counting rows elements and resetting in xslt - count

I have to read from a csv file and generate formatted objects by xslt. The problem that I am facing for two days is that I have to count the rows and when a new value shows up in a row, I have to reset to 1 again.
600, A, B, C , D
600, A, B, G, F
600, A, B, E, H
601, A, B, I, K
my output is currently like this
<Object:<path:A/600/1>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
<Object:<path:A/600/2>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
<Object:<path:A/600/3>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
<Object:<path:A/601/4>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
but I expect this:
<Object:<path:A/600/1>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
<Object:<path:A/600/2>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
<Object:<path:A/600/3>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
<Object:<path:A/601/1>><Data:<ZoneStart:B><ZoneFinish:C><Id:D>>>
creating the counting part and resetting it in xslt 1.0 is killing me. Help is needed.

XSLT is a declarative functional language. As long as you are thinking in procedural terms about incrementing and clearing a counter, you're going to be fighting the language, not using it. Even if you win the fight, which sometimes happens, the result won't be pretty.
Reformulating your apparent requirements in more declarative language, it sounds like they are:
For each line of input, produce one line of output, copying various fields from the input into appropriate places in the output.
In each line of output, insert a number, specifically the number 1 plus the number of immediately preceding lines of input which have the same value in the first field of the input. (So the first line with a given value gets the number 1, the second gets the number 2, etc.)
Your output is already meeting the first requirement. Your job is to find a functional, declarative way of meeting the second.
The most convenient way to meet the second requirement depends in part on how you are currently iterating over lines of input. (If your input is really non-XML data, as you show it, then I don't quite see how you are doing anything at all with it in XSLT 1.0; if you're using XSLT 2.0, then you've inadvertently mistagged the question.)
Assuming that the multi-line input you are showing is the content of some element named 'line-by-line-data', I'd handle it in XSLT 1.0 using something like this:
<xsl:template match="line-by-line-data">
<xsl:call-template name="handle-lines">
<xsl:with-param name="lines" select="string(.)"/>
</xsl:call-template>
</xsl:template>
And the template handle-lines would be a recursive template which chops off one line of input, handles it, and calls itself recursively.
If you're working in XSLT 1.0 and producing the output you show, I'm guessing you already have such a recursive template and only need the following hint. Add two parameters to the recursive call: one is the value of field 1, so you can conveniently check whether it has changed; the other is a running count of how many values with that field you have already seen. This should feel perfectly comfortable even from a purely procedural point of view: just imagine you're in a language where recursion is the only way to perform iteration.
If you're working in XSLT 1.0 and producing the output you show by some other means, then please show us those means in your question.
Good luck!

Related

Why after pressing semicolon program is back in deep recursion?

