Is it possible to modify term frequencies / term vectors directly? - vector

I would like to use Lucene.NET to store and query term vectors. However, I do not want the term vectors to be created from documents. Instead, I want to be able to write and update the term vectors directly, without positions or offsets of the term/token.
The workaround would be to generate text from a term vector, i.e. from the term vector
foo: 3; bar: 1
generate the text
foo, foo, foo, bar
and let Lucene index that text. If I want to update the term frequency of bar to 2, I could get the stored text (or generate it from the old term vector, if I don't store it), change it to
foo, foo, foo, bar, bar
and update the according document in the index.
This is quite expensive for such a simple task. Obviously, this is not the use case, Lucene was built to be used for. Still, I would like to be able to use the power of Lucene for querying, etc..
Is there a way to write term vectors for a document directly or do you have any other good ideas?

As I said in my question, Lucene is not intended for storing and manipulating term vectors directly. The initial approach is more or less the way to go at least with regards to the process of updating the term vector:
Retrieve the document which represents the relevant term vector
Update the according field of the document
Reindex the document (Delete, then Add equals Update in Lucene)
I haven't found a way to update a single term frequency in the vector without reindexing the entire document.
One improvement of the method described in the question is to encode the termvector as term-frequency pairs:
Instead of
foo foo foo bar
the field content can be written as
foo:3; bar:1;
You can then write a custom TokenFilter which reads these tokens one by one and then returns the term n times. This will not improve performance but simplify handling of the term vectors. If you're not familiar with custom token filters and analyzers it is probably not worth it to use this approach and I would stick with the naive version I already suggested in the question.

Related

Search query to find documents that have multiple element

I have a few XML documents in marklogic which have the structure
<abc:doc>
<abc:doc-meta>
<abc:meetings>
<abc:meeting>
</abc:meeting>
<abc:meeting>
</abc:meeting>
</abc:meetings>
</abc:doc-meta>
</abc:doc>
We can have more than one <abc:meeting> element under the <abc:meetings> element.
I am trying to write a cts:search query to get only documents that have more than one <abc:meeting> element in the document.
Please advise
This is tricky. Ideally, you'd want to drive searches from indexes for best performance. Unfortunately, MarkLogic doesn't keep track of element counts in its universal index, and aggregating counts from a range index can be cumbersome.
The overall simplest solution would be to add a count attribute on abc:meetings, and then add a range index on that. It does mean you'd have to change your data, and you'd have to keep that attribute in synch with each change.
You could also just search on the presence of abc:meeting with cts:element-query(), and append an XPath predicate to count the number of elements afterwards. Something like:
cts:search(
collection(),
cts:element-query(xs:QName('abc:meeting'), cts:true-query())
)[count(.//abc:meeting) > 1]
If not many documents contain meetings, this might work fairly well for you, but it still requires pulling up all documents containing meetings, hence could be expensive.
I played with the thought of leveraging cts:near-query(), but that is driven on word positions, so depends on the actual amount of tokens inside a meeting. If that were always an exact number of tokens (unlikely I'd guess), you could use the minimal-distance option on a double cts:element-query() wrapped in a cts:near-query(). It might help optimize the previous option a little though.
Most performant option I can think of right now, involves adding a User-Defined aggregate Function. It unfortunately means compiling c++ code. I happen to have written such a UDF in the past, that you should be able to use as-is after compilation and installation. For details see:
https://github.com/grtjn/doc-count-udf
and
http://docs.marklogic.com/guide/app-dev/aggregateUDFs
HTH!
It boils down to how many "a few" is. If it's thousands or fewer, than what grtjn presents above for a cts:search plus an XPath expression will work fine. If it's more, I'd add the count attribute to abc:meetings and then use a pre-commit trigger (e.g. on the collection of these documents) to ensure that the count attribute value is kept in sync. You'd need a range index to be able to query for "Documents that have a count of meetings of 2 or greater".
Of course, if all you need to query on is whether there's more than one meeting, then just add a "multiple" attribute to abc:meetings with a value of "true". Then you don't need a range index - you can do a cts:element-attribute-value-query on abc:meetings and multiple="true".

