According to the help of multinom, package nnet, "The response should be a factor or a matrix with K columns, which will be interpreted as counts for each of K classes." I tried to use this function in the second case, obtaining an error.
Here is a sample code of what I do:
response <- matrix(round(runif(200,0,1)*100),ncol=20) # 10x20 matrix of counts
predictor <- runif(10,0,1)
fit1 <- multinom(response ~ predictor)
weights1 <- predict(fit1, newdata = 0.5, "probs")
Here what I obtain:
'newdata' had 1 row but variables found have 10 rows
How can I solve this problem?
Bonus question: I also noticed that we can use multinom with a predictor of factors, e.g. predictor <- factor(c(1,2,2,3,1,2,3,3,1,2)). I cannot understand how this is mathematically possible, given that a multinomial linear logit regression should work only with continuous or dichotomous predictors.
The easiest method for obtaining the predictions for a new variable is to define the new data as a data.frame.
Using the sample code
> predict(fit1, newdata = data.frame(predictor = 0.5), type = "probs")
[1] 0.07231972 0.05604055 0.05932186 0.07318140 0.03980245 0.06785690 0.03951593 0.02663618
[9] 0.04490844 0.04683919 0.02298260 0.04801870 0.05559221 0.04209283 0.03799946 0.06406533
[17] 0.04509723 0.02197840 0.06686314 0.06888748
Related
I would like to make a prediction on a dataset which is longer than the dataframe in which my training set is present.
Df<-data.frame(MW=c(192700,117900,99300,54100,37800,29500,20200,740),
Bands1<-c(0.0427334,0.2393070,0.3206159,0.5732002,0.7228141,0.8164857,0.8462922,0.9273532))
Df.pred<-data.frame(Band2=c(0.4470235,0.4884748,0.5345757,0.5898747,0.6405655,0.6774131,0.7557672,0.7972277,0.8940148,0.9493461,1.0138248,1.0414651))
mod<-lm(log10(Df$MW)~Df$Bands1, data=Df) ## Making the model
Df.pred$PredMW<-predict(lm(log10(Df$MW)~Df$Bands1, data=Df), newdata=Df.pred) ## Asking the model to predict values corresponding to Df.pred based on mod
I seem to get the following output:
Warning message:
'newdata' had 12 rows but variables found have 8 rows
How do I solve this? I have read the ?predict as well as ?predict.lm. I am unable to figure this out.
Change the Df.pred column name to Bands1, the same as in Df:
Df.pred <- data.frame(Bands1 = c(0.4470235, 0.4884748 ,0.5345757 ,0.5898747 ,0.6405655,
0.6774131, 0.7557672, 0.7972277, 0.8940148, 0.9493461,
1.0138248, 1.0414651))
mod <- lm(log10(MW) ~ Bands1, data = Df) ## Making the model
Df.pred$PredMW <- predict(mod, newdata = Df.pred) ## Asking the model to predict values corresponding to Df.pred based on mod
I wish to create a model matrix of the independent variables/specific levels of categorical variables selected by LASSO so that I can plug said model matrix into a glm() function to run a logistic regression.
I have included an example of what I'm trying to do. Any help would be greatly appreciated
data("iris")
iris$Petal.Width <- factor(iris$Petal.Width)
iris$Sepal.Length2 <- ifelse(iris$Sepal.Length>=5.8,1,0)
f <- as.formula(Sepal.Length2~Sepal.Width+Petal.Length+Petal.Width+Species)
X <- model.matrix(f,iris)[,-1]
Y <- iris$Sepal.Length2
cvfit <- cv.glmnet(X,Y,alpha=1,family="binomial")
fit <- glmnet(X,Y,alpha=1,family = "binomial")
b <- coef(cvfit,s="lambda.1se")
print(b)
## This is the part I am unsure of: I want to create a model matrix of the non-zero coefficients contained within 'b'
## e.g.
lasso_x <- model.matrix(b,iris)
logistic_model <- glm.fit(lasso_x,Y,family = "binomial")
Edit:
I also tried the following:
model.matrix(~X)[which(b!=0)-1]
but it just gives me a single column of 1's, the length of the number of selections from LASSO (minus the intercept)
I am running GLM with linear regression, then i am using predict to fit the response on my test data, but the problem is i am getting the probabilities and i don't know how to convert those probabilities to real values.
