Graph Processing - Vertex Centric Model vs Matrix-Vector Multiplication - graph

Vertex-centric and matrix-vector multiplication are two most famous models to process graph structured data, I am looking for a comparison between them, which one is better and in what terms.
Comparison can be in terms of performance, express-ability(number of algorithms that can be implemented), scalability and any other aspect I am missing to list here :)
I have been looking around but could not find a comparison between the two approaches.
Thanks in advance

Related

8 point algorithm for estimating Fundamental Matrix

I'm watching a lecture about estimating the fundamental matrix for use in stereo vision using the 8 point algorithm. I understand that once we recover the fundamental matrix between two cameras we can compute the epipolar line on one camera given a point on the other. To my understanding this epipolar line (after it's been rectified) makes it easy to find feature correspondences, because we are simply matching features along a 1D line.
The confusion comes from the fact that 8-point algorithm itself requires at least 8 feature correspondences to estimate the Fundamental Matrix.
So, we are finding point correspondences to recover a matrix that is used to find point correspondences?
This seems like a chicken-egg paradox so I guess I'm misunderstanding something.
The fundamental matrix can be precomputed. This leads to two advantages:
You can use a nice environment in which features can be matched easily (like using a chessboard) to compute the fundamental matrix.
You can use more computationally expensive operations like a sequence of SIFT, FLANN and RANSAC across the entire image since you only need to do that once.
After getting the fundamental matrix, you can find correspondences in a noisy environment more efficiently than using the same method when you compute the fundamental matrix.

Can any existing Machine Learning structures perfectly emulate recursive functions like the Fibonacci sequence?

