Plot fitted data from data frame as side-by-side barplot - r

I have a data frame that comes from a lm subset composed of the intercept (ordenada) and the slope (velocidad1) calculated for each subject.
A
UT1 UT2 UT3 UT4
ordenada 1213.8 2634.8 3.760000e+02 -11080.8
velocidad1 1.5 -2.5 6.615954e-14 20.0
UT5 UT6 UT7
ordenada 1711.8 1.739000e+03 1.800000e+01
velocidad1 -2.5 5.039544e-14 -9.154345e-16
UT8 UT9 UT10 UT11 UT12
ordenada 5659.2 -2791 3422.6 418.2 2802.2
velocidad1 -6.0 5 -1.0 -0.5 -1.5
UT13 UT14 TR1 TR2
ordenada 2.832000e+03 -411.2 -15722.0 -1105.4
velocidad1 1.405114e-13 3.5 25.5 25.0
TR3 TR4 TR5 TR6
ordenada 1.14600e+03 299.6 1943.4 6.840000e+02
velocidad1 -5.11402e-14 2.0 -2.5 6.479414e-14
TR7 TR8 TR9 TR10
ordenada 354.8 1.317000e+03 33284.6 -3742.6
velocidad1 1.0 -3.475548e-14 -52.0 8.0
TR11 TR12 TR13
ordenada 7.400000e+02 2205.4 -4542.6
velocidad1 -8.018585e-14 -2.5 8.0
TR14
ordenada 5.880000e+02
velocidad1 -4.406498e-14
dput(A)
structure(list(UT1 = c(1213.79999999971, 1.50000000000047), UT2 = c(2634.80000000021,
-2.50000000000033), UT3 = c(375.999999999959, 6.61595351840473e-14
), UT4 = c(-11080.8000000008, 20.0000000000013), UT5 = c(1711.80000000007,
-2.50000000000012), UT6 = c(1738.99999999997, 5.03954433109254e-14
), UT7 = c(18.0000000000006, -9.15434469010036e-16), UT8 = c(5659.20000000026,
-6.00000000000041), UT9 = c(-2791.00000000024, 5.00000000000039
), UT10 = c(3422.59999999968, -0.99999999999948), UT11 = c(418.199999999958,
-0.499999999999932), UT12 = c(2802.20000000017, -1.50000000000028
), UT13 = c(2831.99999999991, 1.40511433073812e-13), UT14 = c(-411.200000000294,
3.50000000000048), TR1 = c(-15722.0000000017, 25.5000000000028
), TR2 = c(-1105.40000000264, 25.0000000000043), TR3 = c(1146.00000000003,
-5.11402035568996e-14), TR4 = c(299.599999999803, 2.00000000000032
), TR5 = c(1943.40000000013, -2.50000000000021), TR6 = c(683.99999999996,
6.47941413997612e-14), TR7 = c(354.800000000011, 0.999999999999982
), TR8 = c(1317.00000000002, -3.47554781454658e-14), TR9 = c(33284.6000000025,
-52.000000000004), TR10 = c(-3742.60000000058, 8.00000000000094
), TR11 = c(740.00000000005, -8.0185853149896e-14), TR12 = c(2205.40000000021,
-2.50000000000034), TR13 = c(-4542.60000000042, 8.00000000000067
), TR14 = c(588.000000000027, -4.40649812201441e-14)), .Names = c("UT1",
"UT2", "UT3", "UT4", "UT5", "UT6", "UT7", "UT8", "UT9", "UT10",
"UT11", "UT12", "UT13", "UT14", "TR1", "TR2", "TR3", "TR4", "TR5",
"TR6", "TR7", "TR8", "TR9", "TR10", "TR11", "TR12", "TR13", "TR14"
), row.names = c("ordenada", "velocidad1"), class = "data.frame")
My goal is to get a barplot of the data in second row ( A[2,] ) splitting by group (UT which contains UT1,UT2... and TR) in the same graph. I am trying to do some ggplot but keep failing over and over again. I get no layers in plot error or margin error in base graphics.
The output should look like this
I KNOW the answer is in the reshape package but I wish there's another way to do that.
Thank you in advance.

Using base graphics:
# convert the one-row data frame to a two-row matrix
m <- matrix(unlist(df[2, ]), nrow = 2, byrow = TRUE)
# plot
barplot(m, beside = TRUE, col = c("blue", "red"), names.arg = seq_len(ncol(m)))
Possibly add a legend:
legend("topright", legend = c("UT", "TR"), fill = c("blue", "red"))

EDIT: Not using reshape per request in comments
library(ggplot2)
plot_data <- data.frame(names(A), t(A[2,]))
names(plot_data) <- c("variable", "value")
plot_data$group <- grepl("^TR", plot_data$variable)
plot_data$variable <- gsub("[^0-9]", "", as.character(plot_data$variable))
plot_data$variable <- factor(plot_data$variable,
unique(sort(as.numeric(plot_data$variable))))
p <- ggplot(aes(y = value, x = variable, fill = group), data = plot_data)
p + geom_bar(stat = "identity", position = "dodge")

Here is another option that incorporates your complete dataset. Not sure if this is usefull for you.
I've used reshape2, it's actually easier. You just have to melt(yourdataframe), for your particular case there is no need to specify anything else in the melt function arguments.
require("ggplot2")
require("reshape2")
A <- df
df1 <- melt(df[1,])
df1$origen <- "ORDENADA"
df2 <- melt(df[2,])
df2$origen <- "VELOCIDAD"
identical(df1$variable,df2$variable)
df3 <- rbind(df1,df2)
df3$group <- ifelse(grepl("^TR", df3$variable) == TRUE, "TR", "UT")
df3$vble <- gsub("[^0-9]", "", as.character(df3$variable))
df3$vble <- factor(df3$vble, levels = as.numeric(unique(df3$vble)))
ggplot(aes(y = value, x = vble, fill = group), data = df3) +
geom_bar(stat = "identity", position = "dodge") +
facet_grid(origen ~ ., scales = "free")
Using Functions
prepare <- function(data){
data1 <- melt(data[1,])
data1$origen <- "ORDENADA"
data2 <- melt(data[2,])
data2$origen <- "VELOCIDAD"
identical(data1$variable,data2$variable)
data3 <- rbind(data1,data2)
data3$group <- ifelse(grepl("^TR", data3$variable) == TRUE, "TR", "UT")
data3$vble <- gsub("[^0-9]", "", as.character(data3$variable))
data3$vble <- factor(data3$vble, levels = as.numeric(unique(data3$vble)))
return(data3)
}
prepare(df)
#This would work, but is a bit manual for many plots:
ggplot(aes(y = value, x = vble, fill = group), data = prepare(df)) +
geom_bar(stat = "identity", position = "dodge") +
facet_grid(origen ~ ., scales = "free")
plot_fun <- function(data){
p <- ggplot(data, aes_string(x = "vble", y = "value", fill = "group"))
p <- p + geom_bar(stat = "identity", position = "dodge")
p <- p + facet_grid(origen ~ ., scales = "free")
suppressWarnings(print(p))
}
plot_fun(prepare(df))
I guess you could loop in order to plot several data frames using the same plot function.
I guess you could probably addapt it more to your needs, but this can get you started

