Elliptic curve addition in Jacobian coordinates - encryption

I try to add two points on an elliptic curve over a prime field, converting these points from affine/to-affine coordinates, but do not manage to get a correct result (the curve I am testing has a=0). Anyone can see what's wrong?
// From Affine
BigInteger X1=P.x;
BigInteger Y1=P.y;
BigInteger Z1=BigInteger.ONE;
BigInteger X2=Q.x;
BigInteger Y2=Q.y;
BigInteger Z2=BigInteger.ONE;
// Point addition in Jacobian coordinates for a=0
// see http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
BigInteger Z1Z1 = Z1.multiply(Z1);
BigInteger Z2Z2 = Z2.multiply(Z2);
BigInteger U1 = X1.multiply(Z2Z2);
BigInteger U2 = X2.multiply(Z1Z1);
BigInteger S1 = Y1.multiply(Z2).multiply(Z2Z2);
BigInteger S2 = Y2.multiply(Z1).multiply(Z1Z1);
BigInteger H = U2.subtract(U1);
BigInteger I = H.add(H).multiply(H.add(H));
BigInteger J = H.multiply(I);
BigInteger r = S2.subtract(S1).add(S2.subtract(S1));
BigInteger V = U1.multiply(I);
BigInteger X3 = r.multiply(r).subtract(J).subtract(V.add(V)).mod(FIELD);
BigInteger Y3 = r.multiply(V.subtract(X3)).subtract(S1.add(S1).multiply(J)).mod(FIELD);
BigInteger Z3 = Z1.add(Z2).multiply(Z1.add(Z2)).subtract(Z1Z1).subtract(Z2Z2).multiply(H).mod(FIELD);
//To affine
BigInteger Z3Z3 = Z3.multiply(Z3);
BigInteger Z3Z3Z3 = Z3Z3.multiply(Z3);
return new Point(X3.divide(Z3Z3),Y3.divide(Z3Z3Z3));

CodesInChaos said:
The division can't be right. You need to compute the multiplicative inverse modulo FIELD. This operation is quite expensive, and should only be performed once at the end of a scalar multiplication, not after each doubling/addition. Use z^{-1} = ModPow(z, FIELD-2, FIELD).