To be clear I don't mean, provided the last two numbers in the sequence provide the next one:
(2, 3, -> 5)
But rather given any index provide the Fibonacci number:
(0 -> 1) or (7 -> 21) or (11 -> 144)
Adding two numbers is a very simple task for any machine learning structure, and by extension counting by ones, twos or any fixed number is a simple addition rule. Recursive calculations however...
To my understanding, most learning networks rely on forwards only evaluation, whereas most programming languages have loops, jumps, or circular flow patterns (all of which are usually ASM jumps of some kind), thus allowing recursion.
Sure some networks aren't forwards only; But can processing weights using the hyperbolic tangent or sigmoid function enter any computationally complete state?
i.e. conditional statements, conditional jumps, forced jumps, simple loops, complex loops with multiple conditions, providing sort order, actual reordering of elements, assignments, allocating extra registers, etc?
It would seem that even a non-forwards only network would only find a polynomial of best fit, reducing errors across the expanse of the training set and no further.
Am I missing something obvious, or did most of Machine Learning just look at recursion and pretend like those problems don't exist?
Update
Technically any programming language can be considered the DNA of a genetic algorithm, where the compiler (and possibly console out measurement) would be the fitness function.
The issue is that programming (so far) cannot be expressed in a hill climbing way - literally, the fitness is 0, until the fitness is 1. Things don't half work in programming, and if they do, there is no way of measuring how 'working' a program is for unknown situations. Even an off by one error could appear to be a totally different and chaotic system with no output. This is exactly the reason learning to code in the first place is so difficult, the learning curve is almost vertical.
Some might argue that you just need to provide stronger foundation rules for the system to exploit - but that just leads to attempting to generalize all programming problems, which circles right back to designing a programming language and loses all notion of some learning machine at all. Following this road brings you to a close variant of LISP with mutate-able code and virtually meaningless fitness functions that brute force the 'nice' and 'simple' looking code-space in attempt to follow human coding best practices.
Others might argue that we simply aren't using enough population or momentum to gain footing on the error surface, or make a meaningful step towards a solution. But as your population approaches the number of DNA permutations, you are really just brute forcing (and very inefficiently at that). Brute forcing code permutations is nothing new, and definitely not machine learning - it's actually quite common in regex golf, I think there's even an xkcd about it...
The real problem isn't finding a solution that works for some specific recursive function, but finding a solution space that can encompass the recursive domain in some useful way.
So other than Neural Networks trained using Backpropagation hypothetically finding the closed form of a recursive function (if a closed form even exists, and they don't in most real cases where recursion is useful), or a non-forwards only network acting like a pseudo-programming language with awful fitness prospects in the best case scenario, plus the virtually impossible task of tuning exit constraints to prevent infinite recursion... That's really it so far for machine learning and recursion?
According to Kolmogorov et al's On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, a three layer neural network can model arbitrary function with the linear and logistic functions, including f(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n) / (2^n * sqrt(5)), which is the close form solution of Fibonacci sequence.
If you would like to treat the problem as a recursive sequence without a closed-form solution, I would view it as a special sliding window approach (I called it special because your window size seems fixed as 2). There are more general studies on the proper window size for your interest. See these two posts:
Time Series Prediction via Neural Networks
Proper way of using recurrent neural network for time series analysis
Ok, where to start...
Firstly, you talk about 'machine learning' and 'perfectly emulate'. This is not generally the purpose of machine learning algorithms. They make informed guesses given some evidence and some general notions about structures that exist in the world. That typically means an approximate answer is better than an 'exact' one that is wrong. So, no, most existing machine learning approaches aren't the right tools to answer your question.
Second, you talk of 'recursive structures' as some sort of magic bullet. Yet they are merely convenient ways to represent functions, somewhat analogous to higher order differential equations. Because of the feedbacks they tend to introduce, the functions tend to be non-linear. Some machine learning approaches will have trouble with this, but many (neural networks for example) should be able to approximate you function quite well, given sufficient evidence.
As an aside, having or not having closed form solutions is somewhat irrelevant here. What matters is how well the function at hand fits with the assumptions embodied in the machine learning algorithm. That relationship may be complex (eg: try approximating fibbonacci with a support vector machine), but that's the essence.
Now, if you want a machine learning algorithm tailored to the search for exact representations of recursive structures, you could set up some assumptions and have your algorithm produce the most likely 'exact' recursive structure that fits your data. There are probably real world problems in which such a thing would be useful. Indeed the field of optimisation approaches similar problems.
The genetic algorithms mentioned in other answers could be an example of this, especially if you provided a 'genome' that matches the sort of recursive function you think you may be dealing with. Closed form primitives could form part of that space too, if you believe they are more likely to be 'exact' than more complex genetically generated algorithms.
Regarding your assertion that programming cannot be expressed in a hill climbing way, that doesn't prevent a learning algorithm from scoring possible solutions by how many much of your evidence it's able to reproduce and how complex they are. In many cases (most? though counting cases here isn't really possible) such an approach will find a correct answer. Sure, you can come up with pathological cases, but with those, there's little hope anyway.
Summing up, machine learning algorithms are not usually designed to tackle finding 'exact' solutions, so aren't the right tools as they stand. But, by embedding some prior assumptions that exact solutions are best, and perhaps the sort of exact solution you're after, you'll probably do pretty well with genetic algorithms, and likely also with algorithms like support vector machines.
I think you also sum things up nicely with this:
The real problem isn't finding a solution that works for some specific recursive function, but finding a solution space that can encompass the recursive domain in some useful way.
The other answers go a long way to telling you where the state of the art is. If you want more, a bright new research path lies ahead!
See this article:
Turing Machines are Recurrent Neural Networks
http://lipas.uwasa.fi/stes/step96/step96/hyotyniemi1/
The paper describes how a recurrent neural network can simulate a register machine, which is known to be a universal computational model equivalent to a Turing machine. The result is "academic" in the sense that the neurons have to be capable of computing with unbounded numbers. This works mathematically, but would have problems pragmatically.
Because the Fibonacci function is just one of many computable functions (in fact, it is primitive recursive), it could be computed by such a network.
Genetic algorithms should do be able to do the trick. The important this is (as always with GAs) the representation.
If you define the search space to be syntax trees representing arithmetic formulas and provide enough training data (as you would with any machine learning algorithm), it probably will converge to the closed-form solution for the Fibonacci numbers, which is:
Fib(n) = ( (1+srqt(5))^n - (1-sqrt(5))^n ) / ( 2^n * sqrt(5) )
[Source]
If you were asking for a machine learning algorithm to come up with the recursive formula to the Fibonacci numbers, then this should also be possible using the same method, but with individuals being syntax trees of a small program representing a function.
Of course, you also have to define good cross-over and mutation operators as well as a good evaluation function. And I have no idea how well it would converge, but it should at some point.
Edit: I'd also like to point out that in certain cases there is always a closed-form solution to a recursive function:
Like every sequence defined by a linear recurrence with constant coefficients, the Fibonacci numbers have a closed-form solution.
The Fibonacci sequence, where a specific index of the sequence must be returned, is often used as a benchmark problem in Genetic Programming research. In most cases recursive structures are generated, although my own research focused on imperative programs so used an iterative approach.
There's a brief review of other GP research that uses the Fibonacci problem in Section 3.4.2 of my PhD thesis, available here: http://kar.kent.ac.uk/34799/. The rest of the thesis also describes my own approach, which is covered a bit more succinctly in this paper: http://www.cs.kent.ac.uk/pubs/2012/3202/
Other notable research which used the Fibonacci problem is Simon Harding's work with Self-Modifying Cartesian GP (http://www.cartesiangp.co.uk/papers/eurogp2009-harding.pdf).

