F# - Treating a function like a map - dictionary

Long story short, I came up with this funny function set, that takes a function, f : 'k -> 'v, a chosen value, k : 'k, a chosen result, v : 'v, uses f as the basis for a new function g : 'k -> 'v that is the exact same as f, except for that it now holds that, g k = v.
Here is the (pretty simple) F# code I wrote in order to make it:
let set : ('k -> 'v) -> 'k -> 'v -> 'k -> 'v =
fun f k v x ->
if x = k then v else f x
My questions are:
Does this function pose any problems?
I could imagine repeat use of the function, like this
let kvs : (int * int) List = ... // A very long list of random int pairs.
List.fold (fun f (k,v) -> set f k v) id kvs
would start building up a long list of functions on the heap. Is this something to be concerned about?
Is there a better way to do this, while still keeping the type?
I mean, I could do stuff like construct a type for holding the original function, f, a Map, setting key-value pairs to the map, and checking the map first, the function second, when using keys to get values, but that's not what interests me here - what interest me is having a function for "modifying" a single result for a given value, for a given function.

Potential problems:
The set-modified function leaks space if you override the same value twice:
let huge_object = ...
let small_object = ...
let f0 = set f 0 huge_object
let f1 = set f0 0 small_object
Even though it can never be the output of f1, huge_object cannot be garbage-collected until f1 can: huge_object is referenced by f0, which is in turn referenced by the f1.
The set-modified function has overhead linear in the number of set operations applied to it.
I don't know if these are actual problems for your intended application.
If you wish set to have exactly the type ('k -> 'v) -> 'k -> 'v -> 'k -> 'v then I don't see a better way(*). The obvious idea would be to have a "modification table" of functions you've already modified, then let set look up a given f in this table. But function types do not admit equality checking, so you cannot compare f to the set of functions known to your modification table.
(*) Reflection not withstanding.

Related

Do pure functions have only one possible implementation?

In the image below there is a quick explanation, why pure functions appear to have only one possible implementation.I don't really get the idea because (++) : ('a -> 'b) -> ('a -> 'b) -> 'a -> 'b for example can clearly be implemented by let (++) (f: ('a -> 'b)) (g: ('a -> 'b)) x = f x orlet (++) (f: ('a -> 'b)) (g: ('a -> 'b)) x = g x
Is that image just wrong or do I miss something here?
You are right. The attached image is incorrect even without type annotations.
At first, it's important to consider what kind of "equality" on implementations is assumed here. Let's consider the following examples.
Is (##) equal to (##+)?
let ( ## ) f x = f x
let ( ##+ ) f x =
let _ = 42 in
f x
Is (|>) equal to (|>+)?
let ( |> ) x f = f x
let ( |>+ ) x f = f ## x
Is (%) equal to (%+)?
let ( % ) f g x = f (g x)
let ( %+ ) p q r = p (q r)
If (##) is not equal to (##+), then we can construct the 5th implementation of a function bool -> bool, such as (fun x -> let _ = 42 in true).
Therefore, the author of the image would have wanted to distinguish functions not by its implementation (or codes), but by some other element such as its behavior (like duck test or the equality on mathematical functions).
Still, the image is incorrect. The image claims "for pure functions that don't have any concrete type in the signature, there is only one possible implementation", but no. For example, there is no pure function 'a -> 'b. This can be shown through the Curry–Howard correspondence.
The image is wrong if you consider the counterexample you just gave. I think the author of the image didn’t consider the possibility of type annotation.
In fact if
there are no type annotations and
all the arguments are polymorphic and or function over polymorphic types,
you don’t consider the existence of polymorphic operators such as = or <>
(otherwise it is wrong since <> and = have the same type and different implementation),
then there is only one pure implementation of your function signature.
(you can probably prove that by saying the only things you can use to define that function are :
pure functions of the same type, that can be inlined, so you can ignore that
match-patterns and let, for which the image’s argument is true
cartesian product (let f a b = a, b)
function composition
infinite recursion
and maybe other things I forget, but you can make an exhaustive list
and that the combination of these used can be guessed from the output and input types.
)