Related

Rotation About an Arbitrary Axis in 3 Dimensions Using Matrix

I come accross a math problem about Interactive Computer Graphics.
I summarize and abstract this problem as follows:
I'm going to rotation a 3d coordinate P(x1,y1,z1) around a point O(x0,y0,z0)
and there are 2 vectors u and v which we already know.
u is the direction to O before transformation.
v is the direction to O after transformation.
I want to know how to conduct the calculation and get the coordinate of Q
Thanks a lot.
Solution:
Rotation About an Arbitrary Axis in 3 Dimensions using the following matrix:
rotation axis vector (normalized): (u,v,w)
position coordinate of the rotation center: (a,b,c)
rotation angel: theta
Reference:
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxnbGVubm11cnJheXxneDoyMTJiZTZlNzVlMjFiZTFi
for just single point no rotations is needed ... so knowns are:
u,v,O,P
so we now the distance is not changing:
|P-O| = |Q-O|
and directions are parallel to u,v so:
Q = O + v*(|P-O|/|v|)
But I suspect you want to construct rotation (transform matrix) such that more points (mesh perhaps) are transformed. If that is true then you need at least one known to get this right. Because there is infinite possible rotations transforming P -> Q but the rest of the mesh will be different for each ... so you need to know at least 2 non trivial points pair P0,P1 -> Q0,Q1 or axis of rotation or plane parallel to rotation or any other data known ...
Anyway in current state you can use as rotation axis vector perpendicular to u,v and angle obtained from dot product:
axis = cross (u,v)
ang = +/-acos(dot(u,v))
You just need to find out the sign of angle so try both and use the one for which the resultinq Q is where it should be so dot(Q-O,v) is max. To rotate around arbitrary axis and point use:
Rodrigues_rotation_formula
Also this might be helpfull:
Understanding 4x4 homogenous transform matrices
By computing dot product between v and u get the angle l between the vectors. Do a cross product of v and u (normalized) to produce axis of rotation vector a. Let w be a vector along vector u from O to P. To rotate point P into Q apply the following actions (in pseudo code) having axis a and angle l computed above:
float4 Rotate(float4 w, float l, float4 a)
{
float4x4 Mr = IDENTITY;
quat_t quat = IDENTITY;
float4 t = ZERO;
float xx, yy, zz, xy, xz, yz, wx, wy, wz;
quat[X] = a[X] * sin((-l / 2.0f));
quat[Y] = a[Y] * sin((-l / 2.0f));
quat[Z] = a[Z] * sin((-l / 2.0f));
quat[W] = cos((-l / 2.0f));
xx = quat[X] * quat[X];
yy = quat[Y] * quat[Y];
zz = quat[Z] * quat[Z];
xy = quat[X] * quat[Y];
xz = quat[X] * quat[Z];
yz = quat[Y] * quat[Z];
wx = quat[W] * quat[X];
wy = quat[W] * quat[Y];
wz = quat[W] * quat[Z];
Mr[0][0] = 1.0f - 2.0f * (yy + zz);
Mr[0][1] = 2.0f * (xy + wz);
Mr[0][2] = 2.0f * (xz - wy);
Mr[0][3] = 0.0f;
Mr[1][0] = 2.0f * (xy - wz);
Mr[1][1] = 1.0f - 2.0f * (xx + zz);
Mr[1][2] = 2.0f * (yz + wx);
Mr[1][3] = 0.0f;
Mr[2][0] = 2.0f * (xz + wy);
Mr[2][1] = 2.0f * (yz - wx);
Mr[2][2] = 1.0f - 2.0f * (xx + yy);
Mr[2][3] = 0.0f;
Mr[3][0] = 0.0f;
Mr[3][1] = 0.0f;
Mr[3][2] = 0.0f;
Mr[3][3] = 1.0f;
w = Mr * w;
return w;
}
Point Q is at the end of the rotated vector w. Algorithm used in the pseudo code is quaternion rotation.
If you know u, v, P, and O then I would suggest that you compute |OP| which should be preserved under rotations. Then multiply this length by the unit vector -v (I assumed u, v are unit vectors: if not - normalize them) and translate the origin by this -|OP|v vector. The negative sign in front of v comes from the description given in your question:"v is the direction to O after transformation".
P and Q are at the same distance R to O
R = sqrt( (x1-x0)^2 + (y1-y0)^2 + (z1-z0)^2 )
and OQ is collinear to v, so OQ = v * R / ||v|| where ||v|| is the norm of v
||v|| = sqrt( xv^2 + yv^2 + zv^2 )
So the coordinates of Q(xq,yq,zq) are:
xq= xo + xv * R / ||v||
yq= yo + yv * R / ||v||
zq= zo + zv * R / ||v||