I'm trying to understand the semicolon functionality.
I have this code:
del(X,[X|Rest],Rest).
del(X,[Y|Tail],[Y|Rest]) :-
del(X,Tail,Rest).
permutation([],[]).
permutation(L,[X|P]) :- del(X,L,L1), permutation(L1,P).
It's the simple predicate to show all permutations of given list.
I used the built-in graphical debugger in SWI-Prolog because I wanted to understand how it works and I understand for the first case which returns the list given in argument. Here is the diagram which I made for better understanding.
But I don't get it for the another solution. When I press the semicolon it doesn't start in the place where it ended instead it's starting with some deep recursion where L=[] (like in step 9). I don't get it, didn't the recursion end earlier? It had to go out of the recursions to return the answer and after semicolon it's again deep in recursion.
Could someone clarify that to me? Thanks in advance.
One analogy that I find useful in demystifying Prolog is that Backtracking is like Nested Loops, and when the innermost loop's variables' values are all found, the looping is suspended, the vars' values are reported, and then the looping is resumed.
As an example, let's write down simple generate-and-test program to find all pairs of natural numbers above 0 that sum up to a prime number. Let's assume is_prime/1 is already given to us.
We write this in Prolog as
above(0, N), between(1, N, M), Sum is M+N, is_prime(Sum).
We write this in an imperative pseudocode as
for N from 1 step 1:
for M from 1 step 1 until N:
Sum := M+N
if is_prime(Sum):
report_to_user_and_ask(Sum)
Now when report_to_user_and_ask is called, it prints Sum out and asks the user whether to abort or to continue. The loops are not exited, on the contrary, they are just suspended. Thus all the loop variables values that got us this far -- and there may be more tests up the loops chain that sometimes succeed and sometimes fail -- are preserved, i.e. the computation state is preserved, and the computation is ready to be resumed from that point, if the user presses ;.
I first saw this in Peter Norvig's AI book's implementation of Prolog in Common Lisp. He used mapping (Common Lisp's mapcan which is concatMap in Haskell or flatMap in many other languages) as a looping construct though, and it took me years to see that nested loops is what it is really all about.
Goals conjunction is expressed as the nesting of the loops; goals disjunction is expressed as the alternatives to loop through.
Further twist is that the nested loops' structure isn't fixed from the outset. It is fluid, the nested loops of a given loop can be created depending on the current state of that loop, i.e. depending on the current alternative being explored there; the loops are written as we go. In (most of the) languages where such dynamic creation of nested loops is impossible, it can be encoded with nested recursion / function invocation / inside the loops. (Here's one example, with some pseudocode.)
If we keep all such loops (created for each of the alternatives) in memory even after they are finished with, what we get is the AND-OR tree (mentioned in the other answer) thus being created while the search space is being explored and the solutions are found.
(non-coincidentally this fluidity is also the essence of "monad"; nondeterminism is modeled by the list monad; and the essential operation of the list monad is the flatMap operation which we saw above. With fluid structure of loops it is "Monad"; with fixed structure it is "Applicative Functor"; simple loops with no structure (no nesting at all): simply "Functor" (the concepts used in Haskell and the like). Also helps to demystify those.)
So, the proper slogan could be Backtracking is like Nested Loops, either fixed, known from the outset, or dynamically-created as we go. It's a bit longer though. :)
Here's also a Prolog example, which "as if creates the code to be run first (N nested loops for a given value of N), and then runs it." (There's even a whole dedicated tag for it on SO, too, it turns out, recursive-backtracking.)
And here's one in Scheme ("creates nested loops with the solution being accessible in the innermost loop's body"), and a C++ example ("create n nested loops at run-time, in effect enumerating the binary encoding of 2n, and print the sums out from the innermost loop").
There is a big difference between recursion in functional/imperative programming languages and Prolog (and it really became clear to me only in the last 2 weeks or so):
In functional/imperative programming, you recurse down a call chain, then come back up, unwinding the stack, then output the result. It's over.
In Prolog, you recurse down an AND-OR tree (really, alternating AND and OR nodes), selecting a predicate to call on an OR node (the "choicepoint"), from left to right, and calling every predicate in turn on an AND node, also from left to right. An acceptable tree has exactly one predicate returning TRUE under each OR node, and all predicates returning TRUE under each AND node. Once an acceptable tree has been constructed, by the very search procedure, we are (i.e. the "search cursor" is) on a rightmost bottommost node .
Success in constructing an acceptable tree also means a solution to the query entered at the Prolog Toplevel (the REPL) has been found: The variable values are output, but the tree is kept (unless there are no choicepoints).
And this is also important: all variables are global in the sense that if a variable X as been passed all the way down the call chain from predicate to predicate to the rightmost bottommost node, then constrained at the last possible moment by unifying it with 2 for example, X = 2, then the Prolog Toplevel is aware of that without further ado: nothing needs to be passed up the call chain.
If you now press ;, search doesn't restart at the top of the tree, but at the bottom, i.e. at the current cursor position: the nearest parent OR node is asked for more solutions. This may result in much search until a new acceptable tree has been constructed, we are at a new rightmost bottommost node. The new variable values are output and you may again enter ;.
This process cycles until no acceptable tree can be constructed any longer, upon which false is output.
Note that having this AND-OR as an inspectable and modifiable data structure at runtime allows some magical tricks to be deployed.
There is bound to be a lot of power in debugging tools which record this tree to help the user who gets the dreaded sphynxian false from a Prolog program that is supposed to work. There are now Time Traveling Debuggers for functional and imperative languages, after all...