Related

loess() doesn't smooth subsequently but over pooled data

I have time-series of 2d obsverations that I'm trying to smooth to take out some of the observation variability. I've been applying loess(), but just noticed it doesn't seem to smooth as a function of time but just across the entire pooled coordinates. Am I missing something? Is there a different function I should be using?
df<-structure(list(timestamp = structure(c(1586488380, 1586488440,
1586488560, 1586488620, 1586488680, 1586488740, 1586488800, 1586488860,
1586489520, 1586489580, 1586489700, 1586489820, 1586489880, 1586489940,
1586490000, 1586490060, 1586490120, 1586490180, 1586490240, 1586490300,
1586490360, 1586490420, 1586490480, 1586490540, 1586490600, 1586490660,
1586490720, 1586490780, 1586490840, 1586490900, 1586490960, 1586491020,
1586491200, 1586491260, 1586491320, 1586491380, 1586491440, 1586491500,
1586491560, 1586491620, 1586491680, 1586491740, 1586491800, 1586491860,
1586491920, 1586491980, 1586492040, 1586492100, 1586492160, 1586492220,
1586492280, 1586492340, 1586492400, 1586492460, 1586492520, 1586492580,
1586492640, 1586492700, 1586492760, 1586492820, 1586492880, 1586492940,
1586493000, 1586493060, 1586493120, 1586493180, 1586493240, 1586493300,
1586493360, 1586493420, 1586493480, 1586493540, 1586493600, 1586493660,
1586493720, 1586493780, 1586493840, 1586493900, 1586493960, 1586494020,
1586494200, 1586494260, 1586494320, 1586494380, 1586494440, 1586494500,
1586494560, 1586494620, 1586494680, 1586494740, 1586494800, 1586494860,
1586494920, 1586494980, 1586495040, 1586495100, 1586495160, 1586495220,
1586495280, 1586495340, 1586495400, 1586495460, 1586495520, 1586495580,
1586495640, 1586495700, 1586495760, 1586495820, 1586495880, 1586495940,
1586496000, 1586496060, 1586496120, 1586496180, 1586496240, 1586496300,
1586496360, 1586496420, 1586496480, 1586496540, 1586496600, 1586496660,
1586496720, 1586496780, 1586496840, 1586496900, 1586496960, 1586497020,
1586497080, 1586497140, 1586497200, 1586497260, 1586497320, 1586497380,
1586497440, 1586497500, 1586497560, 1586497620, 1586497680, 1586497740,
1586497800, 1586497860, 1586497920, 1586497980, 1586498040, 1586498100,
1586498160, 1586498220, 1586498280, 1586498340), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), easting = c(740.582355718548, 740.582355718548,
739.726374785548, 739.611045841548, 739.508690311548, 739.398269506548,
739.278804356548, 739.627760514548, 737.913640733548, 738.088450601548,
738.551491861548, 738.957133488548, 739.137345557548, 739.304664573548,
739.460440784548, 739.605842807548, 739.741887116548, 739.719077482548,
739.369420509548, 738.973489249548, 738.521335985548, 739.279305656548,
739.993757669548, 740.085239162548, 740.172262825548, 740.255157063548,
740.334219013548, 740.409718260548, 740.481900024548, 740.550987811548,
740.573883125548, 740.252267406548, 739.261723439548, 738.935233921548,
738.774921432548, 738.615895069548, 738.451107559548, 738.280235586548,
738.493740162548, 738.717501067548, 738.925752666548, 739.120074872548,
739.301840012548, 739.472245999548, 739.632343117548, 739.890965132548,
740.098495936548, 740.293354354548, 740.476683179548, 740.649491986548,
740.678160672548, 740.443560695548, 740.398855065548, 740.451032168548,
740.467918582548, 740.160041067548, 739.819912921548, 739.641686751548,
739.457020461548, 739.265544595548, 739.193281488548, 739.227252654548,
738.995761471548, 738.822890745548, 738.775446949548, 738.726816309548,
738.676941805548, 738.625762928548, 739.254178659548, 739.727445331548,
740.019566884548, 740.129316037548, 740.255273807548, 740.442527947548,
740.615257127548, 740.775140223548, 740.923607252548, 741.055065964548,
741.139279130548, 740.907234314548, 739.290829342548, 739.115359714548,
740.664354207548, 740.589899151548, 740.578913554548, 740.571708783548,
740.568311076548, 740.568740893548, 740.527920123548, 740.358565457548,
740.392277156548, 740.370981239548, 740.289917518548, 740.214089159548,
740.192635592548, 740.176850935548, 740.160315351548, 740.143068630548,
740.103174446548, 740.008327647548, 740.058271768548, 740.205384482548,
740.211048172548, 740.150159818548, 740.122028309548, 740.230164637548,
740.271076846548, 740.075087486548, 739.768752873548, 739.586722485548,
739.940259334548, 740.233576255548, 740.473614136548, 740.495703912548,
740.341935547548, 740.186820856548, 740.204435025548, 740.299218490548,
740.318343269548, 740.238895133548, 739.999671854548, 740.062183564548,
