I have a dataframe which looks like this:
>head(df)
chrom pos strand ref alt A_pos A_neg C_pos C_neg G_pos G_neg T_pos T_neg
chr1 2283161 - G A 3 1 2 0 0 0 0 0
chr1 2283161 - G A 3 1 2 0 0 0 0 0
chr1 2283313 - G C 0 0 0 0 0 0 0 0
chr1 2283313 - G C 0 0 0 0 0 0 0 0
chr1 2283896 - G A 0 0 0 0 0 0 0 0
chr1 2283896 + G A 0 0 0 0 0 0 0 0
I want to extract the value from columns 6:13 (A_pos...T_neg) based on the value of the columns 'strand', 'ref' and 'alt'. For instance, in row1: strand = '-', ref = 'G' and alt = 'A', so I should extract the values from G_neg and A_neg. Again, in row6: stand = '+', ref = 'G' and alt = 'A', so I should get the values from G_pos and A_pos. I basically intend to do a chi-square test after extracting these values (These are my observed values, I have another set of expected values) but that is another story.
So the logic is somewhat like:
if(df$strand=="+")
do
print:paste(df$ref,"pos",sep="_") #extract value in column df$ref_pos
print:paste(df$alt,"pos",sep="_") #extract value in column df$alt_pos
else if(gt.merge$gene_strand=="-")
do
print:paste(df$ref,"neg",sep="_") #extract value in column df$ref_neg
print:paste(df$alt,"neg",sep="_") #extract value in column df$alt_neg
Here, I am trying to use paste on the values in 'ref' and 'alt' to get the desired column names. For instance, if strand ='+' and ref = 'G', it will fetch value from column G_pos.
The data frame is actually large and so I ruled out using for-loops. I am not sure how else can I do this to make the code as efficient as possible. Any help/suggestions would be appreciated.
Thanks!
Another alternative that looks valid, at least with the sample data:
tmp = ifelse(as.character(DF$strand) == "-", "neg", "pos")
sapply(DF[c("ref", "alt")],
function(x) as.integer(DF[cbind(seq_len(nrow(DF)),
match(paste(x, tmp, sep = "_"), names(DF)))]))
# ref alt
#[1,] 0 1
#[2,] 0 1
#[3,] 0 0
#[4,] 0 0
#[5,] 0 0
#[6,] 0 0
Where DF:
DF = structure(list(chrom = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"),
pos = c(2283161L, 2283161L, 2283313L, 2283313L, 2283896L,
2283896L), strand = structure(c(1L, 1L, 1L, 1L, 1L, 2L), .Label = c("-",
"+"), class = "factor"), ref = structure(c(1L, 1L, 1L, 1L,
1L, 1L), .Label = "G", class = "factor"), alt = structure(c(1L,
1L, 2L, 2L, 1L, 1L), .Label = c("A", "C"), class = "factor"),
A_pos = c(3L, 3L, 0L, 0L, 0L, 0L), A_neg = c(1L, 1L, 0L,
0L, 0L, 0L), C_pos = c(2L, 2L, 0L, 0L, 0L, 0L), C_neg = c(0L,
0L, 0L, 0L, 0L, 0L), G_pos = c(0L, 0L, 0L, 0L, 0L, 0L), G_neg = c(0L,
0L, 0L, 0L, 0L, 0L), T_pos = c(0L, 0L, 0L, 0L, 0L, 0L), T_neg = c(0L,
0L, 0L, 0L, 0L, 0L)), .Names = c("chrom", "pos", "strand",
"ref", "alt", "A_pos", "A_neg", "C_pos", "C_neg", "G_pos", "G_neg",
"T_pos", "T_neg"), class = "data.frame", row.names = c(NA, -6L
))
Not very elegant, but does the job:
strand.map <- c("-"="_neg", "+"="_pos")
cbind(
df[1:5],
do.call(
rbind,
lapply(
split(df[-(1:2)], 1:nrow(df)),
function(x)
c(
ref=x[-(1:2)][, paste0(x[[2]], strand.map[x[[1]]])],
alt=x[-(1:2)][, paste0(x[[3]], strand.map[x[[1]]])]
) ) ) )
We cycle through each row in your data frame and apply a function that pulls the value based on strand, ref, and alt. This produces:
chrom pos strand ref alt ref alt
1 chr1 2283161 - G A 0 1
2 chr1 2283161 - G A 0 1
3 chr1 2283313 - G C 0 0
4 chr1 2283313 - G C 0 0
5 chr1 2283896 - G A 0 0
6 chr1 2283896 + G A 0 0
An alternate approach is to use melt, but the format of your data makes it rather annoying because we need two melts in a row, and we need to create a unique id column so we can reconstitute the data frame once we're done computing.
