Repeating sequence of operations without for loop - r

I have a simulation in R that involves executing several lines of code.
I would like to replicate this process 1000 times.
Is there any way to do this withouth a for-loop?
I know there is replicate() but that can only replicate 1 process at a time.
Here's an example:
for (r in 1:reps){
first<-sapply(1:100, function(x) sample(c(1,2),100,prob=c(0.45,0.55),replace=T))
second<-sapply(2:100, function(i) length(which(apply(sapply(1:100, function(x) sample(easy[x,],i)),2,max)==2)) )
third[r,]<-second
}
Can this be done withouth a for loop?

The command replicate is useful for you (it's really just a wrapper of sapply, but makes your code more readable). I've also made the inside of your loop slightly more readable:
set.seed(123)
for (r in 1:reps){
# first <- matrix(sample(c(1,2),100*100,prob=c(0.45,0.55),replace=T), nrow=100)
second <- sapply(2:100, function(i) length(which(apply(sapply(1:100, function(x) sample(easy[x,],i)),2,max)==2)) )
third[r,]<-second
}
set.seed(123)
third.2 <- t(replicate(reps, sapply(2:100, function(i)
sum(apply(easy[1:100, ], 1, function(x) max(sample(x, i))==2)))))
all.equal(third, third.2)
By the way, even tough you didn't ask for this, here is a faster way to calculate first, which does not need sapplyat all.
set.seed(123)
first <- sapply(1:100, function(x) sample(c(1,2),100,prob=c(0.45,0.55),replace=T))
set.seed(123)
first.2 <- matrix(sample(c(1,2), 100*100, prob=c(0.45,0.55), replace=T), nrow=100)
all.equal(first, first.2)

As I mentioned in the comment, something like this would enable you to avoid the loop.
foo = function (dummy) {
first<-sapply(1:100, function(x) sample(c(1,2),100,prob=c(0.45,0.55),replace=T))
second<-sapply(2:100, function(i) length(which(apply(sapply(1:100, function(x) sample(easy[x,],i)),2,max)==2)) )
third[r,]<-second
}
sapply(1:reps, foo)

Related

Putting user-defined on a list in for loop

I have problems storing user defined functions in R list when they are put on it in a for loop.
I have to define some segment-specific functions based on some parameters, so I create functions and put them on a list looping through segments with for-loop. The problem is I get same function everywhere on a result list.
The code looks like this:
n <- 100
segmenty <- 1:n
segment_functions <- list()
for (i in segmenty){
segment_functions[[i]] <- function(){return(i)}
}
When i run the code what I get is the same function (last created in the loop) for all indexes:
## for all k
segment_functions[[k]]()
[1] 100
There is no problem when I put the functions on list manually e.g.
segment_functions[[1]] <- function(){return(1)}
segment_functions[[2]] <- function(){return(2)}
segment_functions[[3]] <- function(){return(3)}
works just fine.
I honsetly have no idea what's wrong. Could you help?
You need to use the force function to ensure that the evaluation of i is done during the assignment into the list:
n <- 100
segmenty <- 1:n
segment_functions <- list()
f <- function(i) { force(i); function() return(i) }
for (i in segmenty){
segment_functions[[i]] <- f(i)
}
I'd use lapply and capture i in a clousre of the wrapper:
segment_functions <- lapply(1:100, function(i) function() i)

Looping dataset R

I'm trying to make a loop to automate a lot of actions in R. The code I have looks like this:
datA <- droplevels(datSUM[datSUM$Conc=="a",])
datB <- droplevels(datSUM[datSUM$Conc=="b",])
datC <- droplevels(datSUM[datSUM$Conc=="c",])
datD <- droplevels(datSUM[datSUM$Conc=="d",])
datE <- droplevels(datSUM[datSUM$Conc=="e",])
datX <- droplevels(datSUM[datSUM$Conc=="x",])
datY <- droplevels(datSUM[datSUM$Conc=="y",])
datAf <- droplevels(datA[datA$Sex=="f",])
datAf1 <- droplevels(datAf[datAf$rep=="1",])
datAf2 <- droplevels(datAf[datAf$rep=="2",])
datAf3 <- droplevels(datAf[datAf$rep=="3",])
datAm <- droplevels(datA[datA$Sex=="m",])
datAm1 <- droplevels(datAm[datAm$rep=="1",])
datAm2 <- droplevels(datAm[datAm$rep=="2",])
datAm3 <- droplevels(datAm[datAm$rep=="3",])
So since I have to do this 7 times, it seems like making a loop for this operation is the best way to do it. Can someone help me make that? I'm new to R so please bear that in mind.
Well I will have a stab at this.
concs <- c(a='a',b='b',c='c',d='d',e='e',x='x',y='y')
sex <- c(m='m',f='f')
reps <- c(rep1='1',rep2='2',rep3='3')
# By using m='m' we can label the objects within the list, making it
# easier to navigate the final object, otherwise use:
# concs <- c('a','b','c','d','e','x','y')
# sex <- c('m','f')
# reps <- c('1','2','3')
dfs <- lapply(concs, function(x){
droplevels(datSUM[datSUM$Conc==x,])}
)
sdfs <- lapply(sex, function(x){
lapply(dfs, function(y){
droplevels(y[y$Sex==x,])}
)}
)
rsdfs <- lapply(reps, function(x){
lapply(sdfs, function(y){
lapply(y, function(z){
droplevels(z[z$rep==x,])}
)}
)}
)
There is probably a better way to do this, that may involve using more lapplys but I think this "should" do the trick.
The only downside to this method you will have to access certain objects with rsdfs[[1]][[1]][[1]] or rsdfs[['rep1']][['m']][['a']] e.t.c
And applying functions to these would in itself require a bunch of lapplys
Let me know if this helps.
This is one method to do so - I will work on a more elegant solution later.