Finding the intersection point of a bundle of planes (3) in three.js

I'm Trying to implement 3-plane intersection using the formula at the bottom of this wolfram page here: http://mathworld.wolfram.com/Plane-PlaneIntersection.html
If the three planes are each specified by a point xk and a unit normal vector
nk, then the unique point of intersection x is given by
x = (|n1 n2 n3|)^(-1) [(x1 · n1)(n2 x n3)+(x2 · n2)(n3 x n1)+(x3 · n3)(n3 x n2)],
where |n1 n2 n3| is the determinant of the matrix formed by writing the
vectors ni side-by-side. If two of the planes are parallel, then
|n1 n2 n3| = 0,
But this is as far as I can get, my matrix math is awful and I'm not that good with three.js matrices
var x1, x2, x3; // all clones
var n1, n2, n3; // all clones, normalized
var f1 = (x1.dot(n1)).something(n2.cross(n3));
var f2 = (x2.dot(n2)).something(n3.cross(n1));
var f3 = (x3.dot(n3)).something(n1.cross(n2));
var full = f1.add(f2).add(f3);
First off, what is '(x1 · n1)(n2 x n3)' supposed to mean? I know the first one is dot product and the section is cross product, what do I do to combine them
Second, how do I write the matrix portion in three.js
Here's a ready to use function (assembled from the answer from robertl below):
arguments: Planes p1,p2,p3
return: Vector3
function vertIntersectPlanes(p1, p2, p3)
{
let n1 = p1.normal, n2 = p2.normal, n3 = p3.normal;
let x1 = p1.coplanarPoint(new THREE.Vector3());
let x2 = p2.coplanarPoint(new THREE.Vector3());
let x3 = p3.coplanarPoint(new THREE.Vector3());
let f1 = new THREE.Vector3().crossVectors(n2, n3).multiplyScalar(x1.dot(n1));
let f2 = new THREE.Vector3().crossVectors(n3, n1).multiplyScalar(x2.dot(n2));
let f3 = new THREE.Vector3().crossVectors(n1, n2).multiplyScalar(x3.dot(n3));
let det = new THREE.Matrix3().set(n1.x, n1.y, n1.z, n2.x, n2.y, n2.z, n3.x, n3.y, n3.z).determinant();
let vectorSum = new THREE.Vector3().add(f1).add(f2).add(f3);
let planeIntersection = new THREE.Vector3(vectorSum.x / det, vectorSum.y / det, vectorSum.z / det);
return planeIntersection;
}
First:
What does (x1 · n1)(n2 x n3) mean?
The dot product (x1 · n1) produces a scalar value, namely the component of x1 parallel to n1.
The cross product (n2 x n3) produces a vector perpendicular to both n2 and n3.
Thus, the expression (x1 · n1)(n2 x n3) is the vector (n2 x n3), scaled/stretched/elongated by the scalar (x1 · n1).
Therefore, in three.js, to compute your variable f1,
var cross23 = new THREE.Vector3();
cross23.crossVectors(n2, n3); // stores the cross product (n2 x n3) in cross23
var scalar = x1.dot(n1);
var f1 = cross23;
f1.multiplyScalar(scalar);
Second:
To compute the determinant |n1 n2 n3|, first create the matrix, which we'll call M.
var M = THREE.Matrix3();
Now, we'll set the components of M as the documentation prescribes (http://threejs.org/docs/#Reference/Math/Matrix3).
M.set(n1.x, n1.y, n1.z, n2.x, n2.y, n2.z, n3.x, n3.y, n3.z);
Finally, we'll compute the determinant of the matrix.
var det = M.determinant();
Third:
Above, we've shown how to calculate det, f1, f2, and f3. Now, to compute the intersection of the planes, we must now calculate the expression det^-1 * (f1 + f2 + f3). We first compute the vector sum, f1 + f2 + f3, as follows.
var vectorSum = new THREE.Vector3(0, 0, 0);
vectorSum.add(f1);
vectorSum.add(f2);
vectorSum.add(f3);
Now, with both the determinant and the vector sum, we can compute the final answer, specifically the intersection of the planes.
var planeIntersection = new THREE.Vector3(vectorSum.x/det, vectorSum.y/det, vectorSum.z/det);