df$id <- 1:nrow(df)
df.mlt <-
melt(
melt(df, id.vars=c("id", "chrom", "pos", "strand", "ref", "alt")),
measure.vars=c("ref", "alt"), value.name="base",
variable.name="alt_or_ref"
)
dcast(
subset(df.mlt, paste0(base, strand.map[strand]) == variable),
id + chrom + pos + strand ~ alt_or_ref,
value.var="value"
)
Which produces:
id chrom pos strand ref alt
1 1 chr1 2283161 - 0 1
2 2 chr1 2283161 - 0 1
3 3 chr1 2283313 - 0 0
4 4 chr1 2283313 - 0 0
5 5 chr1 2283896 - 0 0
6 6 chr1 2283896 + 0 0
Another way
testFunc <- function(x){
posneg <- if(x["strand"] == "-") {"neg"} else {"pos"}
cbind(as.numeric(x[paste0(x["ref"],"_",posneg)]), as.numeric(x[paste0(x["alt"],"_",posneg)]))
}
temp <- t(apply(df, 1, testFunc))
colnames(temp) <- c("ref", "alt")
using the [very] fast data.table library:
library(data.table)
df = fread('df.txt') # fastread
df[,ref := ifelse(strand == "-",
paste(ref,"neg",sep = "_"),
paste(ref,"pos",sep = "_"))]
df[,alt := ifelse(strand == "-",
paste(alt,"neg",sep = "_"),
paste(alt,"pos",sep = "_"))]
df[,strand := NULL] # not required anymore
dfm = melt(df,
id.vars = c("chrom","pos","ref","alt"),
variable.name = "mycol", value.name = "value")
dfm[mycol == ref | mycol == alt,] # matching
Related
I have 4 large matrixes of the same size A, B, C and D . Each matrix has n samples (columns) and n observations (rows).
A <- structure(list(S1 = c(0L, 0L, 1L, 1L), S2 = c(0L, 1L, 0L, 0L), S3 = c(0L, 0L, 0L, 1L)), class = "data.frame", row.names = c("Ob1", "Ob2", "Ob3", "Ob4"))
# S1 S2 S3
# Ob1 0 0 0
# Ob2 0 1 0
# Ob3 1 0 0
# Ob4 1 0 1
B <- structure(list(S1 = c(0L, 1L, 1L, 1L), S2 = c(0L, 8L, 0L, 0L), S3 = c(0L, 0L, 0L, 1L)), class = "data.frame", row.names = c("Ob1", "Ob2", "Ob3", "Ob4"))
# S1 S2 S3
# Ob1 0 0 0
# Ob2 1 8 0
# Ob3 1 0 0
# Ob4 1 0 1
C <- structure(list(S1 = c(0L, 0L, 4L, 1L), S2 = c(2L, 1L, 0L, 2L), S3 = c(0L, 0L, 0L, 1L)), class = "data.frame", row.names = c("Ob1", "Ob2", "Ob3", "Ob4"))
# S1 S2 S3
# Ob1 0 2 0
# Ob2 0 1 0
# Ob3 4 0 0
# Ob4 1 2 1
D <- structure(list(S1 = c(0L, 0L, 4L, 1L), S2 = c(8L, 1L, 5L, 0L), S3 = c(0L, 0L, 0L, 1L)), class = "data.frame", row.names = c("Ob1", "Ob2", "Ob3", "Ob4"))
# S1 S2 S3
# Ob1 0 8 0
# Ob2 0 1 0
# Ob3 4 5 0
# Ob4 1 0 1
Each matrix contains a different variable. I want to perform a linear regression of 4 variables for each sample and observation of the matrixes. I don't want a linear regression betweeen any combinaton of samples and observations, just pairwise regressions in the form of column 1 and row 1 in matrx A is going to be fitted with column 1 and row 1 in matrixes B, C and D; column 2 and row 2 with column 2 and row 2, and so on.
lm model:
lm(A ~ B * C + D)
I want:
lm(A$S1_Obs1 ~ B$S1_Obs1 * C$S1_Obs1 + D$S1_Obs1)
lm(A$S1_Obs2 ~ B$S1_Obs2 * C$S1_Obs2 + D$S1_Obs2)
lm(A$S1_Obs3 ~ B$S1_Obs3 * C$S1_Obs3 + D$S1_Obs3)
lm(A$S2_Obs1 ~ B$S2_Obs1 * C$S2_Obs1 + D$S2_Obs1)
lm(A$S2_Obs2 ~ B$S2_Obs2 * C$S2_Obs2 + D$S2_Obs2)
lm(A$S2_Obs3 ~ B$S2_Obs3 * C$S2_Obs3 + D$S2_Obs3)
...