R_ How to put a variable in a name

I have 50 files to read in R and I created this loop to help me. I would like to know if it is possible to do something like this in R.
How can I write it properly in R?
library(foreign)
for(i in 1:50 ){
tpi <- read.dbf('toto_%i%')
}
Help please.
We can do this using lapply
lst <- lapply(1:50, function(i) read.dbf(paste0("toto_", i)))
You want to use the function paste. As written your loop will overwrite tpi everytime it increments, so you will want to use a list to store the data.
toto = list()
for(i in 1:50)
{
toto[i] = read.dbf(paste0("toto_", i))
}
A shortcut using lapply gets the same results:
toto = lapply(1:50, function(x) read.dbf(paste0("toto_", x)))

Indexing certain elements in a nested list, for all nests

I have a list which contains more lists of lists:
results <- sapply(c(paste0("cv_", seq(1:50)), "errors"), function(x) NULL)
## Locations for results to be stored
step_results <- sapply(c("myFit", "forecast", "errors"), function(x) NULL)
step_errors <- sapply(c("MAE", "MSE", "sign_accuracy"), function(x) NULL)
final_error <- sapply(c("MAE", "MSE", "sign_accuracy"), function(x) NULL)
for(i in 1:50){results[[i]] <- step_results}
for(i in 1:50){results[[i]][[3]] <- step_errors}
results$errors <- final_error
Now in this whole structure, I would like to sum up all the values in sign_accuracy and save them in results$errors$sign_accuracy
I could maybe do this with a for-loop, indexing with i:
## This is just an example - it won't actually work!
sign_acc <- matrix(nrow = 50, ncol = 2)
for (i in 1:50){
sign_acc[i, ] <- `results[[i]][[3]][[3]]`
results$errors$sign_accuracy <- sign_acc
}
If I remember correctly, in Matlab there is something like list(:), which means all elements. In Python I have seen something like list(0:-1), which also means all elements.
What is the elegent R equivalent? I don't really like loops.
I have seen methods using the apply family of functions. With something like apply(data, "[[", 2), but can't get it to work for deeper lists.
Did you try with c(..., recursive)?
Here is an option with a short example at the end:
sumList <- function(l, label) {
lc <- c(l, recursive=T)
filter <- grepl(paste0("\\.",label, "$"), names(lc)) | (names(lc) == label)
nums <- lc[filter]
return(sum(as.numeric(nums)))
}
ex <- list(a=56,b=list("5",a=34,list(c="3",a="5")))
sumList(ex,"a")
In this case, you can do what you want with
results$errors$sign_accuracy <- do.call(sum, lapply(results, function(x){x[[3]][[3]]}))
lapply loops through the first layer of results, and pulls out the third element of the third element for each. do.call(sum catches all the results and sums them.
The real problems with lists arise when the nesting is more irregular, or when you need to loop through more than one index. It can always be done in the same way, but it gets extraordinarily ugly very quickly.

Store results of a for-loop in an object or matrix

i've following problem:
I use the for-loop within R to get specific data from a matrix.
my code is as follows.
for(i in 1:100){
T <- as.Date(as.mondate (STARTLISTING)+i)
DELIST <- (subset(datensatz_Start_End.frame, TIME <= T))[,1]
write.table(DELIST, file = paste("tab", i, ".csv"), sep="," )
print(DELIST)
}
Using print, R delivers the data.
Using write.table, R delivers the data into different files.
My aim is to aggregate the results from the for-loop within one matrix. (each row for 'i')
But unfortunately I can not make it.
sorry, i'm a real noob within R.
for(i in 1:100)
{
T <- as.Date(as.mondate (STARTLISTING)+i)
DELIST <- (subset(datensatz_Start_End.frame, TIME <= T))[,1]
assign(paste('b',i,sep=''),DELIST)
}
this delivers 100 objects, which contain my results.
But what i need is one matrix/dataframe with 100 columns or one list.
Any ideas?
Hey!
Hence I'm not allowed to edit my own answers, here my (simple) solution as follows:
DELIST <- vector("list",100)
for(i in 1:100)
{
T <- as.Date(as.mondate (STARTLISTING)+i)
DELIST[[i]] <- as.character((subset(datensatz_Start_End.frame, TIME <= T))[,1])
}
DELIST[[99]] ## it is possible to requist the relevant companies for every 'i'
Thx to everyone!
George
If you want a list you can use lapply instead of loop
LL <- lapply(1:100,
function(i) {
T <- as.Date(as.mondate (STARTLISTING)+i)
DELIST <- (subset(datensatz_Start_End.frame, TIME <= T))[,1]
assign(paste('b',i,sep=''),DELIST)
}
)
After that you can rbind results together using do.call
result <- do.call(rbind, LL)
Or if you are confident that columns of all elements of LL are going to be of same, then you can use more efficient rbindlist from package data.table
result <- rbindlist(LL)
check out rbind function. You can start with empty DELIST.DF and append each row to it inside the loop -
DELIST.DF <- NULL
for(i in 1:100){
T <- as.Date(as.mondate (STARTLISTING)+i)
DELIST <- (subset(datensatz_Start_End.frame, TIME <= T))[,1]
DELIST.DF <- rbind(DELIST.DF, DELIST)
write.table(DELIST, file = paste("tab", i, ".csv"), sep="," )
print(DELIST)
}

Resources