Genetic Algorithms Introduction

Starting off let me clarify that i have seen This Genetic Algorithm Resource question and it does not answer my question.
I am doing a project in Bioinformatics. I have to take data about the NMR spectrum of a cell(E. Coli) and find out what are the different molecules(metabolites) present in the cell.
To do this i am going to be using Genetic Algorithms in R language. I DO NOT have the time to go through huge books on Genetic algorithms. Heck! I dont even have time to go through little books.(That is what the linked question does not answer)
So i need to know of resources which will help me understand quickly what it is Genetic Algorithms do and how they do it. I have read the Wikipedia entry ,this webpage and also a couple of IEEE papers on the subject.
Any working code in R(even in C) or pointers to which R modules(if any) to be used would be helpful.
A brief (and opinionated) introduction to genetic algorithms is at http://www.burns-stat.com/pages/Tutor/genetic.html
A simple GA written in R is available at http://www.burns-stat.com/pages/Freecode/genopt.R The "documentation" is in 'S Poetry' http://www.burns-stat.com/pages/Spoetry/Spoetry.pdf and the code.
I assume from your question you have some function F(metabolites) which yields a spectrum but you do not have the inverse function F'(spectrum) to get back metabolites. The search space of metabolites is large so rather than brute force it you wish to try an approximate method (such as a genetic algorithm) which will make a more efficient random search.
In order to apply any such approximate method you will have to define a score function which compares the similarity between the target spectrum and the trial spectrum. The smoother this function is the better the search will work. If it can only yield true/false it will be a purely random search and you'd be better off with brute force.
Given the F and your score (aka fitness) function all you need to do is construct a population of possible metabolite combinations, run them all through F, score all the resulting spectrums, and then use crossover and mutation to produce a new population that combines the best candidates. Choosing how to do the crossover and mutation is generally domain specific because you can speed the process greatly by avoiding the creation of nonsense genomes. The best mutation rate is going to be very small but will also require tuning for your domain.
Without knowing about your domain I can't say what a single member of your population should look like, but it could simply be a list of metabolites (which allows for ordering and duplicates, if that's interesting) or a string of boolean values over all possible metabolites (which has the advantage of being order invariant and yielding obvious possibilities for crossover and mutation). The string has the disadvantage that it may be more costly to filter out nonsense genes (for example it may not make sense to have only 1 metabolite or over 1000). It's faster to avoid creating nonsense rather than merely assigning it low fitness.
There are other approximate methods if you have F and your scoring function. The simplest is probably Simulated Annealing. Another I haven't tried is the Bees Algorithm, which appears to be multi-start simulated annealing with effort weighted by fitness (sort of a cross between SA and GA).
I've found the article "The science of computing: genetic algorithms", by Peter J. Denning (American Scientist, vol 80, 1, pp 12-14). That article is simple and useful if you want to understand what genetic algorithms do, and is only 3 pages to read!!

