edited to improve the quality of the question as a result of the (wholly appropriate) spanking received by Spacedman!
I have a k-nearest neighbors object (an igraph) which I created as such, by using the file I have uploaded here:
I performed the following operations on the data, in order to create an adjacency matrix of distances between observations:
W <- read.csv("/path/sim_matrix.csv")
W <- W[, -c(1,3)]
W <- scale(W)
sim_matrix <- dist(W, method = "euclidean", upper=TRUE)
sim_matrix <- as.matrix(sim_matrix)
mygraph <- nng(sim_matrix, k=10)
This give me a nice list of vertices and their ten closest neighbors, a small sample follows:
1 -> 25 26 28 30 32 144 146 151 177 183 2 -> 4 8 32 33 145 146 154 156 186 199
3 -> 1 25 28 51 54 106 144 151 177 234 4 -> 7 8 89 95 97 158 160 170 186 204
5 -> 9 11 17 19 21 112 119 138 145 158 6 -> 10 12 14 18 20 22 147 148 157 194
7 -> 4 13 123 132 135 142 160 170 173 174 8 -> 4 7 89 90 95 97 158 160 186 204
So far so good.
What I'm struggling with, however, is how to to get access to the values for the weights between the vertices that I can do meaningful calculations on. Shouldn't be so hard, this is a common thing to want from graphs, no?
Looking at the documentation, I tried:
degree(mygraph)
which gives me the sum of the weights for each node. But I don't want the sum, I want the raw data, so I can do my own calculations.
I tried
get.data.frame(mygraph,"E")[1:10,]
but this has none of the distances between nodes:
from to
1 1 25
2 1 26
3 1 28
4 1 30
5 1 32
6 1 144
7 1 146
8 1 151
9 1 177
10 1 183
I have attempted to get values for the weights between vertices out of the graph object, that I can work with, but no luck.
If anyone has any ideas on how to go about approaching this, I'd be grateful. Thanks.
It's not clear from your question whether you are starting with a dataset, or with a distance matrix, e.g. nng(x=mydata,...) or nng(dx=mydistancematrix,...), so here are solutions with both.
library(cccd)
df <- mtcars[,c("mpg","hp")] # extract from mtcars dataset
# knn using dataset only
g <- nng(x=as.matrix(df),k=5) # for each car, 5 other most similar mpg and hp
V(g)$name <- rownames(df) # meaningful names for the vertices
dm <- as.matrix(dist(df)) # full distance matrix
E(g)$weight <- apply(get.edges(g,1:ecount(g)),1,function(x)dm[x[1],x[2]])
# knn using distance matrix (assumes you have dm already)
h <- nng(dx=dm,k=5)
V(h)$name <- rownames(df)
E(h)$weight <- apply(get.edges(h,1:ecount(h)),1,function(x)dm[x[1],x[2]])
# same result either way
identical(get.data.frame(g),get.data.frame(h))
# [1] TRUE
So these approaches identify the distances from each vertex to it's five nearest neighbors, and set the edge weight attribute to those values. Interestingly, plot(g) works fine, but plot(h) fails. I think this might be a bug in the plot method for cccd.
If all you want to know is the distances from each vertex to the nearest neighbors, the code below does not require package cccd.
knn <- t(apply(dm,1,function(x)sort(x)[2:6]))
rownames(knn) <- rownames(df)
Here, the matrix knn has a row for each vertex and columns specifying the distance from that vertex to it's 5 nearest neighbors. It does not tell you which neighbors those are, though.
Okay, I've found a nng function in cccd package. Is that it? If so.. then mygraph is just an igraph object and you can just do E(mygraph)$whatever to get the names of the edge attributes.
Following one of the cccd examples to create G1 here, you can get a data frame of all the edges and attributes thus:
get.data.frame(G1,"E")[1:10,]
You can get/set individual edge attributes with E(g)$whatever:
> E(G1)$weight=1:250
> E(G1)$whatever=runif(250)
> get.data.frame(G1,"E")[1:10,]
from to weight whatever
1 1 3 1 0.11861240
2 1 7 2 0.06935047
3 1 22 3 0.32040316
4 1 29 4 0.86991432
5 1 31 5 0.47728632
Is that what you are after? Any igraph package tutorial will tell you more!
Related
I am attempting to work with a large dataset in R where I need to create a column that compares the value in an existing column to all values that follow it (ex: row 1 needs to compare rows 1-10,000, row 2 needs to compare rows 2-10,000, row 3 needs to compare rows 3-10,000, etc.), but cannot figure out how to write the range.