Any help appreciated.
We may use asplit to split by row and then construct the linear model by looping each of the split elements in Map
out <- Map(function(a, b, c, d) lm(a ~ b * c + d),
asplit(A, 1), asplit(B, 1), asplit(C, 1), asplit(D, 1))
Here is an approach using the purrr package that assigns names as well:
library(purrr)
seq_along(A) %>%
map(~ lm(A[.] ~ B[.] * C[.] + D[.])) %>%
set_names(map(seq_along(.),
~ arrayInd(.x, dim(A)) %>%
paste(collapse = "_")))
I have data frame containing the results of a multiple choice question. Each item has either 0 (not mentioned) or 1 (mentioned). The columns are named like this:
F1.2_1, F1.2_2, F1.2_3, F1.2_4, F1.2_5, F1.2_99
etc.
I would like to concatenate these values like this: The new column should be a semicolon-separated string of the selected items. So if a row has a 1 in F1.2_1, F1.2_4 and F1.2_5 it should be: 1;4;5
The last digit(s) of the dichotome columns are the item codes to be used in the string.
Any idea how this could be achieved with R (and data.table)? Thanks for any help!
edit:
Here is a example DF with the desired result:
structure(list(F1.2_1 = c(0L, 1L, 0L, 1L), F1.2_2 = c(1L, 0L,
0L, 1L), F1.2_3 = c(0L, 1L, 0L, 1L), F1.2_4 = c(0L, 1L, 0L, 0L
), F1.2_5 = c(0L, 0L, 0L, 0L), F1.2_99 = c(0L, 0L, 1L, 0L), desired_result = structure(c(3L,
2L, 4L, 1L), .Label = c("1;2;3", "1;3;4", "2", "99"), class = "factor")), .Names = c("F1.2_1",
"F1.2_2", "F1.2_3", "F1.2_4", "F1.2_5", "F1.2_99", "desired_result"
), class = "data.frame", row.names = c(NA, -4L))
F1.2_1 F1.2_2 F1.2_3 F1.2_4 F1.2_5 F1.2_99 desired_result
1 0 1 0 0 0 0 2
2 1 0 1 1 0 0 1;3;4
3 0 0 0 0 0 1 99
4 1 1 1 0 0 0 1;2;3
In his comment, the OP asked how to deal with more multiple choice questions.
The approach below will be able to handle an arbitrary number of questions and choices for each question. It uses melt() and dcast() from the data.table package.
Sample input data
Let's assume the input data.frame DT for the extended case contains two questions, one with 6 choices and the other with 4 choices:
DT
# F1.2_1 F1.2_2 F1.2_3 F1.2_4 F1.2_5 F1.2_99 F2.7_1 F2.7_2 F2.7_3 F2.7_11
#1: 0 1 0 0 0 0 0 1 1 0
#2: 1 0 1 1 0 0 1 1 1 1
#3: 0 0 0 0 0 1 1 0 1 0
#4: 1 1 1 0 0 0 1 0 1 1
Code
library(data.table)
# coerce to data.table and add row number for later join
setDT(DT)[, rn := .I]
# reshape from wide to long format
molten <- melt(DT, id.vars = "rn")
# alternatively, the measure cols can be specified (in case of other id vars)
# molten <- melt(DT, measure.vars = patterns("^F"))
# split question id and choice id
molten[, c("question_id", "choice_id") := tstrsplit(variable, "_")]
# reshape only selected choices from long to wide format,
# thereby pasting together the ids of the selected choices for each question
result <- dcast(molten[value == 1], rn ~ question_id, paste, collapse = ";",
fill = NA, value.var = "choice_id")
# final join for demonstration only, remove row number as no longer needed
DT[result, on = "rn"][, rn := NULL][]
# F1.2_1 F1.2_2 F1.2_3 F1.2_4 F1.2_5 F1.2_99 F2.7_1 F2.7_2 F2.7_3 F2.7_11 F1.2 F2.7
#1: 0 1 0 0 0 0 0 1 1 0 2 2;3
#2: 1 0 1 1 0 0 1 1 1 1 1;3;4 1;2;3;11
#3: 0 0 0 0 0 1 1 0 1 0 99 1;3
#4: 1 1 1 0 0 0 1 0 1 1 1;2;3 1;3;11
For each question, the final result shows which choices were selected in each row.