Cipher text transformation in Proxy Re-Encryption

I am trying to implement proxy re encryption for the proof of concept with the following parameters.
q = 31, g = 2, sk_a = 3, sk_b = 5,
sk_a and q are co-primes thus inverse of sk_a exits in mod q.
proxy_key = sk_b/sk_a
where proxy_key is calculated by multiply sk_b with modular inverse of sk_a i.e., (sk_b.sk_a inverse) mod q
cipher text: y = (g^sk_a) mod q
To transform cipher text I am using (y^proxy) mod q.
Accoding to the algorithm cipher text transformation should turn out to be (g^sk_b) mod q, but it does not work for me.
I am not sure what's the catch in it. I am using the following code.
BigInteger q = new BigInteger("31");
BigInteger g = new BigInteger("2");
BigInteger sk_a = new BigInteger("3");
BigInteger sk_b = new BigInteger("5");
BigInteger proxy_key = sk_b.multiply(sk_a.modInverse(q)).mod(q);
BigInteger y = g.modPow(sk_a, q);
System.out.println("Cipher Text: " + y);
BigInteger transformation = y.modPow(proxy_key, q);
System.out.println("Cipher Text Transformation: " + transformation);
You have two problems:
2 is not a primitive root modulo 31, so your "g" is not a generator for the multiplicative group. You can use 3 instead.
It looks like somebody made a mistake when explaining Blaze, Bleumer & Strauss. You need to calculate b/a modulo phi(q) instead of modulo q. Then you can use Euler's theorem to show that the reencryption works. It is not true that (g^a)^(a^-1)=g (mod q) when a^-1 is calculated modulo q. This also means that sk_a and sk_b should be relatively prime to phi(q). Try using 7 and 11 instead.
The following should work as you expect:
BigInteger q = new BigInteger("31");
BigInteger phi = new BigInteger("30");
BigInteger g = new BigInteger("3");
BigInteger sk_a = new BigInteger("7");
BigInteger sk_b = new BigInteger("11");
BigInteger proxy_key = sk_b.multiply(sk_a.modInverse(phi)).mod(phi);
BigInteger y = g.modPow(sk_a, q);
System.out.println("Cipher Text: " + y);
BigInteger transformation = y.modPow(proxy_key, q);
System.out.println("Cipher Text Transformation: " + transformation);