log<- glm(formula=stock_out_duration~lag_2_market_unres_dos+lag_2_percentage_bias_forecast_error + forecast,train_data_final,family = inverse.gaussian(link = "log"),maxit=100)
summary(log)
predict <- predict(log, test_data, type = 'response')
table_mat <- table(test_data$stock_out_duration)
table_mat
As far as I'm aware, there isn't a magic function that does this for you given that you're using glm. As you've noted, what typically gets returned is the probabilities. You can convert the probabilities into predictions for the outcome of the underlying categories by choosing the outcome with the largest probability. I agree a one-line function for this would be nice though.
You can get this functionality if use the glmnet package.
library(glmnet)
y = ifelse(rnorm(100) > 0, "red", "blue")
y = factor(y)
x = rnorm(100)
fit = glmnet(x, y, family="binomial") # use family="multinomial" if there are more than 2 categories in your factor
yhat = predict(fit, newx=x, type="class", s=0)
yhat in the above will be a vector containing either "red" or "blue".
Note, the type="class" is the bit that gets you the category outcomes returned in yhat. The s=0 means to use a lambda penalty of zero for the coefficients you use to get predictions. You indicated in the question that you were just doing ordinary regression without any ridge or lasso style penalty factors, so s=0 ensures you get that in your predictions.
The working data looks like:
set.seed(1234)
df <- data.frame(y = rnorm(1:30),
fac1 = as.factor(sample(c("A","B","C","D","E"),30, replace = T)),
fac2 = as.factor(sample(c("NY","NC","CA"),30,replace = T)),
x = rnorm(1:30))
The lme model is fitted as:
library(lme4)
mixed <- lmer(y ~ x + (1|fac1) + (1|fac2), data = df)
I used bootMer to run the parametric bootstrapping and I can successfully obtain the coefficients (intercept) and SEs for fixed&random effects:
mixed_boot_sum <- function(data){s <- sigma(data)
c(beta = getME(data, "fixef"), theta = getME(data, "theta"), sigma = s)}
mixed_boot <- bootMer(mixed, FUN = mixed_boot_sum, nsim = 100, type = "parametric", use.u = FALSE)
My first question is how to obtain the coefficients(slope) of each individual levels of the two random effects from the bootstrapping results mixed_boot ?
I have no problem extracting the coefficients(slope) from mixed model by using augment function from broom package, see below:
library(broom)
mixed.coef <- augment(mixed, df)
However, it seems like broom can't deal with boot class object. I can't use above functions directly on mixed_boot.
I also tried to modify the mixed_boot_sum by adding mmList( I thought this would be what I am looking for), but R complains as:
Error in bootMer(mixed, FUN = mixed_boot_sum, nsim = 100, type = "parametric", :
bootMer currently only handles functions that return numeric vectors
Furthermore, is it possible to obtain CI of both fixed&random effects by specifying FUN as well?
Now, I am very confused about the correct specifications for the FUN in order to achieve my needs. Any help regarding to my question would be greatly appreciated!
My first question is how to obtain the coefficients(slope) of each individual levels of the two random effects from the bootstrapping results mixed_boot ?
I'm not sure what you mean by "coefficients(slope) of each individual level". broom::augment(mixed, df) gives the predictions (residuals, etc.) for every observation. If you want the predicted coefficients at each level I would try
mixed_boot_coefs <- function(fit){
unlist(coef(fit))
}
which for the original model gives
mixed_boot_coefs(mixed)