Product of range in Prolog

I need to write a program, which calculates product of product in range:
I written the following code:
mult(N,N,R,R).
mult(N,Nt,R,Rt):-N1=Nt+1,R1=Rt*(1/(log(Nt))),mult(N,N1,R,R1).
This should implement basic product from Nt to N of 1/ln(j). As far as I understand it's got to be stopped when Nt and N are equal. However, I can't get it working due to:
?- mult(10,2,R,1), write(R).
ERROR: Out of global stack
The following error. Is there any other way to implement loop not using default libraries of SWI-Prolog?
Your program never terminates! To see this consider the following failure-slice of your program:
mult(N,N,R,R) :- false.
mult(N,Nt,R,Rt):-
N1=Nt+1,
R1=Rt*(1/(log(Nt))),
mult(N,N1,R,R1), false.
This new program does never terminate, and thus the original program doesn't terminate. To see that this never terminates, consider the two (=)/2 goals. In the first, the new variable N1 is unified with something. This will always succeed. Similarly, the second goal with always succeed. There will never be a possibility for failure prior to the recursive goal. And thus, this program never terminates.
You need to add some goal, or to replace existing goals. in the visible part. Maybe add
N > Nt.
Further, it might be a good idea to replace the two (=)/2 goals by (is)/2. But this is not required for termination, strictly speaking.
Out of global stack means you entered a too-long chain of recursion, possibly an infinite one.
The problem stems from using = instead of is in your assignments.
mult(N,N,R,R).
mult(N,Nt,R,Rt):-N1 is Nt+1, R1 is Rt*(1/(log(Nt))), mult(N,N1,R,R1).
You might want to insert a cut in your first clause to avoid going on after getting an answer.
If you have a graphical debugger (like the one in SWI) try setting 'trace' and 'debug' on and running. You'll soon realize that performing N1 = Nt+1 giving Ntas 2 yields the term 2+1. Since 2+1+1+1+(...) will never unify with with 10, that's the problem right there.

modifying an element of a list in-place in J, can it be done?