740.196345466548, 740.329697802548, 740.418193609548, 740.311257937548,
740.270203214548, 740.209679752548, 740.146590442548, 740.079785501548,
740.170176300548, 740.268945921548, 740.217498771548, 740.133923060548,
740.117921377548, 740.177771453548, 740.140658663548, 740.080204534548,
740.108449333548, 740.145621912548, 740.182429420548, 740.010376475548,
739.819150336548, 739.616854492548, 739.369690457548, 739.104183601548,
738.938020260548, 738.843359187548, 738.802644324548, 738.761524527548
), northing = c(2307.15134120986, 2307.15134120986, 2307.60836846986,
2307.72110371186, 2307.83015111886, 2307.94605545486, 2308.06963872386,
2307.94323643186, 2308.11539257586, 2307.98516105286, 2307.67209087786,
2307.39795736686, 2307.27544716286, 2307.16124100486, 2307.05447137086,
2306.95438746086, 2306.86033624586, 2306.85049579286, 2307.02449397686,
2307.22230535086, 2307.44905018086, 2306.99878407786, 2306.57790074586,
2306.51052483586, 2306.44607531386, 2306.38433869586, 2306.32512182186,
2306.26824947086, 2306.21356227886, 2306.16091500786, 2306.12077142386,
2306.17964098286, 2306.35042514386, 2306.42512419786, 2306.46180283886,
2306.49818722086, 2306.53588972286, 2306.57498431686, 2306.47587680786,
2306.37665531786, 2306.28431106486, 2306.19814347186, 2306.11754401386,
2306.04198150286, 2305.97099021786, 2305.88981694586, 2305.83737042086,
2305.78847203986, 2305.74280289286, 2305.70008126986, 2305.72436278986,
2305.79211047386, 2305.75001607586, 2305.66373079386, 2305.59454921786,
2305.66723079486, 2305.74826733386, 2305.75631243686, 2305.76412484986,
2305.77169383886, 2305.76318962486, 2305.74988901286, 2305.84052390686,
2305.91140100786, 2305.95786180686, 2306.00518488486, 2306.05340722986,
2306.10256811686, 2305.87083530186, 2305.67745118186, 2305.55808577486,
2305.51324056486, 2305.46177226186, 2305.38525730986, 2305.31467748186,
2305.24934676386, 2305.18868082786, 2305.13496475486, 2305.08628958686,
2305.07937405386, 2305.33244795286, 2305.26640414086, 2304.97847050686,
2304.88865807586, 2304.78121096686, 2304.67333694586, 2304.56517670086,
2304.45687199986, 2304.26299422086, 2303.81398617786, 2303.81772073686,
2303.82576399386, 2303.82937144386, 2303.85166918186, 2303.85679798586,
2303.85841996086, 2303.85934299186, 2303.85962745886, 2303.81418344986,
2303.71268455886, 2303.70396413486, 2303.71187848686, 2303.71241867586,
2303.72409686386, 2303.75626565486, 2303.81432053886, 2303.80604508386,
2303.57280991386, 2303.21896587386, 2303.06912105986, 2303.28351126486,
2303.45378473786, 2303.49375232686, 2303.50460433986, 2303.48302188886,
2303.48174695086, 2303.52692291386, 2303.61686633486, 2303.41139580686,
2303.32679365886, 2303.06984393086, 2303.15017783486, 2303.29293566086,
2303.44528532286, 2303.48203523086, 2302.89274879786, 2302.81440275486,
2302.73512963586, 2302.65410710886, 2302.56757728186, 2302.77320543086,
2303.00846800486, 2303.01932301786, 2302.97477011386, 2303.03742546386,
2303.13970331386, 2303.07628123386, 2302.97297111586, 2303.02123867886,
2303.08476293486, 2303.14766331986, 2303.17026860886, 2303.18249014186,
2303.19025912386, 2303.15218828686, 2303.11064943486, 2302.98849464786,
2302.87632040886, 2302.82807292386, 2302.77934558786)), row.names = 5905:6054, class = "data.frame")
df.fitted<-loess(northing ~ easting, span = .5, data = df)
df$northing.fitted<-df.fitted$fitted
ggplot(df, aes(x=easting,y=northing)) +
geom_path(color='orangered2') +
geom_point(aes(y=northing.fitted))
So, instead of smoothing the "cluster", I'd like to use a rolling average smoothing each x/y pair as a function of time.
You need to regress both easting and northing as functions of time to get smoother x, y values:
df$numtime <- as.numeric(df$timestamp)
df.fitted.northing <-loess(northing ~ numtime, span = .5, data = df)
df.fitted.easting <- loess(easting ~ numtime, span = .5, data = df)
newdat <- data.frame(numtime = seq(min(df$numtime), max(df$numtime), len = 1000))
newdat$northing <- predict(df.fitted.northing, newdat)
newdat$easting <- predict(df.fitted.easting, newdat)
ggplot(df, aes(easting, northing)) +
geom_path(aes(color = "original path"), alpha = 0.6, size = 0.5,
arrow = arrow(length = unit(0.1, "inches"))) +
geom_point(aes(color = "original path"), alpha = 0.6, size = 1) +
geom_path(data = newdat, size = 1, aes(color = "smoothed"),
arrow = arrow(length = unit(0.1, "inches"))) +
coord_equal() +
theme_light() +
scale_color_manual(values = c("original path" = "orangered2",
"smoothed" = "deepskyblue4"), name = "")