Reproducible data
The sample data can be created with
DT <- structure(list(F1.2_1 = c(0L, 1L, 0L, 1L), F1.2_2 = c(1L, 0L,
0L, 1L), F1.2_3 = c(0L, 1L, 0L, 1L), F1.2_4 = c(0L, 1L, 0L, 0L
), F1.2_5 = c(0L, 0L, 0L, 0L), F1.2_99 = c(0L, 0L, 1L, 0L), F2.7_1 = c(0L,
1L, 1L, 1L), F2.7_2 = c(1L, 1L, 0L, 0L), F2.7_3 = c(1L, 1L, 1L,
1L), F2.7_11 = c(0L, 1L, 0L, 1L)), .Names = c("F1.2_1", "F1.2_2",
"F1.2_3", "F1.2_4", "F1.2_5", "F1.2_99", "F2.7_1", "F2.7_2",
"F2.7_3", "F2.7_11"), row.names = c(NA, -4L), class = "data.frame")
We can try
j1 <- do.call(paste, c(as.integer(sub(".*_", "",
names(DF)[-7]))[col(DF[-7])]*DF[-7], sep=";"))
DF$newCol <- gsub("^;+|;+$", "", gsub(";*0;|0$|^0", ";", j1))
DF$newCol
#[1] "2" "1;3;4" "99" "1;2;3"
This question already has answers here:
How to sum a variable by group
(18 answers)
Closed 6 years ago.
I have a simple R problem, but I just can't find the answer.
I have a dataframe like this:
A 1 0 0 0 0 0
B 0 1 0 0 0 0
B 0 0 1 0 0 1
B 0 0 0 0 1 0
C 1 0 0 0 0 0
C 0 0 0 1 1 0
And i want it to be just like this:
A 1 0 0 0 0 0
B 0 1 1 0 1 1
C 1 0 0 1 1 0
Thank you very much!
Regards Lisanne
Here's one possbility using tapply:
cbind(unique(dat[1]), do.call(rbind, tapply(dat[-1], dat[[1]], colSums)))
# V1 V2 V3 V4 V5 V6 V7
# 1 A 1 0 0 0 0 0
# 2 B 0 1 1 0 1 1
# 5 C 1 0 0 1 1 0
where dat is the name of your data frame.
dat <- structure(list(V1 = structure(c(1L, 2L, 2L, 2L, 3L, 3L), .Label = c("A",
"B", "C"), class = "factor"), V2 = c(1L, 0L, 0L, 0L, 1L, 0L),
V3 = c(0L, 1L, 0L, 0L, 0L, 0L), V4 = c(0L, 0L, 1L, 0L, 0L,
0L), V5 = c(0L, 0L, 0L, 0L, 0L, 1L), V6 = c(0L, 0L, 0L, 1L,
0L, 1L), V7 = c(0L, 0L, 1L, 0L, 0L, 0L)), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7"), class = "data.frame", row.names = c(NA,
-6L))
You could...
aggregate(.~ V1 , data =dat, sum)
or
library(plyr)
ddply(dat, .(V1), function(x) colSums(x[,2:7]) )
If you're working with a data.frame where there are duplicates but you only want the presence or absence of a 1 to be noted, then after these functions you might want to do something like dat[!(dat %in% c(1,0)] <- 1.
A possibility not mentioned is the aggregate function. I think this is quite 'readable'.
aggregate(cbind(data$X1, data$X2, data$X3, data$X4),
by = list(category = data$group), FUN = sum)
What is the best way to determine a factor or create a new category field based on a number of boolean fields? In this example, I need to count the number of unique combinations of medications.