I have been playing with an implementation of lookandsay (OEIS A005150) in J. I have made two versions, both very simple, using while. type control structures. One recurs, the other loops. Because I am compulsive, I started running comparative timing on the versions.
look and say is the sequence 1 11 21 1211 111221 that s, one one, two ones, etc.
For early elements of the list (up to around 20) the looping version wins, but only by a tiny amount. Timings around 30 cause the recursive version to win, by a large enough amount that the recursive version might be preferred if the stack space were adequate to support it. I looked at why, and I believe that it has to do with handling intermediate results. The 30th number in the sequence has 5808 digits. (32nd number, 9898 digits, 34th, 16774.)
When you are doing the problem with recursion, you can hold the intermediate results in the recursive call, and the unstacking at the end builds the results so that there is minimal handling of the results.
In the list version, you need a variable to hold the result. Every loop iteration causes you to need to add two elements to the result.
The problem, as I see it, is that I can't find any way in J to modify an extant array without completely reassigning it. So I am saying
try. o =. o,e,(0&{y) catch. o =. e,(0&{y) end.
to put an element into o where o might not have a value when we start. That may be notably slower than
o =. i.0
.
.
.
o =. (,o),e,(0&{y)
The point is that the result gets the wrong shape without the ravels, or so it seems. It is inheriting a shape from i.0 somehow.
But even functions like } amend don't modify a list, they return a list that has a modification made to it, and if you want to save the list you need to assign it. As the size of the assigned list increases (as you walk the the number from the beginning to the end making the next number) the assignment seems to take more time and more time. This assignment is really the only thing I can see that would make element 32, 9898 digits, take less time in the recursive version while element 20 (408 digits) takes less time in the loopy version.
The recursive version builds the return with:
e,(0&{y),(,lookandsay e }. y)
The above line is both the return line from the function and the recursion, so the whole return vector gets built at once as the call gets to the end of the string and everything unstacks.
In APL I thought that one could say something on the order of:
a[1+rho a] <- new element
But when I try this in NARS2000 I find that it causes an index error. I don't have access to any other APL, I might be remembering this idiom from APL Plus, I doubt it worked this way in APL\360 or APL\1130. I might be misremembering it completely.
I can find no way to do that in J. It might be that there is no way to do that, but the next thought is to pre-allocate an array that could hold results, and to change individual entries. I see no way to do that either - that is, J does not seem to support the APL idiom:
a<- iota 5
a[3] <- -1
Is this one of those side effect things that is disallowed because of language purity?
Does the interpreter recognize a=. a,foo or some of its variants as a thing that it should fastpath to a[>:#a]=.foo internally?
This is the recursive version, just for the heck of it. I have tried a bunch of different versions and I believe that the longer the program, the slower, and generally, the more complex, the slower. Generally, the program can be chained so that if you want the nth number you can do lookandsay^: n ] y. I have tried a number of optimizations, but the problem I have is that I can't tell what environment I am sending my output into. If I could tell that I was sending it to the next iteration of the program I would send it as an array of digits rather than as a big number.
I also suspect that if I could figure out how to make a tacit version of the code, it would run faster, based on my finding that when I add something to the code that should make it shorter, it runs longer.
lookandsay=: 3 : 0
if. 0 = # ,y do. return. end. NB. return on empty argument
if. 1 ~: ##$ y do. NB. convert rank 0 argument to list of digits
y =. (10&#.^:_1) x: y
f =. 1
assert. 1 = ##$ y NB. the converted argument must be rank 1
else.
NB. yw =. y
f =. 0
end.
NB. e should be a count of the digits that match the leading digit.
e=.+/*./\y=0&{y
if. f do.
o=. e,(0&{y),(,lookandsay e }. y)
assert. e = 0&{ o
10&#. x: o
return.
else.
e,(0&{y),(,lookandsay e }. y)
return.
end.
)
I was interested in the characteristics of the numbers produced. I found that if you start with a 1, the numerals never get higher than 3. If you start with a numeral higher than 3, it will survive as a singleton, and you can also get a number into the generated numbers by starting with something like 888888888 which will generate a number with one 9 in it and a single 8 at the end of the number. But other than the singletons, no digit gets higher than 3.
Edit:
I did some more measuring. I had originally written the program to accept either a vector or a scalar, the idea being that internally I'd work with a vector. I had thought about passing a vector from one layer of code to the other, and I still might using a left argument to control code. With I pass the top level a vector the code runs enormously faster, so my guess is that most of the cpu is being eaten by converting very long numbers from vectors to digits. The recursive routine always passes down a vector when it recurs which might be why it is almost as fast as the loop.
That does not change my question.
I have an answer for this which I can't post for three hours. I will post it then, please don't do a ton of research to answer it.
assignments like
arr=. 'z' 15} arr
are executed in place. (See JWiki article for other supported in-place operations)
Interpreter determines that only small portion of arr is updated and does not create entire new list to reassign.
What happens in your case is not that array is being reassigned, but that it grows many times in small increments, causing memory allocation and reallocation.
If you preallocate (by assigning it some large chunk of data), then you can modify it with } without too much penalty.
After I asked this question, to be honest, I lost track of this web site.
Yes, the answer is that the language has no form that means "update in place, but if you use two forms
x =: x , most anything
or
x =: most anything } x
then the interpreter recognizes those as special and does update in place unless it can't. There are a number of other specials recognized by the interpreter, like:
199(1000&|#^)199
That combined operation is modular exponentiation. It never calculates the whole exponentiation, as
199(1000&|^)199
would - that just ends as _ without the #.
So it is worth reading the article on specials. I will mark someone else's answer up.
The link that sverre provided above ( http://www.jsoftware.com/jwiki/Essays/In-Place%20Operations ) shows the various operations that support modifying an existing array rather than creating a new one. They include:
myarray=: myarray,'blah'
If you are interested in a tacit version of the lookandsay sequence see this submission to RosettaCode:
las=: ,#((# , {.);.1~ 1 , 2 ~:/\ ])&.(10x&#.inv)#]^:(1+i.#[)
5 las 1
11 21 1211 111221 312211