How to add additional statistics on top of a combined ggplot2 graph that uses a multi-variable object or two separate objects

I have a ggplot2 graph which plots two separate violin plots onto one graph, given by this example (thanks to #jared_mamrot for providing it):
library(tidyverse)
data("Puromycin")
head(Puromycin)
dat1 <- Puromycin %>%
filter(state == "treated")
dat2 <- Puromycin %>%
filter(state == "untreated")
mycp <- ggplot() +
geom_violin(data = dat1, aes(x= state, y = conc, colour = "Puromycin (Treatment1)")) +
geom_violin(data = dat2, aes(x= state, y = conc, colour = "Puromycin (Treatment2)"))
mycp
I would like to add a boxplot or other summary statistics such as those in http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization and https://www.maths.usyd.edu.au/u/UG/SM/STAT3022/r/current/Misc/data-visualization-2.1.pdf, but trying the code suggested in those places does not change the original plot.
mycp + geom_boxplot()
Thanks for reading and hopefully this makes sense!
UPDATE ==========================================================================
So the above example does not reflect exactly my situation I realize now. Essentially, I want to apply statistics onto a combined ggplot2 graph that uses two separate objects as its variables (here TNBC_List1 and ER_List1) Here is an example that does (sorry for the longer example, I will admit I am having trouble creating a simpler reproducible example and I am very new to coding in general):
# Libraries -------------------------------------------------------------
library(BiocManager)
library(GEOquery)
library(plyr)
library(dplyr)
library(Matrix)
library(devtools)
library(Seurat)
library(ggplot2)
library(cowplot)
library(SAVER)
library(metap)
library(multtest)
# Loading Raw Data into RStudio ----------------------------------
filePaths = getGEOSuppFiles("GSE75688")
tarF <- list.files(path = "./GSE75688/", pattern = "*.tar", full.names = TRUE)
tarF
untar(tarF, exdir = "./GSE75688/")
gzipF <- list.files(path = "./GSE75688/", pattern = "*.gz", full.names = TRUE)
ldply(.data = gzipF, .fun = gunzip)
list.files(path = "./GSE75688/", full.names = TRUE)
list.files(path = "./GSE75688/", pattern = "\\.txt$",full.names = TRUE)
# full matrix ----------------------------------------------------------
fullmat <- read.table(file = './GSE75688//GSE75688_GEO_processed_Breast_Cancer_raw_TPM_matrix.txt',
sep = '\t', header = FALSE, stringsAsFactors = FALSE)
fullmat <- data.frame(fullmat[,-1], row.names=fullmat[,1])
colnames(fullmat) <- as.character(fullmat[1, ])
fullmat <- fullmat[-1,]
fullmat <- as.matrix(fullmat)
# BC01 ER+ matrix -----------------------------------------------------------
BC01mat <- grep(pattern =c("^BC01") , x = colnames(fullmat), value = TRUE)
BC01mat = fullmat[,grepl(c("^BC01"),colnames(fullmat))]
BC01mat = BC01mat[,!grepl("^BC01_Pooled",colnames(BC01mat))]
BC01mat = BC01mat[,!grepl("^BC01_Tumor",colnames(BC01mat))]
BC01pdat <- data.frame("samples" = colnames(BC01mat), "treatment" = "ER+")
# BC07 TNBC matrix -----------------------------------------------------------
BC07mat <- grep(pattern =c("^BC07") , x = colnames(fullmat), value = TRUE)
BC07mat <- fullmat[,grepl(c("^BC07"),colnames(fullmat))]
BC07mat <- BC07mat[,!grepl("^BC07_Pooled",colnames(BC07mat))]
BC07mat <- BC07mat[,!grepl("^BC07_Tumor",colnames(BC07mat))]
BC07mat <- BC07mat[,!grepl("^BC07LN_Pooled",colnames(BC07mat))]
BC07mat <- BC07mat[,!grepl("^BC07LN",colnames(BC07mat))]
BC07pdat <- data.frame("samples" = colnames(BC07mat), "treatment" = "TNBC")
#merge samples together =========================================================================
joined <- cbind(BC01mat, BC07mat)
pdat_joined <- rbind(BC01pdat, BC07pdat)
#fdat ___________________________________________________________________________________
fdat <- grep(pattern =c("gene_name|gene_type") , x = colnames(fullmat), value = TRUE)
fdat <- fullmat[,grepl(c("gene_name|gene_type"),colnames(fullmat))]
fdat <- as.data.frame(fdat, stringsAsFactors = FALSE)
fdat <- setNames(cbind(rownames(fdat), fdat, row.names = NULL),
c("ensembl_id", "gene_short_name", "gene_type"))
rownames(pdat_joined) <- pdat_joined$samples
rownames(fdat) = make.names(fdat$gene_short_name, unique=TRUE)
rownames(joined) <- rownames(fdat)
# Create Seurat Object __________________________________________________________________
joined <- as.data.frame(joined)
sobj_pre <- CreateSeuratObject(counts = joined)
sobj_pre <-AddMetaData(sobj_pre,metadata=pdat_joined)
head(sobj_pre#meta.data)
#gene name input
sobj_pre[["RNA"]]#meta.features<-fdat
head(sobj_pre[["RNA"]]#meta.features)
#Downstream analysis -------------------------------------------------------
sobj <- sobj_pre
sobj <- FindVariableFeatures(object = sobj, mean.function = ExpMean, dispersion.function = LogVMR, nfeatures = 2000)
sobj <- ScaleData(object = sobj, features = rownames(sobj), block.size = 2000)
sobj <- RunPCA(sobj, npcs = 100, ndims.print = 1:10, nfeatures.print = 5)
sobj <- FindNeighbors(sobj, reduction = "pca", dims = 1:4, nn.eps = 0.5)
sobj <- FindClusters(sobj, resolution = 1, n.start = 10)
umap.method = 'umap-learn'
metric = 'correlation'
sobj <- RunUMAP(object = sobj, reduction = "pca", dims = 1:4,min.dist = 0.5, seed.use = 123)