> MultPsychMeds
ID OLANZAPINE HALOPERIDOL QUETIAPINE RISPERIDONE
1 A 1 1 0 0
2 B 1 0 1 0
3 C 1 0 1 0
4 D 1 0 1 0
5 E 1 0 0 1
6 F 1 0 0 1
7 G 1 0 0 1
8 H 1 0 0 1
9 I 0 1 1 0
10 J 0 1 1 0
Perhaps another way to state it is that I need to pivot or cross tabulate the pairs. The final results need to look something like:
Combination Count
OLANZAPINE/HALOPERIDOL 1
OLANZAPINE/QUETIAPINE 3
OLANZAPINE/RISPERIDONE 4
HALOPERIDOL/QUETIAPINE 2
This data frame can be replicated in R with:
MultPsychMeds <- structure(list(ID = structure(1:10, .Label = c("A", "B", "C",
"D", "E", "F", "G", "H", "I", "J"), class = "factor"), OLANZAPINE = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L), HALOPERIDOL = c(1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L), QUETIAPINE = c(0L, 1L, 1L, 1L,
0L, 0L, 0L, 0L, 1L, 1L), RISPERIDONE = c(0L, 0L, 0L, 0L, 1L,
1L, 1L, 1L, 0L, 0L)), .Names = c("ID", "OLANZAPINE", "HALOPERIDOL",
"QUETIAPINE", "RISPERIDONE"), class = "data.frame", row.names = c(NA,
-10L))
Here's one approach using the reshape and plyr packages:
library(reshape)
library(plyr)
#Melt into long format
dat.m <- melt(MultPsychMeds, id.vars = "ID")
#Group at the ID level and paste the drugs together with "/"
out <- ddply(dat.m, "ID", summarize, combos = paste(variable[value == 1], collapse = "/"))
#Calculate a table
with(out, count(combos))
x freq
1 HALOPERIDOL/QUETIAPINE 2
2 OLANZAPINE/HALOPERIDOL 1
3 OLANZAPINE/QUETIAPINE 3
4 OLANZAPINE/RISPERIDONE 4
Just for fun, a base R solution (that can be turned into a oneliner :-) ):
data.frame(table(apply(MultPsychMeds[,-1], 1, function(currow){
wc<-which(currow==1)
paste(colnames(MultPsychMeds)[wc+1], collapse="/")
})))
Another way could be:
subset(
as.data.frame(
with(MultPsychMeds, table(OLANZAPINE, HALOPERIDOL, QUETIAPINE, RISPERIDONE)),
responseName="count"
),
count>0
)
which gives
OLANZAPINE HALOPERIDOL QUETIAPINE RISPERIDONE count
4 1 1 0 0 1
6 1 0 1 0 3
7 0 1 1 0 2
10 1 0 0 1 4
It's not an exact way you want it, but is fast and simple.
There is shorthand in plyr package:
require(plyr)
count(MultPsychMeds, c("OLANZAPINE", "HALOPERIDOL", "QUETIAPINE", "RISPERIDONE"))
# OLANZAPINE HALOPERIDOL QUETIAPINE RISPERIDONE freq
# 1 0 1 1 0 2
# 2 1 0 0 1 4
# 3 1 0 1 0 3
# 4 1 1 0 0 1
In a matrix, how do I determine the rows that have the largest rowsums. For example, in the following matrix:
- A P S T
- 1 0 0 0 0
A 0 0 0 0 1
C 0 0 0 1 0
P 0 2 0 2 0
S 0 0 0 23 3
T 0 0 1 0 0
rows S & P have the two largest rowsums.
There's no need to use the names, you could easily do :
> Rsum <- rowSums(mat)
> mat[tail(order(Rsum),2),]
- A P S T
P 0 2 0 2 0
S 0 0 0 23 3
You could do this:
# Build your example matrix
mat = matrix( data=c( 1,0,0,0,0, 0,0,0,0,1, 0,0,0,1,0, 0,2,0,2,0, 0,0,0,23,3, 0,0,1,0,0 ), ncol=5, byrow=T )
rownames( mat ) = c( '-', 'A', 'C', 'P', 'S', 'T' )
colnames( mat ) = c( '-', 'A', 'P', 'S', 'T' )
# Get the sums
sums = rowSums( mat )
# Get the top 2 row names
top.names = names( sums[ order( sums, decreasing=TRUE ) ][ 1:2 ] )
# Filter the original matrix to include just these two
mat[ rownames( mat ) %in% top.names, ]
Which outputs
- A P S T
P 0 2 0 2 0
S 0 0 0 23 3
Paste your matrix in an easily reproducible format for others checking your question:
m <- structure(list(X. = c(1L, 0L, 0L, 0L, 0L, 0L), A = c(0L, 0L,
0L, 2L, 0L, 0L), P = c(0L, 0L, 0L, 0L, 0L, 1L), S = c(0L, 0L,
1L, 2L, 23L, 0L), T = c(0L, 1L, 0L, 0L, 3L, 0L)), .Names = c("X.",
"A", "P", "S", "T"), class = "data.frame", row.names = c("-",
"A", "C", "P", "S", "T"))
You could get it with dput, e.g.: dput(YourMatrix). This could be useful for your future questions :)
Back to the question - sort the rowSums and get the names, via:
t <- names(sort(rowSums(m)))
Get the first two:
> t[(length(t)-1):length(t)]
[1] "T" "S"
Or get the wanted rows by:
> d[t[(length(t)-1):length(t)],]
T S
- 0 0
A 1 0
C 0 1
P 0 2
S 3 23
T 0 0