When to include an index (automated heuristic)

I have a piece of software which takes in a database, and uses it to produce graphs based on what the user wants (primarily queries of the form SELECT AVG(<input1>) AS x, AVG(<intput2>) as y FROM <input3> WHERE <key> IN (<vals..> AND ...). This works nicely.
I have a simple script that is passed a (often large) number of files, each describing a row
name=foo
x=12
y=23.4
....... etc.......
The script goes through each file, saving the variable names, and an INSERT query for each. It then loads the variable names, sort | uniq's them, and makes a CREATE TABLE statement out of them (sqlite, amusingly enough, is ok with having all columns be NUMERIC, even if they actually end up containing text data). Once this is done, it then executes the INSERTS (in a single transaction, otherwise it would take ages).
To improve performance, I added an basic index on each row. However, this increases database size somewhat significantly, and only provides a moderate improvement.
Data comes in three basic types:
single value, indicating things like program version, etc.
a few values (<10), indicating things like input parameters used
many values (>1000), primarily output data.
The first type obviously shouldn't need an index, since it will never be sorted upon.
The second type should have an index, because it will commonly be filtered by.
The third type probably shouldn't need an index, because it will be used in output.
It would be annoying to determine which type a particular value is before it is put in the database, but it is possible.
My question is twofold:
Is there some hidden cost to extraneous indexes, beyond the size increase that I have seen?
Is there a better way to index for filtration queries of the form WHERE foo IN (5) AND bar IN (12,14,15)? Note that I don't know which columns the user will pick, beyond the that it will be a type 2 column.
Read the relevant documentation:
Query Planning;
Query Optimizer Overview;
EXPLAIN QUERY PLAN.
The most important thing for optimizing queries is avoiding I/O, so tables with less than ten rows should not be indexed because all the data fits into a single page anyway, so having an index would just force SQLite to read another page for the index.
Indexes are important when you are looking up records in a big table.
Extraneous indexes make table updates slower, because each index needs to be updated as well.
SQLite can use at most one index per table in a query.
This particular query could be optimized best by having a single index on the two columns foo and bar.
However, creating such indexes for all possible combinations of lookup columns is most likely not worth the effort.
If the queries are generated dynamically, the best idea probably is to create one index for each column that has good selectivity, and rely on SQLite to pick the best one.
And don't forget to run ANALYZE.