## fac1.(Intercept)1 fac1.(Intercept)2 fac1.(Intercept)3 fac1.(Intercept)4
## -0.4973925 -0.1210432 -0.3260958 0.2645979
## fac1.(Intercept)5 fac1.x1 fac1.x2 fac1.x3
## -0.6288728 0.2187408 0.2187408 0.2187408
## fac1.x4 fac1.x5 fac2.(Intercept)1 fac2.(Intercept)2
## 0.2187408 0.2187408 -0.2617613 -0.2617613
## ...
If you want the resulting object to be more clearly named you can use:
flatten <- function(cc) setNames(unlist(cc),
outer(rownames(cc),colnames(cc),
function(x,y) paste0(y,x)))
mixed_boot_coefs <- function(fit){
unlist(lapply(coef(fit),flatten))
}
When run through bootMer/confint/boot::boot.ci these functions will give confidence intervals for each of these values (note that all of the slopes facW.xZ are identical across groups because the model assumes random variation in the intercept only). In other words, whatever information you know how to extract from a fitted model (conditional modes/BLUPs [ranef], predicted intercepts and slopes for each level of the grouping variable [coef], parameter estimates [fixef, getME], random-effects variances [VarCorr], predictions under specific conditions [predict] ...) can be used in bootMer's FUN argument, as long as you can flatten its structure into a simple numeric vector.
I have got a question regarding the ordinal package in R or specifically regarding the predict.clm() function. I would like to calculate the linear predictor of an ordered probit estimation. With the polr function of the MASS package the linear predictor can be accessed by object$lp. It gives me on value for each line and is in line with what I understand what the linear predictor is namely X_i'beta. If I however use the predict.clm(object, newdata,"linear.predictor") on an ordered probit estimation with clm() I get a list with the elements eta1 and eta2,
with one column each, if the newdata contains the dependent variable
where each element contains as many columns as levels in the dependent variable, if the newdata doesn't contain the dependent variable
Unfortunately I don't have a clue what that means. Also in the documentations and papers of the author I don't find any information about it. Would one of you be so nice to enlighten me? This would be great.
Cheers,
AK
UPDATE (after comment):
Basic clm model is defined like this (see clm tutorial for details):
Generating data:
library(ordinal)
set.seed(1)
test.data = data.frame(y=gl(4,5),
x=matrix(c(sample(1:4,20,T)+rnorm(20), rnorm(20)), ncol=2))
head(test.data) # two independent variables
test.data$y # four levels in y
Constructing models:
fm.polr <- polr(y ~ x) # using polr
fm.clm <- clm(y ~ x) # using clm
Now we can access thetas and betas (see formula above):
# Thetas
fm.polr$zeta # using polr
fm.clm$alpha # using clm
# Betas
fm.polr$coefficients # using polr
fm.clm$beta # using clm
Obtaining linear predictors (only parts without theta on the right side of the formula):
fm.polr$lp # using polr
apply(test.data[,2:3], 1, function(x) sum(fm.clm$beta*x)) # using clm
New data generation:
# Contains only independent variables
new.data <- data.frame(x=matrix(c(rnorm(10)+sample(1:4,10,T), rnorm(10)), ncol=2))
new.data[1,] <- c(0,0) # intentionally for demonstration purpose
new.data
There are four types of predictions available for clm model. We are interested in type=linear.prediction, which returns a list with two matrices: eta1 and eta2. They contain linear predictors for each observation in new.data:
lp.clm <- predict(fm.clm, new.data, type="linear.predictor")
lp.clm
Note 1: eta1 and eta2 are literally equal. Second is just a rotation of eta1 by 1 in j index. Thus, they leave left side and right side of linear predictor scale opened respectively.
all.equal(lp.clm$eta1[,1:3], lp.clm$eta2[,2:4], check.attributes=FALSE)
# [1] TRUE
Note 2: Prediction for first line in new.data is equal to thetas (as far as we set this line to zeros).
all.equal(lp.clm$eta1[1,1:3], fm.clm$alpha, check.attributes=FALSE)
# [1] TRUE
Note 3: We can manually construct such predictions. For instance, prediction for second line in new.data:
second.line <- fm.clm$alpha - sum(fm.clm$beta*new.data[2,])
all.equal(lp.clm$eta1[2,1:3], second.line, check.attributes=FALSE)
# [1] TRUE
Note 4: If new.data contains response variable, then predict returns only linear predictor for specified level of y. Again we can check it manually:
new.data$y <- gl(4,3,length=10)
lp.clm.y <- predict(fm.clm, new.data, type="linear.predictor")
lp.clm.y
lp.manual <- sapply(1:10, function(i) lp.clm$eta1[i,new.data$y[i]])
all.equal(lp.clm.y$eta1, lp.manual)
# [1] TRUE