I currently have a column of raw numeric values and a column of row values generated by:
samples$row = seq.int(nrow(samples))
I have attempted to generate the column with the following command:
samples$processed = min(samples$raw[samples$row:10000])
but get the error "numerical expression has 10000 elements: only the first used" and the generated column only has the value for row 1 repeated for each of the 10,000 rows.
How do I need to write this command so that the lower bound of the range is the row currently being calculated instead of 1?
Any help would be appreciated, as I have minimal programming experience.
If all you need is the min of the specific row and all following rows, then
rev(cummin(rev(samples$val)))
# [1] 24 24 24 24 24 24 24 24 24 24 24 24 165 165 165 165 410 410 410 882
If you have some other function that doesn't have a cumulative variant (and your use of min is just a placeholder), then one of:
mapply(function(a, b) min(samples$val[a:b]), seq.int(nrow(samples)), nrow(samples))
# [1] 24 24 24 24 24 24 24 24 24 24 24 24 165 165 165 165 410 410 410 882
sapply(seq.int(nrow(samples)), function(a) min(samples$val[a:nrow(samples)]))
The only reason to use mapply over sapply is if, for some reason, you want window-like operations instead of always going to the bottom of the frame. (Though if you wanted windows, I'd suggest either the zoo or slider packages.)
Data
set.seed(42)
samples <- data.frame(val = sample(1000, size=20))
samples
# val
# 1 561
# 2 997
# 3 321
# 4 153
# 5 74
# 6 228
# 7 146
# 8 634
# 9 49
# 10 128
# 11 303
# 12 24
# 13 839
# 14 356
# 15 601
# 16 165
# 17 622
# 18 532
# 19 410
# 20 882
Assume I have this matrix
set.seed(123)
x <- matrix(rnorm(410),205,2)
x[8,] <- c(0.13152348, -0.05235148) #similar to x[5,]
x[16,] <- c(1.21846582, 1.695452178) #similar to x[11,]
The values are very similar to the rows specified above, and in the context of the whole data, they are semi-duplicates. What could I do to find and remove them? My original data is an array that contains many such matrices, but the position of the semi duplicates is the same across all matrices.
I know of agrep but the function operates on vectors as far as I understand.
You will need to set a threshold, but you can just compute the distance between each row using dist and find the points that are sufficiently close together. Of course, Each point is near itself, so you need to ignore the diagonal of the distance matrix.
DM = as.matrix(dist(x))
diag(DM) = 1 ## ignore diagonal
which(DM < 0.025, arr.ind=TRUE)
row col
8 8 5
5 5 8
16 16 11
11 11 16
48 48 20
20 20 48
168 168 71
91 91 73
73 73 91
71 71 168
This finds the "close" points that you created and a few others that got generated at random.
I am trying to cluster several amino acid sequences of a fixed length (13) into K clusters based on the Atchley factors (5 numbers which represent each amino acid.
For example, I have an input vector of strings like the following:
key <- HDMD::AAMetric.Atchley
sequences <- sapply(1:10000, function(x) paste(sapply(1:13, function (X) sample(rownames(key), 1)), collapse = ""))
However, my actual list of sequences is over 10^5 (specifying for need for computational efficiency).
I then convert these sequences into numeric vectors by the following:
key <- HDMD::AAMetric.Atchley
m1 <- key[strsplit(paste(sequences, collapse = ""), "")[[1]], ]
p = 13
output <-
do.call(cbind, lapply(1:p, function(i)
m1[seq(i, nrow(m1), by = p), ]))
I want to output (which is now 65 dimensional vectors) in an efficient way.
I was originally using Mini-batch kmeans, but I noticed the results were very inconsistent when I repeated. I need a consistent clustering approach.
I also was concerned about the curse of dimensionality, considering at 65 dimensions, Euclidean distance doesn't work.
Many high dimensional clustering algorithms I saw assume that outliers and noise exists in the data, but as these are biological sequences converted to numeric values, there is no noise or outlier.
In addition to this, feature selection will not work, as each of the properties of each amino acid and each amino acid are relevant in the biological context.
How would you recommend clustering these vectors?