prolog recursion

am making a function that will send me a list of all possible elemnts .. in each iteration its giving me the last answer .. but after the recursion am only getting the last answer back .. how can i make it give back every single answer ..
thank you
the problem is that am trying to find all possible distributions for a list into other lists .. the code
addIn(_,[],Result,Result).
addIn(C,[Element|Rest],[F|R],Result):-
member( Members , [F|R]),
sumlist( Members, Sum),
sumlist([Element],ElementLength),
Cap is Sum + ElementLength,
(Cap =< Ca,
append([Element], Members,New)....
by calling test .. am getting back all the list of possible answers .. now if i tried to do something that will fail like
bp(3,11,[8,2,4,6,1,8,4],Answer).
it will just enter a while loop .. more over if i changed the
bp(NB,C,OL,A):-
addIn(C,OL,[[],[],[]],A);
bp(NB,C,_,A).
to and instead of Or .. i get error :
ERROR: is/2: Arguments are not
sufficiently instantiated
appreciate the help ..
Thanks alot #hardmath
It sounds like you are trying to write your own version of findall/3, perhaps limited to a special case of an underlying goal. Doing it generally (constructing a list of all solutions to a given goal) in a user-defined Prolog predicate is not possible without resorting to side-effects with assert/retract.
However a number of useful special cases can be implemented without such "tricks". So it would be helpful to know what predicate defines your "all possible elements". [It may also be helpful to state which Prolog implementation you are using, if only so that responses may include links to documentation for that version.]
One important special case is where the "universe" of potential candidates already exists as a list. In that case we are really asking to find the sublist of "all possible elements" that satisfy a particular goal.
findSublist([ ],_,[ ]).
findSublist([H|T],Goal,[H|S]) :-
Goal(H),
!,
findSublist(T,Goal,S).
findSublist([_|T],Goal,S) :-
findSublist(T,Goal,S).
Many Prologs will allow you to pass the name of a predicate Goal around as an "atom", but if you have a specific goal in mind, you can leave out the middle argument and just hardcode your particular condition into the middle clause of a similar implementation.
Added in response to code posted:
I think I have a glimmer of what you are trying to do. It's hard to grasp because you are not going about it in the right way. Your predicate bp/4 has a single recursive clause, variously attempted using either AND or OR syntax to relate a call to addIn/4 to a call to bp/4 itself.
Apparently you expect wrapping bp/4 around addIn/4 in this way will somehow cause addIn/4 to accumulate or iterate over its solutions. It won't. It might help you to see this if we analyze what happens to the arguments of bp/4.
You are calling the formal arguments bp(NB,C,OL,A) with simple integers bound to NB and C, with a list of integers bound to OL, and with A as an unbound "output" Answer. Note that nothing is ever done with the value NB, as it is not passed to addIn/4 and is passed unchanged to the recursive call to bp/4.
Based on the variable names used by addIn/4 and supporting predicate insert/4, my guess is that NB was intended to mean "number of bins". For one thing you set NB = 3 in your test/0 clause, and later you "hardcode" three empty lists in the third argument in calling addIn/4. Whatever Answer you get from bp/4 comes from what addIn/4 is able to do with its first two arguments passed in, C and OL, from bp/4. As we noted, C is an integer and OL a list of integers (at least in the way test/0 calls bp/4).
So let's try to state just what addIn/4 is supposed to do with those arguments. Superficially addIn/4 seems to be structured for self-recursion in a sensible way. Its first clause is a simple termination condition that when the second argument becomes an empty list, unify the third and fourth arguments and that gives "answer" A to its caller.
The second clause for addIn/4 seems to coordinate with that approach. As written it takes the "head" Element off the list in the second argument and tries to find a "bin" in the third argument that Element can be inserted into while keeping the sum of that bin under the "cap" given by C. If everything goes well, eventually all the numbers from OL get assigned to a bin, all the bins have totals under the cap C, and the answer A gets passed back to the caller. The way addIn/4 is written leaves a lot of room for improvement just in basic clarity, but it may be doing what you need it to do.
Which brings us back to the question of how you should collect the answers produced by addIn/4. Perhaps you are happy to print them out one at a time. Perhaps you meant to collect all the solutions produced by addIn/4 into a single list. To finish up the exercise I'll need you to clarify what you really want to do with the Answers from addIn/4.
Let's say you want to print them all out and then stop, with a special case being to print nothing if the arguments being passed in don't allow a solution. Then you'd probably want something of this nature:
newtest :-
addIn(12,[7, 3, 5, 4, 6, 4, 5, 2], Answer),
format("Answer = ~w\n",[Answer]),
fail.
newtest.
This is a standard way of getting predicate addIn/4 to try all possible solutions, and then stop with the "fall-through" success of the second clause of newtest/0.
(Added) Suggestions about coding addIn/4:
It will make the code more readable and maintainable if the variable names are clear. I'd suggest using Cap instead of C as the first argument to addIn/4 and BinSum when you take the sum of items assigned to a "bin". Likewise Bin would be better where you used Members. In the third argument to addIn/4 (in the head of the second clause) you don't need an explicit list structure [F|R] since you never refer to either part F or R by itself. So there I'd use Bins.
Some of your predicate calls don't accomplish much that you cannot do more easily. For example, your second call to sumlist/2 involves a list with one item. Thus the sum is just the same as that item, i.e. ElementLength is the same as Element. Here you could just replace both calls to sumlist/2 with one such call:
sumlist([Element|Bin],BinSum)
and then do your test comparing BinSum with Cap. Similarly your call to append/3 just adjoins the single item Element to the front of the list (I'm calling) Bin, so you could just replace what you have called New with [Element|Bin].
You have used an extra pair of parentheses around the last four subgoals (in the second clause for addIn/4). Since AND is implied for all the subgoals of this clause, using the extra pair of parentheses is unnecessary.
The code for insert/4 isn't shown now, but it could be a source of some unintended "backtracking" in special cases. The better approach would be to have the first call (currently to member/2) be your only point of indeterminacy, i.e. when you choose one of the bins, do it by replacing it with a free variable that gets unified with [Element|Bin] at the next to last step.