Applications of Dense Linear Algebra

What are the common real-world applications of Dense Linear Algebra?
Many problems can be easily described and efficiently computed using Linear Algebra as a common language between human and computer. More often than not though these systems require the solution of sparse matrices, not dense ones. What are common applications that defy this rule?
I'm curious if the community should invest further time to improve DLA packages like LAPACK. Who uses LAPACK in a computationally constrained application? Who uses LAPACK to solve large problems requiring parallelism?
Specifically, what are problems that can not be solved today due to insufficient dense linear algebra capabilities.
This depends on what you mean by real-world. Real-world for me is physics so I'll tell you ones in physics first and then branch out. In physics we often have to find the eigenvalues and eigenvectors of a matrix called the Hamiltonian (it basically contains information about the energy of a system). These matrices can be dense, at least in blocks. These blocks can be quite large. This brings up another point: sparse matrices can be dense in blocks and then it is best to use a dense linear algebra solver for each of the blocks.
There is also something called the density matrix of a system. It can be found using the eigenvectors of the Hamiltonian. In one algorithm that I use we often are finding the eigenvectors/values of these density matrices and the density matrices are dense, at least in blocks.
Dense linear algebra is used in material science and hydrodynamics as well, as mentioned in this article. This also relates to quantum chemistry, which is another area in which they are used.
Dense linear algebra routines have also been used to solve quantum scattering of charged particles(it doesn't say so in the linked article, but it was used) and to analyze the Cosmic Microwave Background. More broadly, it is used in solving an array of electromagnetic problems relating to real-world things like antenna design, medical equipment design, and determining/reducing the radar signature of a plane.
Another very real world application is that of curve fitting. However, there are other ways of doing it than using linear algebra that have broader scope.
In summary, dense linear algebra is used in a variety of applications, most of which are science- or engineering-related.
As a side note, many people have previously and are presently putting a great deal of effort into dense linear algebra libraries including ones that use graphics cards to do the computations.
Many methods for linear regression require heavy lifting on big, dense data matrices. The most straightforward example I can think of is linear least squares using the Moore-Penrose pseudoinverse.
Sparse solvers might be more useful in the long run, but dense linear algebra is crucial to the development of sparse solvers, and can't really be neglected:
Dense systems are often an easier domain in which to do algorithmic development, because there's one less thing to worry about.
The size at which sparse solvers become faster than the best dense solvers (even for very sparse matrices) is much larger than most people think it is.
The fastest sparse solvers are generally built on the fastest dense linear algebra operations.
In some sense a special case of Andrew Cone's example, but Kalman Filters eg here typically have a dense state error covariance matrix, though the observation model matrix and transition matrices may be sparse.

Which particular software development tasks have you used math for? And which branch of math did you use?

