OCaml: applying second argument first(higher-order functions) - functional-programming

I defined a higher-order function like this:
val func : int -> string -> unit
I would like to use this function in two ways:
other_func (func 5)
some_other_func (fun x -> func x "abc")
i.e., by making functions with one of the arguments already defined. However, the second usage is less concise and readable than the first one. Is there a more readable way to pass the second argument to make another function?

In Haskell, there's a function flip for this. You can define it yourself:
let flip f x y = f y x
Then you can say:
other_func (func 5)
third_func (flip func "abc")
Flip is defined in Jane Street Core as Fn.flip. It's defined in OCaml Batteries Included as BatPervasives.flip. (In other words, everybody agrees this is a useful function.)

The question posed in the headline "change order of parameters" is already answered. But I am reading your description as "how do I write a new function with the second parameter fixed". So I will answer this simple question with an ocaml toplevel protocol:
# let func i s = if i < 1 then print_endline "Counter error."
else for ix = 1 to i do print_endline s done;;
val func : int -> string -> unit = <fun>
# func 3 "hi";;
hi
hi
hi
- : unit = ()
# let f1 n = func n "curried second param";;
val f1 : int -> unit = <fun>
# f1 4;;
curried second param
curried second param
curried second param
curried second param
- : unit = ()
#

Related

Recursive function to repeat string in OCaml

I am absolute OCaml beginner. I want to create a function that repeats characters 20 times.
This is the function, but it does not work because of an error.
let string20 s =
let n = 20 in
s ^ string20 s (n - 1);;
string20 "u";;
I want to run like this
# string20 "u"
- : string = "uuuuuuuuuuuuuuuuuuuu"
Your function string20 takes one parameter but you are calling it recursively with 2 parameters.
The basic ideas are in there, but not quite in the right form. One way to proceed is to separate out the 2-parameter function as a separate "helper" function. As #PierreG points out, you'll need to delcare the helper function as a recursive function.
let rec string n s =
if n = 0 then "" else s ^ string (n - 1) s
let string20 = string 20
It is a common pattern to separate a function into a "fixed" part and inductive part. In this case, a nested helper function is needed to do the real recursive work in a new scope while we want to fix an input string s as a constant so we can use to append to s2. s2 is an accumulator that build up the train of strings over time while c is an inductor counting down to 1 toward the base case.
let repeat s n =
let rec helper s1 n1 =
if n1 = 0 then s1 else helper (s1 ^ s) (n1 - 1)
in helper "" n
A non-tail call versions is more straightforward since you won't need a helper function at all:
let rec repeat s n =
if n = 0 then "" else s ^ repeat s (n - 1)
On the side note, one very fun thing about a functional language with first-class functions like Ocaml is currying (or partial application). In this case you can create a function named repeat that takes two arguments n of type int and s of type string as above and partially apply it to either n or s like this:
# (* top-level *)
# let repeat_foo = repeat "foo";;
# repeat_foo 5;;
- : bytes = "foofoofoofoofoo" (* top-level output *)
if the n argument was labeled as below:
let rec repeat ?(n = 0) s =
if n = 0 then "" else s ^ repeat s (n - 1)
The order of application can be exploited, making the function more flexible:
# (* top-level *)
# let repeat_10 = repeat ~n:10;;
# repeat_10 "foo";;
- : bytes = "foofoofoofoofoofoofoofoofoofoo" (* top-level output *)
See my post Currying Exercise in JavaScript (though it is in JavaScript but pretty simple to follow) and this lambda calculus primer.
Recursive functions in Ocaml are defined with let rec
As pointed out in the comments you've defined your function to take one parameter but you're trying to recursively call with two.
You probably want something like this:
let rec stringn s n =
match n with
1 -> s
| _ -> s ^ stringn s (n - 1)
;;