How do I detect circular logic or recursion in a custom expression evaluator?

I've written an experimental function evaluator that allows me to bind simple functions together such that when the variables change, all functions that rely on those variables (and the functions that rely on those functions, etc.) are updated simultaneously. The way I do this is instead of evaluating the function immediately as it's entered in, I store the function. Only when an output value is requested to I evaluate the function, and I evaluate it each and every time an output value is requested.
For example:
pi = 3.14159
rad = 5
area = pi * rad * rad
perim = 2 * pi * rad
I define 'pi' and 'rad' as variables (well, functions that return a constant), and 'area' and 'perim' as functions. Any time either 'pi' or 'rad' change, I expect the results of 'area' and 'perim' to change in kind. Likewise, if there were any functions depending on 'area' or 'perim', the results of those would change as well.
This is all working as expected. The problem here is when the user introduces recursion - either accidental or intentional. There is no logic in my grammar - it's simply an evaluator - so I can't provide the user with a way to 'break out' of recursion. I'd like to prevent it from happening at all, which means I need a way to detect it and declare the offending input as invalid.
For example:
a = b
b = c
c = a
Right now evaluating the last line results in a StackOverflowException (while the first two lines evaluate to '0' - an undeclared variable/function is equal to 0). What I would like to do is detect the circular logic situation and forbid the user from inputing such a statement. I want to do this regardless of how deep the circular logic is hidden, but I have no idea how to go about doing so.
Behind the scenes, by the way, input strings are converted to tokens via a simple scanner, then to an abstract syntax tree via a hand-written recursive descent parser, then the AST is evaluated. The language is C#, but I'm not looking for a code solution - logic alone will be fine.
Note: this is a personal project I'm using to learn about how parsers and compilers work, so it's not mission critical - however the knowledge I take away from this I do plan to put to work in real life at some point. Any help you guys can provide would be appreciated greatly. =)
Edit: In case anyone's curious, this post on my blog describes why I'm trying to learn this, and what I'm getting out of it.
I've had a similar problem to this in the past.
My solution was to push variable names onto a stack as I recursed through the expressions to check syntax, and pop them as I exited a recursion level.
Before I pushed each variable name onto the stack, I would check if it was already there.
If it was, then this was a circular reference.
I was even able to display the names of the variables in the circular reference chain (as they would be on the stack and could be popped off in sequence until I reached the offending name).
EDIT: Of course, this was for single formulae... For your problem, a cyclic graph of variable assignments would be the better way to go.
A solution (probably not the best) is to create a dependency graph.
Each time a function is added or changed, the dependency graph is checked for cylces.
This can be cut short. Each time a function is added, or changed, flag it. If the evaluation results in a call to the function that is flagged, you have a cycle.
Example:
a = b
flag a
eval b (not found)
unflag a
b = c
flag b
eval c (not found)
unflag b
c = a
flag c
eval a
eval b
eval c (flagged) -> Cycle, discard change to c!
unflag c
In reply to the comment on answer two:
(Sorry, just messed up my openid creation so I'll have to get the old stuff linked later...)
If you switch "flag" for "push" and "unflag" for "pop", it's pretty much the same thing :)
The only advantage of using the stack is the ease of which you can provide detailed information on the cycle, no matter what the depth. (Useful for error messages :) )
Andrew

Resources