Automatic detection of domain for dependent type function in Idris

Idris language tutorial has simple and understandable example of the idea of Dependent Types:
http://docs.idris-lang.org/en/latest/tutorial/typesfuns.html#first-class-types
Here is the code:
isSingleton : Bool -> Type
isSingleton True = Int
isSingleton False = List Int
mkSingle : (x : Bool) -> isSingleton x
mkSingle True = 0
mkSingle False = []
sum : (single : Bool) -> isSingleton single -> Int
sum True x = x
sum False [] = 0
sum False (x :: xs) = x + sum False xs
I decided to spend more time on this example. What bothers me in sum function is that I need to explicitly pass single : Bool value to function. I don't want to do this and I want compiler to guess what this boolean value should be. Hence I pass only Int or List Int to sum function there should be 1-to-1 correspondence between boolean value and type of argument (if I pass some other type this just mustn't type check).
Of course, I understand, this is not possible in general case. Such compiler tricks require my function isSingleton (or any other similar function) be injective. But for this case it should be possible as it seems to me...
So I started with next implementation: I just made single argument implicit.
sum : {single : Bool} -> isSingleton single -> Int
sum {single = True} x = x
sum {single = False} [] = 0
sum {single = False} (x :: xs) = x + sum' {single = False} xs
Well, it doesn't really solve my problem because I still need to call this function in the next way:
sum {single=True} 1
But I read in tutorial about auto keyword. Though I don't quite understand what auto does (because I didn't find description of it) I decided to patch my function just a little bit more:
sum' : {auto single : Bool} -> isSingleton single -> Int
sum' {single = True} x = x
sum' {single = False} [] = 0
sum' {single = False} (x :: xs) = x + sum' {single = False} xs
And it works for lists!
*DepFun> :t sum'
sum' : {auto single : Bool} -> isSingleton single -> Int
*DepFun> sum' [1,2,3]
6 : Int
But doesn't work for single value :(
*DepFun> sum' 3
When checking an application of function Main.sum':
List Int is not a numeric type
Can someone explain is it actually possible to achieve my goal in such injective function usages currently? I watched this short video about proving something is injective:
https://www.youtube.com/watch?v=7Ml8u7DFgAk
But I don't understand how I can use such proofs in my example.
If this is not possible what is the best way to write such functions?
The auto keyword basically tells Idris, "Find me any value of this type". So you're liable to get the wrong answer unless that type only contains one value. Idris sees {auto x : Bool} and fills it in with any old Bool, namely False. It doesn't use its knowledge of later arguments to help it choose - information doesn't flow from right to left.
One fix would be to make the information flow in the other direction. Rather using a universe-style construction as you have above, write a function accepting an arbitrary type and use a predicate to refine it to the two options you want. This way Idris can look at the type of the preceding argument and pick the only value of IsListOrInt whose type matches.
data IsListOrInt a where
IsInt : IsListOrInt Int
IsList : IsListOrInt (List Int)
sum : a -> {auto isListOrInt : IsListOrInt a} -> Int
sum x {IsInt} = x
sum [] {IsList} = 0
sum (x :: xs) {IsList} = x + sum xs
Now, in this case the search space is small enough (two values - True and False) that Idris could feasibly explore every option in a brute-force fashion and pick the first one that results in a program which passes the type checker, but that algorithm doesn't scale well when the types are much bigger than two, or when trying to infer multiple values.
Compare the left-to-right nature of the information flow in the above example with the behaviour of regular non-auto braces, which instruct Idris to find the result in a bidirectional fashion using unification. As you note, this could only succeed when the type functions in question are injective. You could structure your input as a separate, indexed datatype, and allow Idris to look at the constructor to find b using unification.
data OneOrMany isOne where
One : Int -> OneOrMany True
Many : List Int -> OneOrMany False
sum : {b : Bool} -> OneOrMany b -> Int
sum (One x) = x
sum (Many []) = 0
sum (Many (x :: xs)) = x + sum (Many xs)
test = sum (One 3) + sum (Many [29, 43])
Predicting when the machine will or won't be able to guess what you mean is an important skill in dependently-typed programming; you'll find yourself getting better at it with more experience.
Of course, in this case it's all moot because lists already have one-or-many semantics. Write your function over plain old lists; then if you need to apply it to a single value you can just wrap it in a singleton list.