Recursive anonymous functions in SML

Is it possible to write recursive anonymous functions in SML? I know I could just use the fun syntax, but I'm curious.
I have written, as an example of what I want:
val fact =
fn n => case n of
0 => 1
| x => x * fact (n - 1)
The anonymous function aren't really anonymous anymore when you bind it to a
variable. And since val rec is just the derived form of fun with no
difference other than appearance, you could just as well have written it using
the fun syntax. Also you can do pattern matching in fn expressions as well
as in case, as cases are derived from fn.
So in all its simpleness you could have written your function as
val rec fact = fn 0 => 1
| x => x * fact (x - 1)
but this is the exact same as the below more readable (in my oppinion)
fun fact 0 = 1
| fact x = x * fact (x - 1)
As far as I think, there is only one reason to use write your code using the
long val rec, and that is because you can easier annotate your code with
comments and forced types. For examples if you have seen Haskell code before and
like the way they type annotate their functions, you could write it something
like this
val rec fact : int -> int =
fn 0 => 1
| x => x * fact (x - 1)
As templatetypedef mentioned, it is possible to do it using a fixed-point
combinator. Such a combinator might look like
fun Y f =
let
exception BlackHole
val r = ref (fn _ => raise BlackHole)
fun a x = !r x
fun ta f = (r := f ; f)
in
ta (f a)
end
And you could then calculate fact 5 with the below code, which uses anonymous
functions to express the faculty function and then binds the result of the
computation to res.
val res =
Y (fn fact =>
fn 0 => 1
| n => n * fact (n - 1)
)
5
The fixed-point code and example computation are courtesy of Morten Brøns-Pedersen.
Updated response to George Kangas' answer:
In languages I know, a recursive function will always get bound to a
name. The convenient and conventional way is provided by keywords like
"define", or "let", or "letrec",...
Trivially true by definition. If the function (recursive or not) wasn't bound to a name it would be anonymous.
The unconventional, more anonymous looking, way is by lambda binding.
I don't see what unconventional there is about anonymous functions, they are used all the time in SML, infact in any functional language. Its even starting to show up in more and more imperative languages as well.
Jesper Reenberg's answer shows lambda binding; the "anonymous"
function gets bound to the names "f" and "fact" by lambdas (called
"fn" in SML).
The anonymous function is in fact anonymous (not "anonymous" -- no quotes), and yes of course it will get bound in the scope of what ever function it is passed onto as an argument. In any other cases the language would be totally useless. The exact same thing happens when calling map (fn x => x) [.....], in this case the anonymous identity function, is still in fact anonymous.
The "normal" definition of an anonymous function (at least according to wikipedia), saying that it must not be bound to an identifier, is a bit weak and ought to include the implicit statement "in the current environment".
This is in fact true for my example, as seen by running it in mlton with the -show-basis argument on an file containing only fun Y ... and the val res ..
val Y: (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b
val res: int32
From this it is seen that none of the anonymous functions are bound in the environment.
A shorter "lambdanonymous" alternative, which requires OCaml launched
by "ocaml -rectypes":
(fun f n -> f f n)
(fun f n -> if n = 0 then 1 else n * (f f (n - 1))
7;; Which produces 7! = 5040.
It seems that you have completely misunderstood the idea of the original question:
Is it possible to write recursive anonymous functions in SML?
And the simple answer is yes. The complex answer is (among others?) an example of this done using a fix point combinator, not a "lambdanonymous" (what ever that is supposed to mean) example done in another language using features not even remotely possible in SML.
All you have to do is put rec after val, as in
val rec fact =
fn n => case n of
0 => 1
| x => x * fact (n - 1)
Wikipedia describes this near the top of the first section.
let fun fact 0 = 1
| fact x = x * fact (x - 1)
in
fact
end
This is a recursive anonymous function. The name 'fact' is only used internally.
Some languages (such as Coq) use 'fix' as the primitive for recursive functions, while some languages (such as SML) use recursive-let as the primitive. These two primitives can encode each other:
fix f => e
:= let rec f = e in f end
let rec f = e ... in ... end
:= let f = fix f => e ... in ... end
In languages I know, a recursive function will always get bound to a name. The convenient and conventional way is provided by keywords like "define", or "let", or "letrec",...
The unconventional, more anonymous looking, way is by lambda binding. Jesper Reenberg's answer shows lambda binding; the "anonymous" function gets bound to the names "f" and "fact" by lambdas (called "fn" in SML).
A shorter "lambdanonymous" alternative, which requires OCaml launched by "ocaml -rectypes":
(fun f n -> f f n)
(fun f n -> if n = 0 then 1 else n * (f f (n - 1))
7;;
Which produces 7! = 5040.

Query on type expressions in ML

All,
Here is the type expression which I need to convert to a ML expression:
int -> (int*int -> 'a list) -> 'a list
Now I know this is a currying style expression which takes 2 arguments:
1st argument = Type int
and 2nd argument = Function which takes the previous int value twice and return a list of any type
I am having a hard time figuring such a function that would take an int and return 'a list.
I am new to ML and hence this might be trivial to others, but obviously not me.
Any help is greatly appreciated.
You get an int and a function int*int -> 'a list. You're supposed to return an 'a list. So all you need to do is call the function you get with (x,x) (where x is the int you get) and return the result of that. So
fun foo x f = f (x,x)
Note that this is not the only possible function with type int -> (int*int -> 'a list) -> 'a list. For example the functions fun foo x f = f (x, 42) and fun foo x f = f (23, x) would also have that type.
Edit:
To make the type match exactly add a type annotation to restrict the return type of f:
fun foo x (f : int*int -> 'a list) = f (x,x)
Note however that there is no real reason to do that. This version behaves exactly as the one before, except that it only accepts functions that return a list.