I think self organizing maps can be of help here - at least the implementation is quite fast so you will know soon enough if it is helpful or not:
using the data from the op along with:
rownames(output) <- 1:nrow(output)
colnames(output) <- make.names(colnames(output), unique = TRUE)
library(SOMbrero)
you define the number of cluster in advance
fit <- trainSOM(x.data=output , dimension = c(5, 5), nb.save = 10, maxit = 2000,
scaling="none", radius.type = "gaussian")
the nb.save is used as intermediate steps for further exploration how the training developed during the iterations:
plot(fit, what ="energy")
seems like more iterations is in order
check the frequency of clusters:
table(my.som$clustering)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
428 417 439 393 505 458 382 406 271 299 390 303 336 358 365 372 332 268 437 464 541 381 569 419 467
predict clusters based on new data:
predict(my.som, output[1:20,])
#output
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
19 12 11 8 9 1 11 13 14 5 18 2 22 21 23 22 4 14 24 12
check which variables were important for clustering:
summary(fit)
#part of output
Summary
Class : somRes
Self-Organizing Map object...
online learning, type: numeric
5 x 5 grid with square topology
neighbourhood type: gaussian
distance type: euclidean
Final energy : 44.93509
Topographic error: 0.0053
ANOVA :
Degrees of freedom : 24
F pvalue significativity
pah 1.343 0.12156074
pss 1.300 0.14868987
ms 16.401 0.00000000 ***
cc 1.695 0.01827619 *
ec 17.853 0.00000000 ***
find optimal number of clusters:
plot(superClass(fit))
fit1 <- superClass(fit, k = 4)
summary(fit1)
#part of output
SOM Super Classes
Initial number of clusters : 25
Number of super clusters : 4
Frequency table
1 2 3 4
6 9 4 6
Clustering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 3 3 4 4 4 3 3 4 4 4
ANOVA
Degrees of freedom : 3
F pvalue significativity
pah 1.393 0.24277933
pss 3.071 0.02664661 *
ms 19.007 0.00000000 ***
cc 2.906 0.03332672 *
ec 23.103 0.00000000 ***
Much more in this vignette
So, I'm using R to try and do a phylogenetic PCA on a dataset that I have using the phyl.pca function from the phytools package. However, I'm having issues organising my data in a way that the function will accept! And that's not all: I did a bit of experimenting and I know that there are more issues further down the line, which I will get into...
Getting straight to the issue, here's the data frame (with dummy data) that I'm using:
>all
Taxa Tibia Feather
1 Microraptor 138 101
2 Microraptor 139 114
3 Microraptor 145 141
4 Anchiornis 160 81
5 Anchiornis 14 NA
6 Archaeopteryx 134 82
7 Archaeopteryx 136 71
8 Archaeopteryx 132 NA
9 Archaeopteryx 14 NA
10 Scansoriopterygidae 120 85
11 Scansoriopterygidae 116 NA
12 Scansoriopterygidae 123 NA
13 Sapeornis 108 NA
14 Sapeornis 112 86
15 Sapeornis 118 NA
16 Sapeornis 103 NA
17 Confuciusornis 96 NA
18 Confuciusornis 107 30
19 Confuciusornis 148 33
20 Confuciusornis 128 61
The taxa are arranged into a tree (called "tree") with Microraptor being the most basal and then progressing in order through to Confuciusornis:
>summary(tree)
Phylogenetic tree: tree
Number of tips: 6
Number of nodes: 5
Branch lengths:
mean: 1
variance: 0
distribution summary:
Min. 1st Qu. Median 3rd Qu. Max.
1 1 1 1 1
No root edge.
Tip labels: Confuciusornis
Sapeornis
Scansoriopterygidae
Archaeopteryx
Anchiornis
Microraptor
No node labels.
And the function:
>phyl.pca(tree, all, method="BM", mode="corr")
And this is the error that is coming up:
Error in phyl.pca(tree, all, method = "BM", mode = "corr") :
number of rows in Y cannot be greater than number of taxa in your tree
Y being the "all" data frame. So I have 6 taxa in my tree (matching the 6 taxa in the data frame) but there are 20 rows in my data frame. So I used this function:
> all_agg <- aggregate(all[,-1],by=list(all$Taxa),mean,na.rm=TRUE)
And got this:
Group.1 Tibia Feather
1 Anchiornis 153 81
2 Archaeopteryx 136 77
3 Confuciusornis 120 41
4 Microraptor 141 119
5 Sapeornis 110 86
6 Scansoriopterygidae 120 85
It's a bit odd that the order of the taxa has changed... Is this ok?