p0 <- DimPlot(sobj, reduction = "umap", pt.size = 0.1,label=TRUE) + ggtitle(label = "Title")
p0
# ER+ score computation -------------------
ERlist <- list(c("CPB1", "RP11-53O19.1", "TFF1", "MB", "ANKRD30B",
"LINC00173", "DSCAM-AS1", "IGHG1", "SERPINA5", "ESR1",
"ILRP2", "IGLC3", "CA12", "RP11-64B16.2", "SLC7A2",
"AFF3", "IGFBP4", "GSTM3", "ANKRD30A", "GSTT1", "GSTM1",
"AC026806.2", "C19ORF33", "STC2", "HSPB8", "RPL29P11",
"FBP1", "AGR3", "TCEAL1", "CYP4B1", "SYT1", "COX6C",
"MT1E", "SYTL2", "THSD4", "IFI6", "K1AA1467", "SLC39A6",
"ABCD3", "SERPINA3", "DEGS2", "ERLIN2", "HEBP1", "BCL2",
"TCEAL3", "PPT1", "SLC7A8", "RP11-96D1.10", "H4C8",
"PI15", "PLPP5", "PLAAT4", "GALNT6", "IL6ST", "MYC",
"BST2", "RP11-658F2.8", "MRPS30", "MAPT", "AMFR", "TCEAL4",
"MED13L", "ISG15", "NDUFC2", "TIMP3", "RP13-39P12.3", "PARD68"))
sobj <- AddModuleScore(object = sobj, features = ERlist, name = "ER_List")
#TNBC computation -------------------
tnbclist <- list(c("FABP7", "TSPAN8", "CYP4Z1", "HOXA10", "CLDN1",
"TMSB15A", "C10ORF10", "TRPV6", "HOXA9", "ATP13A4",
"GLYATL2", "RP11-48O20.4", "DYRK3", "MUCL1", "ID4", "FGFR2",
"SHOX2", "Z83851.1", "CD82", "COL6A1", "KRT23", "GCHFR",
"PRICKLE1", "GCNT2", "KHDRBS3", "SIPA1L2", "LMO4", "TFAP2B",
"SLC43A3", "FURIN", "ELF5", "C1ORF116", "ADD3", "EFNA3",
"EFCAB4A", "LTF", "LRRC31", "ARL4C", "GPNMB", "VIM",
"SDR16C5", "RHOV", "PXDC1", "MALL", "YAP1", "A2ML1",
"RP1-257A7.5", "RP11-353N4.6", "ZBTB18", "CTD-2314B22.3", "GALNT3",
"BCL11A", "CXADR", "SSFA2", "ADM", "GUCY1A3", "GSTP1",
"ADCK3", "SLC25A37", "SFRP1", "PRNP", "DEGS1", "RP11-110G21.2",
"AL589743.1", "ATF3", "SIVA1", "TACSTD2", "HEBP2"))
sobj <- AddModuleScore(object = sobj, features = tnbclist, name = "TNBC_List")
#ggplot2 issue ----------------------------------------------------------------------------
sobj[["ClusterName"]] <- Idents(object = sobj)
sobjlists <- FetchData(object = sobj, vars = c("ER_List1", "TNBC_List1", "ClusterName"))
library(reshape2)
melt(sobjlists, id.vars = c("ER_List1", "TNBC_List1", "ClusterName"))
p <- ggplot() + geom_violin(data = sobjlists, aes(x= ClusterName, y = ER_List1, fill = ER_List1, colour = "ER+ Signature"))+ geom_violin(data = sobjlists, aes(x= ClusterName, y = TNBC_List1, fill = TNBC_List1, colour="TNBC Signature"))
Extension ======================================================================
If you want to do this but with two objects (sobjlists1 and sobjlists2, for example) instead of what my example showed (two variables but one object), rbind the two and then do what #StupidWolf says
library(reshape2)
sobjlists1= melt(sobjlists1, id.vars = "treatment")
sobjlists2= melt(sobjlists2, id.vars = "treatment")
combosobjlists <- rbind(sobjlists1, sobjlists2)
and then continue on with their code using combosobjlists:
ggplot(combosobjlists,aes(x= ClusterName, y = value)) +
geom_violin(aes(fill=variable)) +
geom_boxplot(aes(col=variable),
width = 0.2,position=position_dodge(0.9))
Hope this thread helps!
Try to include just the minimum code to show your problem. Like in your example, there's no need to start with the whole seurat processing. You can just provide the data.frame with dput() and we can see the issue with ggplot2 , see this post.
Create some example data:
library(Seurat)
library(ggplot2)
genes = c(unlist(c(ERlist,tnbclist)))
mat = matrix(rnbinom(500*length(genes),mu=500,size=1),ncol=500)
rownames(mat) = genes
colnames(mat) = paste0("cell",1:500)
sobj = CreateSeuratObject(mat)
sobj = NormalizeData(sobj)
Add some made-up cluster:
sobj$ClusterName = factor(sample(0:1,ncol(sobj),replace=TRUE))
Add your module score:
sobj = AddModuleScore(object = sobj, features = tnbclist,
name = "TNBC_List",ctrl=5)
sobj = AddModuleScore(object = sobj, features = ERlist,
name = "ER_List",ctrl=5)
We get the data, what you need to do is to pivot it long correctly. Plotting it twice with ggplot2 is going to cause all kinds of problem:
sobjlists = FetchData(object = sobj, vars = c("ER_List1", "TNBC_List1", "ClusterName"))
head(sobjlists)
ER_List1 TNBC_List1 ClusterName
cell1 -0.05391108 -0.008736057 1
cell2 0.07074816 -0.039064126 1
cell3 0.08688374 -0.066967324 1
cell4 -0.12503649 0.120665057 0
cell5 0.05356685 -0.072293651 0
cell6 -0.20053804 0.178977042 1
Should look like this:
library(reshape2)
sobjlists = melt(sobjlists, id.vars = "ClusterName")
ClusterName variable value
1 1 ER_List1 -0.05391108
2 1 ER_List1 0.07074816
3 1 ER_List1 0.08688374
4 0 ER_List1 -0.12503649
5 0 ER_List1 0.05356685
6 1 ER_List1 -0.20053804
Now we plot:
ggplot(sobjlists,aes(x= ClusterName, y = value)) +
geom_violin(aes(fill=variable)) +
geom_boxplot(aes(col=variable),
width = 0.2,position=position_dodge(0.9))
for you to be able to use the data within a plot without specifying it (like geom_boxplot() ), you need to put the data in the ggplot() function call. Then the following functions are able to inherit them.
You also do not need an extra violin plot per color
library(tidyverse)
data("Puromycin")
head(Puromycin)
mycp <- ggplot(Puromycin,aes(x= state, y = conc, colour=state))+geom_violin()
mycp + geom_boxplot(width=0.1, color= "black") +
scale_color_discrete(
labels= c("Puromycin (Treatment1)","Puromycin (Treatment2)")
)
Result:

More than one expression parsed error ggplot2

I have the following data frame:
df.test <- data.frame(
id = c("EIF3H", "USP9X", "USP44", "USP51", "USP15",
"USP48", "USP47", "USP43", "USPL1", "UCHL5", "USP50", "USP7",
"UCHL1", "USP11", "USP26", "PAN2", "VCPIP1", "USP46", "USP29",
"USP22", "USP49", "ZRANB1", "OTUD4", "OTUD7B", "USP54", "PSMD14",
"USP20", "USP6", "OTUD3", "USP39", "UCHL3", "USP19", "USP21",
"USP30", "TNFAIP3", "USP17L2", "USP32", "JOSD2", "PSMD7", "ATXN3L",
"SENP2", "STAMBPL1", "USP37", "USP35", "USP3", "ALG13", "USP45",
"Control", "USP9Y", "ATXN3", "OTUD6A", "USP42", "USP12", "MPND",
"USP40", "OTUD1", "USP31", "USP8", "USP13", "USP53", "USP34",
"USP17L5", "MYSM1", "USP36", "OTUD7A", "USP10", "USP2", "USP18",
"OTUB1", "EIF3F", "USP1", "USP14", "COPS5", "USP24", "USP4",
"CYLD", "COPS6", "STAMBP", "USP5", "OTUD6B", "BAP1", "USP25",
"YOD1", "USP28", "USP38", "USP41", "JOSD1", "UCK2", "USP16",
"USP27X", "BRCC3", "USP33", "OTUD5", "OTUB2"),
log.score = c(4.22265293851218, 3.03983376346562,
2.4139305569695, 2.32586482009754, 2.30391458369018, 2.19017103893211,
2.10803347738743, 2.10011933499842, 1.82596928196197, 1.79890343496053,
1.78330640083025, 1.58384231036782, 1.4480988629484, 1.4331502122056,
1.41965675282741, 1.37552194849409, 1.37548070593268, 1.3126672736385,
1.27123241483349, 1.25213781606166, 1.1643918571801, 1.14738583497561,
1.0423927129399, 1.03157776352028, 1.0279685056071, 0.953426802337995,
0.94104282122269, 0.929925173732472, 0.886424283199432, 0.886123467368948,
0.815961921373111, 0.811437095842094, 0.767054687254773,
0.754314635766764, 0.750654863646671, 0.728646377897516,
0.707899061519581, 0.703532261199885, 0.692546751828376,
0.684554481775416, 0.652104306506768, 0.642046105413661,
0.630116510664521, 0.62908000782908, 0.619354680809075, 0.614876544107784,
0.61293067306798, 0.606898831140113, 0.603504247802433, 0.578642901486857,
0.576246380387172, 0.549612309171809, 0.53101794103743, 0.513442014568548,
0.506304999011214, 0.492144128304169, 0.462596515841992,
0.454185884038717, 0.450163300207299, 0.434529992991809,
0.429725658566606, 0.42864060724616, 0.419896514762075, 0.409715596281838,
0.365946146577929, 0.363963683646553, 0.357614629472314,
0.352851847129221, 0.343470593766502, 0.313051079788499,
0.304614649499993, 0.291604597354374, 0.287030586811975,
0.272263598289704, 0.27175988000523, 0.265200170411153, 0.264528852761016,
0.244704590019742, 0.179680291853473, 0.154102353851514,
0.147800680553723, 0.127575655021633, 0.126051956011554,
0.1207205737776, 0.118712371231544, 0.11046860245595, 0.0939775902962627,
0.0673791277640148, 0.066320409857141, 0.0582650179118847,
0.0548860857591892, 0.0374554663486737, 0.0147532091971383,
0.0134163514896924),
neg.rank = 1:94)
From this data frame I made this plot:
library(ggplot2)
x <- "neg.rank"
p <- ggplot(df.test, aes_string(x = x, y = df.test$log.score)) +
geom_point()
I want to add labels to the top10 ids and I tried the following:
library(ggrepel)
library(dplyr)
p + geom_label_repel(data = df.test[df.test[[x]] %in% 1:10, ], aes_string(x = x, y = df$log.score, label = df.test$id))
But this gives me a More than one expression parsed error:
More than one expression parsed
Backtrace:
█
1. ├─ggrepel::geom_label_repel(...)
2. │ └─ggplot2::layer(...)
3. └─ggplot2::aes_string(x = x, y = df$log.score, label = df.test$id)
4. └─base::lapply(...)
5. └─ggplot2:::FUN(X[[i]], ...)
6. └─rlang::parse_expr(x)
I have no clue what is wrong with the code.
It is not working as you are inserting the vectors directly into your aes_string.
If you want yours to be working you need to be strict with your aes_string and really should only use strings:
p +
geom_label_repel(
data = df.test[df.test[[x]] %in% 1:10, ],
aes_string(x = x, y = "log.score", label = "id"),
)
I also added a "cleaner" solution. I changed your subsetting logic to use dplyr, as you are already loading the package anyway and changed all your aes_string() to aes().
library(ggplot2)
library(ggrepel)
library(dplyr)
ggplot(df.test, aes(x = neg.rank, y = log.score)) +
geom_point() +
geom_label_repel(
data = df.test %>% slice_min(neg.rank, n = 10),
aes(label = id),
max.overlaps = 10,
xlim = c(10, NA),
ylim = c(3, NA),
direction = "x"
)
Cheers
Hannes

I want to plot a line over four bargraphs of data in ggplot using geom_line.