Ocaml continuation passing style

I'm new to ocaml and tryin to write a continuation passing style function but quite confused what value i need to pass into additional argument on k
for example, I can write a recursive function that returns true if all elements of the list is even, otherwise false.
so its like
let rec even list = ....
on CPS, i know i need to add one argument to pass function
so like
let rec evenk list k = ....
but I have no clue how to deal with this k and how does this exactly work
for example for this even function, environment looks like
val evenk : int list -> (bool -> ’a) -> ’a = <fun>
evenk [4; 2; 12; 5; 6] (fun x -> x) (* output should give false *)
The continuation k is a function that takes the result from evenk and performs "the rest of the computation" and produces the "answer". What type the answer has and what you mean by "the rest of the computation" depends on what you are using CPS for. CPS is generally not an end in itself but is done with some purpose in mind. For example, in CPS form it is very easy to implement control operators or to optimize tail calls. Without knowing what you are trying to accomplish, it's hard to answer your question.
For what it is worth, if you are simply trying to convert from direct style to continuation-passing style, and all you care about is the value of the answer, passing the identity function as the continuation is about right.
A good next step would be to implement evenk using CPS. I'll do a simpler example.
If I have the direct-style function
let muladd x i n = x + i * n
and if I assume CPS primitives mulk and addk, I can write
let muladdk x i n k =
let k' product = addk x product k in
mulk i n k'
And you'll see that the mulptiplication is done first, then it "continues" with k', which does the add, and finally that continues with k, which returns to the caller. The key idea is that within the body of muladdk I allocated a fresh continuation k' which stands for an intermediate point in the multiply-add function. To make your evenk work you will have to allocate at least one such continuation.
I hope this helps.
Whenever I've played with CPS, the thing passed to the continuation is just the thing you would normally return to the caller. In this simple case, a nice "intuition lubricant" is to name the continuation "return".
let rec even list return =
if List.length list = 0
then return true
else if List.hd list mod 2 = 1
then return false
else even (List.tl list) return;;
let id = fun x -> x;;
Example usage: "even [2; 4; 6; 8] id;;".
Since you have the invocation of evenk correct (with the identity function - effectively converting the continuation-passing-style back to normal style), I assume that the difficulty is in defining evenk.
k is the continuation function representing the rest of the computation and producing a final value, as Norman said. So, what you need to do is compute the result of v of even and pass that result to k, returning k v rather than just v.
You want to give as input the result of your function as if it were not written with continuation passing style.
Here is your function which tests whether a list has only even integers:
(* val even_list : int list -> bool *)
let even_list input = List.for_all (fun x -> x mod 2=0) input
Now let's write it with a continuation cont:
(* val evenk : int list -> (bool -> 'a) -> 'a *)
let evenk input cont =
let result = even_list input in
(cont result)
You compute the result your function, and pass resultto the continuation ...

Homework help converting an iterative function to recursive

For an assignment, i have written the following code in recursion. It takes a list of a vector data type, and a vector and calculates to closeness of the two vectors. This method works fine, but i don't know how to do the recursive version.
let romulus_iter (x:vector list) (vec:vector) =
let vector_close_hash = Hashtbl.create 10 in
let prevkey = ref 10000.0 in (* Define previous key to be a large value since we intially want to set closefactor to prev key*)
if List.length x = 0 then
{a=0.;b=0.}
else
begin
Hashtbl.clear vector_close_hash;
for i = 0 to (List.length x)-1 do
let vecinquestion = {a=(List.nth x i).a;b=(List.nth x i).b} in
let closefactor = vec_close vecinquestion vec in
if (closefactor < !prevkey) then
begin
prevkey := closefactor;
Hashtbl.add vector_close_hash closefactor vecinquestion
end
done;
Hashtbl.find vector_close_hash !prevkey
end;;
The general recursive equivalent of
for i = 0 to (List.length x)-1 do
f (List.nth x i)
done
is this:
let rec loop = function
| x::xs -> f x; loop xs
| [] -> ()
Note that just like a for-loop, this function only returns unit, though you can define a similar recursive function that returns a meaningful value (and in fact that's what most do). You can also use List.iter, which is meant just for this situation where you're applying an impure function that doesn't return anything meaningful to each item in the list:
List.iter f x

Resources