Is there a way to get the list of indexed words from Marklogic universal index

I am working on Marklogic tool
I am having a database of around 27000 documents.
What I want to do is retrieve the keywords which have maximum frequency in the documents given by the result of any search query.
I am currently using xquery functions to count the frequency of each word in the set of all documents retrieved as query result. However, this is quite inefficient.
I was thinking that it would help me if i could get the list of words on which marklogic has performed indexing.
So is there a way to retrieve the list of indexed words from the universal index of marklogic??
Normally you would use something like this in MarkLogic:
(
for $v in cts:element-values(xs:Qname("myelem"))
let $f := cts:frequency($v)
order by $f descending
return $v
)[1 to 10]
This kind of functionality is built-in in the search:search library, which works very conveniently.
But you cannot use that on values from cts:words e.a. unfortunately. There is a little trick that could get you close though. Instead of using cts:frequency, you could use a xdmp:estimate on a cts:search to get a fragment count:
(
for $v in cts:words()
let $f := xdmp:estimate(cts:search(collection(), $v))
order by $f descending
return $v
)[1 to 10]
The performance is less, but still much faster than bluntly running through all documents.
HTH!
What if your search contains multiple terms? How will you calculate the order?
What if some of your terms are very common in your corpus of documents, and others are very rare? Should the count of "the" contribute more to the score than "protease", or should they contribute the same?
If the words occur in the title vs elsewhere in the document, should that matter?
What if one document is relatively short, and another is quite long. How do you account for that?
These are some of the basic questions that come up when trying to determine relevancy. Most search engines use a combination of term frequency (how often do the terms occur in your documents), and document frequency (how many documents contain the terms). They can also use the location of the terms in your documents to determine a score, and they can also account for document length in determining a score.
MarkLogic uses a combination of term frequency and document frequency to determine relevance by default. These factors (and others) are used to determine a relevance score for your search criteria, and this score is the default sorting for results returned by search:search from the search API or the low-level cts:search and its supporting operators.
You can look at the details of the options for cts:search to learn about some of the different scoring options. See 'score-logtfidf' and others here:
http://community.marklogic.com/pubs/5.0/apidocs/SearchBuiltins.html#cts:search
I would also look at the search developers guide:
http://community.marklogic.com/pubs/5.0/books/search-dev-guide.pdf
Many of the concepts are under consideration by the XQuery working group as enhancements for a future version of XQuery. They aren't part of the language today. MarkLogic has been at the forefront of search for a number of years, so you'll find there are many features in the product, and a lot of discussion related to this area in the archives.
"Is there a way to retrieve the list of indexed words from the universal index of marklogic?" No. The universal index is a hash index, so it contains hashes not words.
As noted by others you can create value-based lexicons that can list their contents. Some of these also include frequency information. However, I have another suggestion: cts:distinctive-terms() will identify the most distinctive terms from a sequence of nodes, which could be the current page of search results. You can control whether the output terms are just words, or include more complex terms such as element-word or phrase. See the docs for more details.
http://docs.marklogic.com/5.0doc/docapp.xqy#display.xqy?fname=http://pubs/5.0doc/apidoc/SearchBuiltins.xml&category=SearchBuiltins&function=cts:distinctive-terms
I have used cts:distinctive-terms(). It gives mostly wildcarded terms in my case which are not of much use. Furthur it is suitable for finding distinctive terms in a single document. When I try to run it on many documents it is quite slow.
What I want to implement is a dynamic facet which is populated with the keywords of the documents which come up in the search result. I have implemented it but it is inefficient as it counts the frequency of all the words in the documents. I want it to be a suggestion or recommandation feature like if you have searched for this particular term or phrase then you may be interested in these suggested terms or phrases. So I want an efficient method to find the terms which are common in the result set of documents of a search.
I tried cts:words() as suggested. It gives similar words as the search query word and the number of documents in which it is contained. WHat it does not take into account is the set of search result documents. It just shows the number of documents which contain similar words in the whole database, irrespective of whether these documents are present in the search result or not

What is a hash map in programming and where can it be used

I have often heard people talking about hashing and hash maps and hash tables. I wanted to know what they are and where you can best use them for.
First you shoud maybe read this article.
When you use lists and you are looking for a special item you normally have to iterate over the complete list. This is very expensive when you have large lists.
A hashtable can be a lot faster, under best circumstances you will get the item you are looking for with only one access.
How is it working? Like a dictionary ... when you are looking for the word "hashtable" in a dictionary, you are not starting with the first word under 'a'. But rather you go straight forward to the letter 'h'. Then to 'ha', 'has' and so on, until you found your word. You are using an index within your dictionary to speed up your search.
A hashtable does basically the same. Every item gets an unique index (the so called hash). You use this hash for lookups. The hash may be an index in a normal linked list. For instance your hash could be a number like 2130 which means that you should look at position 2130 in your list. A lookup at a known index within a normal list is very easy and fast.
The problem of the whole approach is the so called hash function which assigns this index to each item. When you are looking for an item you should be able to calculate the index in advance. Just like in a real dictionary, where you see that the word 'hashtable' starts with the letter 'h' and therefore you know the approximate position.
A good hash function provides hashcodes that are evenly distrubuted over the space of all possible hashcodes. And of course it tries to avoid collisions. A collision happens when two different items get the same hashcode.
In C# for instance every object has a GetHashcode() method which provides a hash for it (not necessarily unique). This can be used for lookups and sorting with in your dictionary.
When you start using hashtables you should always keep in mind, that you handle collisions correctly. It can happen quite easily in large hashtables that two objects got the same hash (maybe your overload of GetHashcode() is faulty, maybe something else happened).
Basically, a HashMap allows you to store items with identifiers. They are stored in a table format with the identifier being hashed using a hashing algorithm.
Typically they are more efficient to retrieve items than search trees etc.
You may find this helpful: http://www.relisoft.com/book/lang/pointer/8hash.html
Hope it helps,
Chris
Hashing (in the noncryptographic sense) is a blanket term for taking an input and then producing an output to identify it with. A trivial example of a hash is adding the sum of the letters of a string, i.e:
f(abc) = 6
Note that this trivial hash scheme would create a collision between the strings abc, bca, ae, etc. An effective hash scheme would produce different values for each string, naturally.
Hashmaps and hashtables are datastructures (like arrays and lists), that use hashing to store data. In a hashtable, a hash is produced (either from a provided key, or from the object itself) that determines where in the table the object is stored. This means that as long as the user of the hashtable is aware of the key, retrieving the object is extremely fast.
In a list, in comparison, you would need to in some way search through the list in order to find your sought object. This also represents the backside of hashtables, which is that it is very complicated to find an object in it without knowing the key, because where the object is stored in the table has no relevance to its value nor when it was inputed.
Hashmaps are similar to hashtables, but only one example of each object is stored in it (hence no key needs to be provided, the object itself is the key).
This is of course a very simple explanation, so I suggest you read in depth from this point on. I hope I didn't make any silly mistakes. =)
Hashmap is used for storing data in key value pairs. We can use a hashmap for storing objects in a application and use it further in the same application for storing, updating, deleting values. Hashmap key and values are stored in a bucket to a specific entry, this entry location is determined using Hashcode function. This hashcode function determines the hash where the value is stored. The detailed explanantion of how hashmap works is described in this video: https://youtu.be/iqYC1odZSNo
Hash maps saves a lot of time as compared to other search criteria. We have a hash key that corresponds to a hash code which further helps to find its index value. In terms of implementation, hash maps takes a string converts it into an integer and remaps it to convert it into an index of an array which helps to find the required value.
To go in detail we can look for handling collisions in hash maps. Like instead of using array we can go with the linked list.
There is a short video available to understand it.
Available here :
Implementation example --> https://www.youtube.com/watch?v=shs0KM3wKv8
Sample:
int hashCode(String s)
{
logic
}

