times where an event happened and status an indicator if that event is a censorship or death (0/1).
In your example the data should look like this:
times = c(1,1,2,3,4,5,6,7,7,7)
status = c(0,0,1,1,0,1,0,0,0,0)
survfit(Surv(times,status)~1)
For my previous lines of code for making tables from column names, they successfully made short and dense matrices for me to readily process data from two questions (from survey results): (2nd example).
However, when I try using the same line of code (above), I don't get that sleek matrix. I end up getting a list of un-linked tables, which I do not want. Perhaps it's due to the new column only having 0's and 1's as numeric characters, vs. the others that have more than 2: (1st example).
[Please forgive my formatting issues (StackOverflow Status: Newbie). Also, many thanks in advance to those checking in on and answering my question!]
>table(select(data_final, `Relationship 2Affected Individual`, Satisfied_Treatments))
Relationship 2Affected Individual 1
1 0
2 0
3 0
6 0
Other (please specify) 0
, , 1 = 1, Response = 10679308122
0
Relationship 2Affected Individual 1
1 0
2 0
3 0
6 0
Other (please specify) 0
, ,
...
> table(select(data_final, `Relationship 2Affected Individual`, Indirect_Benefits))
Indirect_Benefits
Relationship 2Affected Individual 0 1 2 3
1 4 1 0 0
2 42 17 9 3
3 12 1 1 0
6 5 2 2 0
Other (please specify) 1 0 0 0
>#rstudioapi::versionInfo()
>#packageVersion("dplyr")
table(data_final$Relationship 2Affected Individual, data_final$Satisfied_Treatments)
Problem Solved^
Looking to fill a matrix with a reverse cumsum. There are multiple breaks that must be maintained.
I have provided a sample matrix for what I want to accomplish. The first column is the data, the second column is what I want. You will see that column 2 is updated to reflect the number of items that are left. When there are 0's the previous number must be carried through.
update <- matrix(c(rep(0,4),rep(1,2),2,rep(0,2),1,3,
rep(10,4), 9,8,6, rep(6,2), 5, 2),ncol=2)
I have tried multiple ways to create a sequence, loop using numerous packages (i.e. zoo). What is difficult is that the numbers in column 1 can be between 0,1,..,X but less than column 2.
Any help or tips would be appreciated
EDIT: Column 2 starts with a given value which can represent any starting value (i.e. inventory at the beginning of a month). Column 1 would then represent "purchases" made which; thus, column 2 should reflect the total number of remaining items available.
The following will report the purchase and inventory balance as described:
starting_inventory <- 100
df <- data.frame(purchases=c(rep(0,4),rep(1,2),2,rep(0,2),1,3))
df$cum_purchases <- cumsum(df$purchases)
df$remaining_inventory <- starting_inventory - df$cum_purchases
Result:
purchases cum_purchases remaining_inventory
1 0 0 100
2 0 0 100
3 0 0 100
4 0 0 100
5 1 1 99
6 1 2 98
7 2 4 96
8 0 4 96
9 0 4 96
10 1 5 95
11 3 8 92
I am trying to use svm() to classify my data. A sample of my data is as follows:
ID call_YearWeek week WeekCount oc
x 2011W01 1 0 0
x 2011W02 2 1 1
x 2011W03 3 0 0
x 2011W04 4 0 0
x 2011W05 5 1 1
x 2011W06 6 0 0
x 2011W07 7 0 0
x 2011W08 8 1 1
x 2011W09 9 0 0
x 2011W10 10 0 0
x 2011W11 11 0 0
x 2011W12 12 1 1
x 2011W13 13 1 1
x 2011W14 14 1 1
x 2011W15 15 0 0
x 2011W16 16 2 1
x 2011W17 17 0 0
x 2011W18 18 0 0
x 2011W19 19 1 1
The third column shows week of the year. The 4th column shows number of calls in that week and the last column is a binary factor (if a call was received in that week or not). I used the following lines of code:
train <- data[1:105,]
test <- data[106:157,]
model <- svm(oc~week,data=train)
plot(model,train,week)
plot(model,train)
none of the last two lines work. they dont show any plots and they return no error. I wonder why this is happening.
Thanks
Seems like there are two problems here, first is that not all svm types are supported by plot.svm -- only the classification methods are, and not the regression methods. Because your response is numeric, svm() assumes you want to do regression so it chooses "eps-regression" by default. If you want to do classification, change your response to a factor
model <- svm(factor(oc)~week,data=train)
which will then use "C-classification" by default.
The second problem is that there does not seem to be a univariate predictor plot implemented. It seems to want two variables (one for x and one for y).
It may be better to take a step back and describe exactly what you want your plot to look like.
I have an imputed dataset that I'm analysing, and I'm trying to draw boxplots, but I can't wrap my head around the proper procedure.
my data (a sample, original has 20 observations per imputation and 13 vars per group, all values range from 0 to 25):
.imp .id FTE_RM FTE_PD OMZ_RM OMZ_PD
1 1 25 25 24 24
1 2 4 0 2 6
1 3 11 5 3 2
1 4 12 3 3 3
2 1 20 15 15 15
2 2 4 1 2 3
2 3 0 0 0 6
2 4 20 0 0 0
.imp signifies the imputation round, .id the identifer for each observartion.
I want to draw all the FTE_* variables in a single plot (and the `OMZ_* in another), but wonder what to do with all the imputations, can I just include all values? The imputated data now has 500 observations. With for instance an ANOVA I'd need to average the ANOVA results by 5 to get back to 20 observations. But is this needed for a boxplot as well, since I only deal with medians, means, max. and min.?
Such as:
data_melt <- melt(df[grep("^FTE_", colnames(df))])
ggplot(data_melt, aes(x=variable, y=value))+geom_boxplot()
I've played a couple of times with ggplot, but consider myself a complete newbie.
I assume you want to keep the identifier for .imp and .id after melting so rather put:
data_melt <- melt(df,c(".imp",".id"))
For completeness of the dataframe it probably helps to introduce a column that identifies the type - FTE vs. OMZ:
data_melt$type <- ifelse(grepl("FTE",data_melt$variable),"FTE","OMZ")
Having this data.frame you can, for example, facet on the type (alternatively you can just use a simple filter statement on data_melt to restrict to one type):
ggplot(data_melt, aes(x=variable, y=value))+geom_boxplot()+facet_wrap(~type,scales="free_x")
This would look like this.
EDIT: fixed the data mess-up