Writing a function that is sum of functions

I have the following excercise to do:
Code a function that will be a summation of a list of functions.
So I think that means that if a function get list of functions [f(x);g(x);h(x);...] it must return a function that is f(x)+g(x)+h(x)+...
I'm trying to do code that up for the general case and here's something I came up with:
let f_sum (h::t) = fold_left (fun a h -> (fun x -> (h x) + (a x))) h t;;
The problem is I'm using "+" operator and that means it works only when in list we have functions of type
'a -> int
So, can it be done more "generally", I mean can we write a function, that is a sum of ('a -> 'b) functions, given in a list?
yes, you can make plus function to be a parameter of your function, like
let f_sum plus fs =
let (+) = plus in
match fs with
| [] -> invalid_arg "f_sum: empty list"
| f :: fs -> fold_left ...
You can generalize even more, and ask a user to provide a zero value, so that you can return a function, returning zero if the list is empty. Also you can use records to group functions, or even first class modules (cf., Commutative_group.S in Core library).

OCaml: Is there a function with type 'a -> 'a other than the identity function?

This isn't a homework question, by the way. It got brought up in class but my teacher couldn't think of any. Thanks.
How do you define the identity functions ? If you're only considering the syntax, there are different identity functions, which all have the correct type:
let f x = x
let f2 x = (fun y -> y) x
let f3 x = (fun y -> y) (fun y -> y) x
let f4 x = (fun y -> (fun y -> y) y) x
let f5 x = (fun y z -> z) x x
let f6 x = if false then x else x
There are even weirder functions:
let f7 x = if Random.bool() then x else x
let f8 x = if Sys.argv < 5 then x else x
If you restrict yourself to a pure subset of OCaml (which rules out f7 and f8), all the functions you can build verify an observational equation that ensures, in a sense, that what they compute is the identity : for all value f : 'a -> 'a, we have that f x = x
This equation does not depend on the specific function, it is uniquely determined by the type. There are several theorems (framed in different contexts) that formalize the informal idea that "a polymorphic function can't change a parameter of polymorphic type, only pass it around". See for example the paper of Philip Wadler, Theorems for free!.
The nice thing with those theorems is that they don't only apply to the 'a -> 'a case, which is not so interesting. You can get a theorem out of the ('a -> 'a -> bool) -> 'a list -> 'a list type of a sorting function, which says that its application commutes with the mapping of a monotonous function.
More formally, if you have any function s with such a type, then for all types u, v, functions cmp_u : u -> u -> bool, cmp_v : v -> v -> bool, f : u -> v, and list li : u list, and if cmp_u u u' implies cmp_v (f u) (f u') (f is monotonous), you have :
map f (s cmp_u li) = s cmp_v (map f li)
This is indeed true when s is exactly a sorting function, but I find it impressive to be able to prove that it is true of any function s with the same type.
Once you allow non-termination, either by diverging (looping indefinitely, as with the let rec f x = f x function given above), or by raising exceptions, of course you can have anything : you can build a function of type 'a -> 'b, and types don't mean anything anymore. Using Obj.magic : 'a -> 'b has the same effect.
There are saner ways to lose the equivalence to identity : you could work inside a non-empty environment, with predefined values accessible from the function. Consider for example the following function :
let counter = ref 0
let f x = incr counter; x
You still that the property that for all x, f x = x : if you only consider the return value, your function still behaves as the identity. But once you consider side-effects, you're not equivalent to the (side-effect-free) identity anymore : if I know counter, I can write a separating function that returns true when given this function f, and would return false for pure identity functions.
let separate g =
let before = !counter in
g ();
!counter = before + 1
If counter is hidden (for example by a module signature, or simply let f = let counter = ... in fun x -> ...), and no other function can observe it, then we again can't distinguish f and the pure identity functions. So the story is much more subtle in presence of local state.
let rec f x = f (f x)
This function never terminates, but it does have type 'a -> 'a.
If we only allow total functions, the question becomes more interesting. Without using evil tricks, it's not possible to write a total function of type 'a -> 'a, but evil tricks are fun so:
let f (x:'a):'a = Obj.magic 42
Obj.magic is an evil abomination of type 'a -> 'b which allows all kinds of shenanigans to circumvent the type system.
On second thought that one isn't total either because it will crash when used with boxed types.
So the real answer is: the identity function is the only total function of type 'a -> 'a.
Throwing an exception can also give you an 'a -> 'a type:
# let f (x:'a) : 'a = raise (Failure "aaa");;
val f : 'a -> 'a = <fun>
If you restrict yourself to a "reasonable" strongly normalizing typed λ-calculus, there is a single function of type ∀α α→α, which is the identity function. You can prove it by examining the possible normal forms of a term of this type.
Philip Wadler's 1989 article "Theorems for Free" explains how functions having polymorphic types necessarily satisfy certain theorems (e.g. a map-like function commutes with composition).
There are however some nonintuitive issues when one deals with much polymorphism. For instance, there is a standard trick for encoding inductive types and recursion with impredicative polymorphism, by representing an inductive object (e.g. a list) using its recursor function. In some cases, there are terms belonging to the type of the recursor function that are not recursor functions; there is an example in §4.3.1 of Christine Paulin's PhD thesis.