Big O of Hash Table vs. Binary Search Tree

Which would take longer?
print all items stored in a binary search tree in sorted order or print all items stored in a hash table in sorted order.
It would take longer to print the items of a hash table out in sorted order because a hash table is never sorted correct? and a BST is?
You are correct. Hashtables are sorted by some hash function, not by their natural sort order, so you'd have to extract all the entries O(N) and sort them O(NlogN) whereas you can traverse a binary search tree in natural order in O(N).
Note however that in Java, for instance, there is a LinkedHashSet and LinkedHashMap which gives you some of the advantages of Hash but which can be traversed in the order it was added to, so you could sort it and be able to traverse it in that sorted order as well as extracting items by hash.
Correct, a hash table is not "sorted" in the way you probably want. Elements in hash tables are not quite fully sorted, usually, although the arrangement is often kind of in the neighborhood of a sort. But they are arranged according to the hash function, which is usually wildly different for similar phrases. It's not a sort by any metric a human would use.
If the main thing you are doing with your collection is printing it in sorted order, you're best off using some type of BST.
A binary search tree is stored in a way that if you do a depth first traversal, you will find the items in sorted order(assuming you have a consistent compare function). The Big O of simply returning items already in the tree would be the Big O of traversing the tree.
You are correct about hash tables, they are not sorted. In fact, in order to enumerate everything in a plain hash table, you have to check every bucket to see what is in there, pull it out, then sort what you get. Lots of work to get a sorted list out of that.
Correct, printing sorted data stored in a hash table would be slower because a hash table is not sorted data. It just gives you a quick way to find a particular item. In "Big O Notation" it is said that the item can be found in constant time, i.e. O(1) time.
On the other hand, you can find an item in a binary search tree in "logarithmic time" (O(log n)) because the data has already been sorted for you.
So if you goal is to print a sorted list, you are much better off having the data stored in a sorted order (i.e. a binary tree).
This brings up a couple of interesting questions. Is a search tree still faster considering the following?
Incorporating the setup time for both the Hash Table and the BST?
If the hash algorithm produces a sorted list of words. Technically, you could create a hash table which uses an algorithm which does. In which case the the speed of the BST vs the Hash table would have to come down to the amount of time it takes to fill the hash table in the sorted order.
Also check out related considerations of Skip List vs. Binary Tree: Skip List vs. Binary Tree

Resources