I keep getting an error becasue the bargraphs are used for quaterly data and the line is going to be data from the entire year so it will have many points.
The only issue is with the geom_line function which I am new to using. The error is -->
Error in scale_fill_manual(values = c("green", "yellow")) + geom_line(aes(x = dts2, : non-numeric argument to binary operator
t="DG"
fin=getFinancials(t, auto.assign = F)
dts = labels(fin$BS$A)[[2]]
dts2 = paste(substr(dts,1,7),"::",dts, sep="")
stockprices = getSymbols(t, auto.assign = F)
price = rep(0,NROW(dts))
for(i in 1:NROW(price))
{
price[i]=as.vector(last(stockprices[dts2[i],6]))
}
yr= as.numeric(substr(dts,1,4))
pastyr = yr -2
betayr = paste(pastyr,"::",yr,sep="")
os = fin$BS$A["Total Common Shares Outstanding", ]
gw= fin$BS$A["Goodwill, Net", ]
ta= fin$BS$A["Total Assets", ]
td= fin$BS$A["Total Debt", ]
ni= fin$IS$A["Net Income", ]
btax = fin$IS$A["Income Before Tax", ]
atax = fin$IS$A["Income After Tax",]
intpaid = fin$CF$A["Cash Interest Paid, Supplemental",]
gw[is.na(gw)]=0
intpaid[is.na(intpaid)]=0
taa = (ta - gw)/os
Rd = rep(0,NROW(dts))
for(i in 1:NROW(dts))
{
if(td[i]!=0)
{
Rd[i] = intpaid[i]/td[i]
}
}
gspc = getSymbols("^GSPC", auto.assign = F)
gs5 = getSymbols("GS5", src = "FRED", auto.assign = F)
marketRisk = rep(0,NROW(dts))
riskFree = rep(0,NROW(dts))
beta = rep(0,NROW(dts))
for(i in 1:NROW(dts))
{
marketRisk[i]= mean(yearlyReturn(gspc[betayr[i]]))
riskFree[i] = mean(gs5[betayr[i]])
gspc.weekly = weeklyReturn(gspc[betayr[i]])
stockprices.weekly = weeklyReturn(stockprices[betayr[i]])
beta[i] = CAPM.beta(stockprices.weekly,gspc.weekly)
}
Re = (riskFree/100) + beta * (marketRisk-(riskFree/100))
E = os*price
V=E+td
Tc = (btax - atax)/btax
wacc = (E/V)*Re + (td/V)*Rd*(1-Tc)
margin = (ni/wacc)/os - taa
taadf = data.frame(dts,val = taa,cat="ta")
margindf = data.frame(dts,val = margin ,cat="margin")
mdf=rbind(margindf,taadf)
#linrng = paste(dts[NROW(dts)],"::",dts[1],sep="")
#dfdt = data.frame(stockprices[linrng,6])
#dfdt2 = data.frame(dt = labels(dfdt)[[1]],dfdt$AAPL.Adjusted,cat="taa")
#names(dfdt2)=c("dt,price,cat")
pricedf = data.frame(as.vector((stockprices[dts2[i],6])))
ggplot(mdf, aes(x=dts,y=val,fill=cat)) + geom_bar(stat="identity",color="black")
scale_fill_manual(values = c("green","yellow")) +
geom_line(aes(x=dts2, y=stockprices), stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE)
Note, the object stockprices is An ‘xts’ object. So, you can't use inside ggplot scale. I picked the fist variable of stockprices object to show the code, but you probabli want another one.
library(dplyr)
library(quantmod)
library(PerformanceAnalytics)
library(ggplot2)
stockprices_df <- as.data.frame(stockprices) %>%
mutate(date = rownames(.)) %>%
filter(date %in% dts)
ggplot() +
geom_col(
data = mdf,
aes(x = dts,y = val,fill = cat)
) +
geom_line(
data = stockprices_df,
aes(x = date, y = DG.Open, group = 1 )
) +
scale_fill_manual(values = c("green","yellow"))
[

data of class numeric error when plotting vertical and horizontal lines in ggplot