In any case, I converted it into a matrix:
> all_agg_matrix <- as.matrix(all_agg)
> all_agg_matrix
Group.1 Tibia Feather
[1,] "Anchiornis" "153" "81"
[2,] "Archaeopteryx" "136" "77"
[3,] "Confuciusornis" "120" "41"
[4,] "Microraptor" "141" "119"
[5,] "Sapeornis" "110" "86"
[6,] "Scansoriopterygidae" "120" "85"
And then used the phyl.pca function:
> phyl.pca(tree, all_agg_matrix, method = "BM", mode = "corr")
[1] "Y has no names. function will assume that the row order of Y matches tree$tip.label"
Error in invC %*% X : requires numeric/complex matrix/vector arguments
So, now the order that the function is considering taxa in is all wrong (but I can fix that relatively easily). The issue is that phyl.pca doesn't seem to believe that my matrix is actually a matrix. Any ideas why?
I think you may have bigger problems. Most phylogenetic methods, I suspect including phyl.pca, assume that traits are fixed at the species level (i.e., they don't account for within-species variation). Thus, if you want to use phyl.pca, you probably need to collapse your data to a single value per species, e.g. via
dd_agg <- aggregate(dd[,-1],by=list(dd$Taxa),mean,na.rm=TRUE)
Extract the numeric columns and label the rows properly so that phyl.pca can match them up with the tips correctly:
dd_mat <- dd_agg[,-1]
rownames(dd_mat) <- dd_agg[,1]
Using these aggregated data, I can make up a tree (since you didn't give us one) and run phyl.pca ...
library(phytools)
tt <- rcoal(nrow(dd_agg),tip.label=dd_agg[,1])
phyl.pca(tt,dd_mat)
If you do need to do an analysis that takes within-species variation into account you might need to ask somewhere more specialized, e.g. the r-sig-phylo#r-project.org mailing list ...
The answer posted by Ben Bolker seems to work whereby the data (called "all") is collapsed into a single value per species before creating a matrix and running the function. As per so:
> all_agg <- aggregate(all[,-1],by=list(all$Taxa),mean,na.rm=TRUE)
> all_mat <- all_agg[,-1]
> rownames(all_mat) <- all_agg[,1]
> phyl.pca(tree,all_mat, method= "lambda", mode = "corr")
Thanks to everyone who contributed an answer and especially Ben! :)
I have a data frame having 20 columns. I need to filter / remove noise from one column. After filtering using convolve function I get a new vector of values. Many values in the original column become NA due to filtering process. The problem is that I need the whole table (for later analysis) with only those rows where the filtered column has values but I can't bind the filtered column to original table as the number of rows for both are different. Let me illustrate using the 'age' column in 'Orange' data set in R:
> head(Orange)
Tree age circumference
1 1 118 30
2 1 484 58
3 1 664 87
4 1 1004 115
5 1 1231 120
6 1 1372 142
Convolve filter used
smooth <- function (x, D, delta){
z <- exp(-abs(-D:D/delta))
r <- convolve (x, z, type='filter')/convolve(rep(1, length(x)),z,type='filter')
r <- head(tail(r, -D), -D)
r
}
Filtering the 'age' column
age2 <- smooth(Orange$age, 5,10)
data.frame(age2)
The number of rows for age column and age2 column are 35 and 15 respectively. The original dataset has 2 more columns and I like to work with them also. Now, I only need 15 rows of each column corresponding to the 15 rows of age2 column. The filter here removed first and last ten values from age column. How can I apply the filter in a way that I get truncated dataset with all columns and filtered rows?
You would need to figure out how the variables line up. If you can add NA's to age2 and then do Orange$age2 <- age2 followed by na.omit(Orange) you should have what you want. Or, equivalently, perhaps this is what you are looking for?
df <- tail(head(Orange, -10), -10) # chop off the first and last 10 observations
df$age2 <- age2
df
Tree age circumference age2
11 2 1004 156 915.1678
12 2 1231 172 876.1048
13 2 1372 203 841.3156
14 2 1582 203 911.0914
15 3 118 30 948.2045
16 3 484 51 1008.0198
17 3 664 75 955.0961
18 3 1004 108 915.1678
19 3 1231 115 876.1048
20 3 1372 139 841.3156
21 3 1582 140 911.0914
22 4 118 32 948.2045
23 4 484 62 1008.0198
24 4 664 112 955.0961
25 4 1004 167 915.1678
Edit: If you know the first and last x observations will be removed then the following works:
x <- 2
df <- tail(head(Orange, -x), -x) # chop off the first and last x observations
df$age2 <- age2