Ocaml continuation passing style

I'm new to ocaml and tryin to write a continuation passing style function but quite confused what value i need to pass into additional argument on k
for example, I can write a recursive function that returns true if all elements of the list is even, otherwise false.
so its like
let rec even list = ....
on CPS, i know i need to add one argument to pass function
so like
let rec evenk list k = ....
but I have no clue how to deal with this k and how does this exactly work
for example for this even function, environment looks like
val evenk : int list -> (bool -> ’a) -> ’a = <fun>
evenk [4; 2; 12; 5; 6] (fun x -> x) (* output should give false *)
The continuation k is a function that takes the result from evenk and performs "the rest of the computation" and produces the "answer". What type the answer has and what you mean by "the rest of the computation" depends on what you are using CPS for. CPS is generally not an end in itself but is done with some purpose in mind. For example, in CPS form it is very easy to implement control operators or to optimize tail calls. Without knowing what you are trying to accomplish, it's hard to answer your question.
For what it is worth, if you are simply trying to convert from direct style to continuation-passing style, and all you care about is the value of the answer, passing the identity function as the continuation is about right.
A good next step would be to implement evenk using CPS. I'll do a simpler example.
If I have the direct-style function
let muladd x i n = x + i * n
and if I assume CPS primitives mulk and addk, I can write
let muladdk x i n k =
let k' product = addk x product k in
mulk i n k'
And you'll see that the mulptiplication is done first, then it "continues" with k', which does the add, and finally that continues with k, which returns to the caller. The key idea is that within the body of muladdk I allocated a fresh continuation k' which stands for an intermediate point in the multiply-add function. To make your evenk work you will have to allocate at least one such continuation.
I hope this helps.
Whenever I've played with CPS, the thing passed to the continuation is just the thing you would normally return to the caller. In this simple case, a nice "intuition lubricant" is to name the continuation "return".
let rec even list return =
if List.length list = 0
then return true
else if List.hd list mod 2 = 1
then return false
else even (List.tl list) return;;
let id = fun x -> x;;
Example usage: "even [2; 4; 6; 8] id;;".
Since you have the invocation of evenk correct (with the identity function - effectively converting the continuation-passing-style back to normal style), I assume that the difficulty is in defining evenk.
k is the continuation function representing the rest of the computation and producing a final value, as Norman said. So, what you need to do is compute the result of v of even and pass that result to k, returning k v rather than just v.
You want to give as input the result of your function as if it were not written with continuation passing style.
Here is your function which tests whether a list has only even integers:
(* val even_list : int list -> bool *)
let even_list input = List.for_all (fun x -> x mod 2=0) input
Now let's write it with a continuation cont:
(* val evenk : int list -> (bool -> 'a) -> 'a *)
let evenk input cont =
let result = even_list input in
(cont result)
You compute the result your function, and pass resultto the continuation ...

Resources