iarray <- iv$iarray
varray <- iv$varray
n<-gsub("^\\{+(.+)\\}+$", '\\1', iarray)
n1 <- strsplit(n,",")
n1 <- unlist(n1)
n1 <- as.numeric(n1)
df <- as.data.frame(n1)
n<-gsub("^\\{+(.+)\\}+$", '\\1', varray)
n2 <- strsplit(n,",")
n2 <- unlist(n2)
n2 <- as.numeric(n2)
df <- cbind(df,n2)
vmpp <-iv$vmpp
impp <- iv$impp
print(impp)
print(vmpp)
})
output$ivcurve <- renderPlot({
ggplot(data3(), aes(x=n2, y= n1)) + geom_line(colour='blue')+ geom_vline(xintercept = vmpp)+ geom_hline(yintercept = impp) + scale_y_continuous(limits = c(-1, 11))
Basically I'm trying to draw an IV curve from the above code.
As seen in the photo I need a horizontal and a vertical line.
But after I added the geom_vline function it gives me the Error : ggplot2 doesn't know how to deal with data of class numeric
iv is a dataframe and iarray and varray basically looks like this.
iarray = "{9.467182035,9.252423958,9.179368178,9.142931845}"
varray = "{-1.025945126,-0.791203874,-0.506481774,-0.255416444}"
And vmpp and impp are basically numbers as 8.5 and 20
suggestions?
P.s :
dput(iv)
structure(list(id = 3L, seris_id = "SERTPTR0003", module_id = 2L,
isc = 9.1043, voc = 37.61426, impp = 8.524, vmpp = 30.0118,
pmpp = 255.8095, unique_halm_id = 4414L, iarray = "{9.471385758,9.251831868,9.174032904,9.135095327,9.109244512,9.087563112,9.081257993,9.079282455,9.078209387,9.077396672,9.076717653,9.076285598,9.075914058,9.075549594,9.075098675,9.074659768,9.074080201,9.073659578,9.073411255,9.073349331,9.073215686,9.073189667,9.073011759,9.072868405,9.072659064,9.072636165,9.072659725,9.072729724,9.072779321,9.072915415,9.072951718,9.072855259,9.072758863,9.072562734,9.072286497,9.072036161,9.071858009,9.07165223,9.071458902,9.071172024,9.070818323,9.070364851,9.069865071,9.069392026,9.069058847,9.068673155,9.068486996,9.0684006,9.068241175,9.067848351,9.067533806,9.066886103,9.066177782,9.0655086,9.065025577,9.064457111,9.064154995,9.063866251,9.063564149,9.063221961,9.06295813,9.062580288,9.062182005,9.06179715,9.061378517,9.060847632,9.06033015,9.059686156,9.058814993,9.057817299,9.056732355,9.055534236,9.054389596,9.05351149,9.052819766,9.052254696,9.051816304,9.051431465,9.051000987,9.050664797,9.050589584,9.050615635,9.050795719,9.051096084,9.05121704,9.050958132,9.050478383,9.049724325,9.048695951,9.047619756,9.046715916,9.04602525,9.045615278,9.045512729,9.045617691,9.045803509,9.045989974,9.046083526,9.045997615,9.045871618,9.045772357,9.045599926,9.045340971,9.045082036,9.04473025,9.044178732,9.043440888,9.042642632,9.04185002,9.041056695,9.040316091,9.039781509,9.039426971,9.039199774,9.039026035,9.038805897,9.038478843,9.037978051,9.037190302,9.036262611,9.035408047,9.034687132,9.03411323,9.033759457,9.033445779,9.033105372,9.032611665,9.031991392,9.031298017,9.030631384,9.029991493,9.02931152,9.028518372,9.027678053,9.026644378,9.025384369,9.023971135,9.022443918,9.020510444,9.018469233,9.015987042,9.013123551,9.009951782,9.006524239,9.002508657,8.99806541,8.993200713,8.987509287,8.980851319,8.97337198,8.964883202,8.955065215,8.944015742,8.931773812,8.91796823,8.902911552,8.886450605,8.868452754,8.848678419,8.827119435,8.80336248,8.777313996,8.748941051,8.718309497,8.685225063,8.649388501,8.610785476,8.569040812,8.52363426,8.474699468,8.422382481,8.366516735,8.307103187,8.244481209,8.178090447,8.10779633,8.033345875,7.954744415,7.871665908,7.784296593,7.692116999,7.595199333,7.493377787,7.386704971,7.275055109,7.158981607,7.038484468,6.913650942,6.784728642,6.651977027,6.515069048,6.374111623,6.228897233,6.079031999,5.924669253,5.766323899,5.604063459,5.43841477,5.26939121,5.096619936,4.919752772,4.738936722,4.554312451,4.366039658,4.174017769,3.978461295,3.779470133,3.576724216,3.370764477,3.162238756,2.951119622,2.737359938,2.521133452,2.302407806,2.08132299,1.858467726,1.632539296,1.397202225,1.149523324,0.890812319,0.62251893,0.349040094,0.084409259,-0.164612445,-0.4001423,-0.625408177,-0.844927296,-1.067373925,-1.297998987,-1.536777099,-1.782558235,-2.033692207,-2.28906274,-2.54694712,-2.806836154,-3.068463186,-3.331653821,-3.596227332,-3.862303417,-4.129421924,-4.397321356,-4.666082505,-4.935632162,-5.206170796,-5.478105728,-5.751638617,-6.027203502,-6.304753878,-6.584235675,-6.865027697,-7.146774939,-7.428922534,-7.711971427,-7.995982555,-8.281623641,-8.569128828,-8.85847189,-9.14887768,-9.440152159,-9.731968139,-10.02382391,-10.315645796,-10.608918155,-10.906228043,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}",
varray = "{-1.055634971,-0.820094649,-0.530478984,-0.277519378,-0.049665975,0.168173928,0.369832037,0.557189853,0.73806136,0.918444007,1.100988955,1.285835111,1.471379381,1.656087228,1.83947039,2.021804885,2.204138782,2.387586314,2.572217234,2.757544476,2.943083961,3.127927125,3.311936258,3.49497066,3.677517995,3.860273388,4.043516446,4.227247167,4.411953813,4.597148124,4.781785019,4.965795342,5.149247651,5.331933288,5.514618924,5.698279889,5.882706331,6.067759345,6.253369179,6.43883951,6.623542572,6.807967224,6.991834459,7.175283184,7.359219574,7.543715171,7.727930567,7.91102934,8.092315166,8.270881273,8.44728269,8.622987785,8.800575578,8.981370755,9.16634984,9.355446065,9.546982405,9.738937256,9.930334092,10.119987137,10.30698723,10.492242934,10.676242509,10.859335313,11.042009008,11.224684494,11.40735998,11.589966311,11.77250289,11.955040067,12.138134659,12.321927365,12.506347836,12.691464628,12.877626501,13.06357852,13.248553416,13.432761044,13.616063692,13.798391012,13.981067688,14.165071441,14.350401073,14.536497974,14.722526917,14.907441627,15.090542195,15.272247132,15.453463208,15.634886746,15.817842429,16.00302897,16.188982779,16.375285347,16.561309505,16.745870074,16.92840904,17.110739948,17.293002899,17.47610287,17.660388619,17.84523298,18.029659429,18.213737119,18.397257992,18.580849811,18.765279846,18.950546303,19.136368979,19.322329963,19.507382979,19.691527431,19.874834264,20.057444179,20.239565832,20.422106592,20.605414621,20.789699174,20.974891096,21.161129891,21.347647095,21.533745789,21.718937711,21.903640773,22.087576567,22.271163603,22.454611733,22.638548722,22.822346805,23.006144888,23.189873219,23.373392294,23.556911967,23.740989056,23.925624756,24.110540657,24.296084919,24.481558832,24.666267268,24.850416495,25.034286715,25.217528572,25.400211222,25.582891485,25.765153238,25.947554494,26.130303912,26.31319522,26.495810505,26.678077627,26.859158373,27.03919344,27.2183891,27.396813913,27.574889968,27.752475972,27.92950277,28.106320312,28.283627309,28.460794206,28.638101203,28.814990286,28.99097379,29.16472524,29.336732302,29.506996765,29.675866194,29.843757906,30.011789121,30.179820337,30.347501601,30.514694006,30.680631478,30.844614709,31.006505389,31.166790586,31.32526224,31.482546323,31.638644628,31.793695462,31.947491958,32.10059034,32.252713392,32.40427843,32.555147743,32.705110284,32.853817294,33.001129867,33.14656034,33.29010692,33.431979459,33.572526716,33.711957348,33.85055096,33.988306953,34.125295678,34.260890565,34.395089819,34.528311952,34.660559355,34.792040088,34.923102908,35.053748414,35.1835569,35.312946278,35.441359731,35.568936163,35.695816274,35.821859963,35.946717873,36.071016573,36.194685715,36.317446291,36.439648854,36.561153301,36.681402816,36.801235017,36.924136292,37.050595501,37.180333637,37.313071096,37.446575824,37.573873847,37.693009727,37.80489203,37.910636184,38.012195237,38.11396235,38.218102215,38.324333435,38.432308447,38.541817399,38.652023867,38.762158191,38.872501769,38.982844151,39.092768022,39.202552988,39.31199099,39.420452469,39.528287977,39.635566071,39.742146647,39.848308713,39.954401627,40.060004483,40.165396887,40.270857247,40.376317008,40.481775571,40.587234732,40.692485836,40.797320225,40.901805855,41.005874173,41.109873339,41.21366265,41.317242107,41.420542558,41.523772657,41.626762446,41.729471102,41.832232456,41.937530675,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}"), .Names = c("id",
"seris_id", "module_id", "isc", "voc", "impp", "vmpp", "pmpp",
"unique_halm_id", "iarray", "varray"), row.names = 1L, class = "data.frame")
Solved it. since the ggplot requires data frames. I just added two more columns to the data frame and added them there.
vmpp <- iv$vmpp
df <- cbind(df,vmpp)
impp <- iv$impp
df <- cbind(df,impp)
print(df)
})
output$ivcurve <- renderPlot({
ggplot(data3(), aes(x=n2, y= n1)) + geom_line(colour='blue')+ scale_y_continuous(limits = c(-1, 11))+ geom_vline(aes(xintercept = vmpp))+ geom_hline(aes(yintercept = impp))

Resources