I'm not looking for a general discussion on if math is important or not for programming.
Instead I'm looking for real world scenarios where you have actually used some branch of math to solve some particular problem during your career as a software developer.
In particular, I'm looking for concrete examples.
I frequently find myself using De Morgan's theorem when as well as general Boolean algebra when trying to simplify conditionals
I've also occasionally written out truth tables to verify changes, as in the example below (found during a recent code review)
(showAll and s.ShowToUser are both of type bool.)
// Before
(showAll ? (s.ShowToUser || s.ShowToUser == false) : s.ShowToUser)
// After!
showAll || s.ShowToUser
I also used some basic right-angle trigonometry a few years ago when working on some simple graphics - I had to rotate and centre a text string along a line that could be at any angle.
Not revolutionary...but certainly maths.
Linear algebra for 3D rendering and also for financial tools.
Regression analysis for the same financial tools, like correlations between financial instruments and indices, and such.
Statistics, I had to write several methods to get statistical values, like the F Probability Distribution, the Pearson product moment coeficient, and some Linear Algebra correlations, interpolations and extrapolations for implementing the Arbitrage pricing theory for asset pricing and stocks.
Discrete math for everything, linear algebra for 3D, analysis for physics especially for calculating mass properties.
[Linear algebra for everything]
Projective geometry for camera calibration
Identification of time series / statistical filtering for sound & image processing
(I guess) basic mechanics and hence calculus for game programming
Computing sizes of caches to optimize performance. Not as simple as it sounds when this is your critical path, and you have to go back and work out the times saved by using the cache relative to its size.
I'm in medical imaging, and I use mostly linear algebra and basic geometry for anything related to 3D display, anatomical measurements, etc...
I also use numerical analysis for handling real-world noisy data, and a good deal of statistics to prove algorithms, design support tools for clinical trials, etc...
Games with trigonometry and AI with graph theory in my case.
Graph theory to create a weighted graph to represent all possible paths between two points and then find the shortest or most efficient path.
Also statistics for plotting graphs and risk calculations. I used both Normal distribution and cumulative normal distribution calculations. Pretty commonly used functions in Excel I would guess but I actully had to write them myself since there is no built-in support in the .NET libraries. Sadly the built in Math support in .NET seem pretty basic.
I've used trigonometry the most and also a small amount a calculus, working on overlays for GIS (mapping) software, comparing objects in 3D space, and converting between coordinate systems.
A general mathematical understanding is very useful if you're using 3rd party libraries to do calculations for you, as you ofter need to appreciate their limitations.
i often use math and programming together, but the goal of my work IS the math so use software to achive that.
as for the math i use; mostly Calculus (FFT's analysing continuous and discrete signals) with a slash of linar algebra (CORDIC) to do trig on a MCU with no floating point chip.
I used a analytic geometry for simple 3d engine in opengl in hobby project on high school.
Some geometry computation i had used for dynamic printing reports, where was another 90° angle layout than.
A year ago I used some derivatives and integrals for store analysis (product item movement in store).
Bot all the computation can be found on internet or high-school book.
Statistics mean, standard-deviation, for our analysts.
Linear algebra - particularly gauss-jordan elimination and
Calculus - derivatives in the form of difference tables for generating polynomials from a table of (x, f(x))
Linear algebra and complex analysis in electronic engineering.
Statistics in analysing data and translating it into other units (different project).
I used probability and log odds (log of the ratio of two probabilities) to classify incoming emails into multiple categories. Most of the heavy lifting was done by my colleague Fidelis Assis.
Real world scenarios: better rostering of staff, more efficient scheduling of flights, shortest paths in road networks, optimal facility/resource locations.
Branch of maths: Operations Research. Vague definition: construct a mathematical model of a (normally complex) real world business problem, and then use mathematical tools (e.g. optimisation, statistics/probability, queuing theory, graph theory) to interrogate this model to aid in the making of effective decisions (e.g. minimise cost, maximise efficency, predict outcomes etc).
Statistics for scientific data analyses such as:
calculation of distributions, z-standardisation
Fishers Z
Reliability (Alpha, Kappa, Cohen)
Discriminance analyses
scale aggregation, poling, etc.
In actual software development I've only really used quite trivial linear algebra, geometry and trigonometry. Certainly nothing more advanced than the first college course in each subject.
I have however written lots of programs to solve really quite hard math problems, using some very advanced math. But I wouldn't call any of that software development since I wasn't actually developing software. By that I mean that the end result wasn't the program itself, it was an answer. Basically someone would ask me what is essentially a math question and I'd write a program that answered that question. Sure I’d keep the code around for when I get asked the question again, and sometimes I’d send the code to someone so that they could answer the question themselves, but that still doesn’t count as software development in my mind. Occasionally someone would take that code and re-implement it in an application, but then they're the ones doing the software development and I'm the one doing the math.
(Hopefully this new job I’ve started will actually let me to both, so we’ll see how that works out)

Resources