correcting fisheye distortion programmatically

BOUNTY STATUS UPDATE:
I discovered how to map a linear lens, from destination coordinates to source coordinates.
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
1). I actually struggle to reverse it, and to map source coordinates to destination coordinates. What is the inverse, in code in the style of the converting functions I posted?
2). I also see that my undistortion is imperfect on some lenses - presumably those that are not strictly linear. What is the equivalent to-and-from source-and-destination coordinates for those lenses? Again, more code than just mathematical formulae please...
Question as originally stated:
I have some points that describe positions in a picture taken with a fisheye lens.
I want to convert these points to rectilinear coordinates. I want to undistort the image.
I've found this description of how to generate a fisheye effect, but not how to reverse it.
There's also a blog post that describes how to use tools to do it; these pictures are from that:
(1) : SOURCE Original photo link
Input : Original image with fish-eye distortion to fix.
(2) : DESTINATION Original photo link
Output : Corrected image (technically also with perspective correction, but that's a separate step).
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
My function stub looks like this:
Point correct_fisheye(const Point& p,const Size& img) {
// to polar
const Point centre = {img.width/2,img.height/2};
const Point rel = {p.x-centre.x,p.y-centre.y};
const double theta = atan2(rel.y,rel.x);
double R = sqrt((rel.x*rel.x)+(rel.y*rel.y));
// fisheye undistortion in here please
//... change R ...
// back to rectangular
const Point ret = Point(centre.x+R*cos(theta),centre.y+R*sin(theta));
fprintf(stderr,"(%d,%d) in (%d,%d) = %f,%f = (%d,%d)\n",p.x,p.y,img.width,img.height,theta,R,ret.x,ret.y);
return ret;
}
Alternatively, I could somehow convert the image from fisheye to rectilinear before finding the points, but I'm completely befuddled by the OpenCV documentation. Is there a straightforward way to do it in OpenCV, and does it perform well enough to do it to a live video feed?
The description you mention states that the projection by a pin-hole camera (one that does not introduce lens distortion) is modeled by
R_u = f*tan(theta)
and the projection by common fisheye lens cameras (that is, distorted) is modeled by
R_d = 2*f*sin(theta/2)
You already know R_d and theta and if you knew the camera's focal length (represented by f) then correcting the image would amount to computing R_u in terms of R_d and theta. In other words,
R_u = f*tan(2*asin(R_d/(2*f)))
is the formula you're looking for. Estimating the focal length f can be solved by calibrating the camera or other means such as letting the user provide feedback on how well the image is corrected or using knowledge from the original scene.
In order to solve the same problem using OpenCV, you would have to obtain the camera's intrinsic parameters and lens distortion coefficients. See, for example, Chapter 11 of Learning OpenCV (don't forget to check the correction). Then you can use a program such as this one (written with the Python bindings for OpenCV) in order to reverse lens distortion:
#!/usr/bin/python
# ./undistort 0_0000.jpg 1367.451167 1367.451167 0 0 -0.246065 0.193617 -0.002004 -0.002056
import sys
import cv
def main(argv):
if len(argv) < 10:
print 'Usage: %s input-file fx fy cx cy k1 k2 p1 p2 output-file' % argv[0]
sys.exit(-1)
src = argv[1]
fx, fy, cx, cy, k1, k2, p1, p2, output = argv[2:]
intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
cv.Zero(intrinsics)
intrinsics[0, 0] = float(fx)
intrinsics[1, 1] = float(fy)
intrinsics[2, 2] = 1.0
intrinsics[0, 2] = float(cx)
intrinsics[1, 2] = float(cy)
dist_coeffs = cv.CreateMat(1, 4, cv.CV_64FC1)
cv.Zero(dist_coeffs)
dist_coeffs[0, 0] = float(k1)
dist_coeffs[0, 1] = float(k2)
dist_coeffs[0, 2] = float(p1)
dist_coeffs[0, 3] = float(p2)
src = cv.LoadImage(src)
dst = cv.CreateImage(cv.GetSize(src), src.depth, src.nChannels)
mapx = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
mapy = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
cv.InitUndistortMap(intrinsics, dist_coeffs, mapx, mapy)
cv.Remap(src, dst, mapx, mapy, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS, cv.ScalarAll(0))
# cv.Undistort2(src, dst, intrinsics, dist_coeffs)
cv.SaveImage(output, dst)
if __name__ == '__main__':
main(sys.argv)
Also note that OpenCV uses a very different lens distortion model to the one in the web page you linked to.
(Original poster, providing an alternative)
The following function maps destination (rectilinear) coordinates to source (fisheye-distorted) coordinates. (I'd appreciate help in reversing it)
I got to this point through trial-and-error: I don't fundamentally grasp why this code is working, explanations and improved accuracy appreciated!
def dist(x,y):
return sqrt(x*x+y*y)
def correct_fisheye(src_size,dest_size,dx,dy,factor):
""" returns a tuple of source coordinates (sx,sy)
(note: values can be out of range)"""
# convert dx,dy to relative coordinates
rx, ry = dx-(dest_size[0]/2), dy-(dest_size[1]/2)
# calc theta
r = dist(rx,ry)/(dist(src_size[0],src_size[1])/factor)
if 0==r:
theta = 1.0
else:
theta = atan(r)/r
# back to absolute coordinates
sx, sy = (src_size[0]/2)+theta*rx, (src_size[1]/2)+theta*ry
# done
return (int(round(sx)),int(round(sy)))
When used with a factor of 3.0, it successfully undistorts the images used as examples (I made no attempt at quality interpolation):
Dead link
(And this is from the blog post, for comparison:)
If you think your formulas are exact, you can comput an exact formula with trig, like so:
Rin = 2 f sin(w/2) -> sin(w/2)= Rin/2f
Rout= f tan(w) -> tan(w)= Rout/f
(Rin/2f)^2 = [sin(w/2)]^2 = (1 - cos(w))/2 -> cos(w) = 1 - 2(Rin/2f)^2
(Rout/f)^2 = [tan(w)]^2 = 1/[cos(w)]^2 - 1
-> (Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
However, as #jmbr says, the actual camera distortion will depend on the lens and the zoom. Rather than rely on a fixed formula, you might want to try a polynomial expansion:
Rout = Rin*(1 + A*Rin^2 + B*Rin^4 + ...)
By tweaking first A, then higher-order coefficients, you can compute any reasonable local function (the form of the expansion takes advantage of the symmetry of the problem). In particular, it should be possible to compute initial coefficients to approximate the theoretical function above.
Also, for good results, you will need to use an interpolation filter to generate your corrected image. As long as the distortion is not too great, you can use the kind of filter you would use to rescale the image linearly without much problem.
Edit: as per your request, the equivalent scaling factor for the above formula:
(Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
-> Rout/f = [Rin/f] * sqrt(1-[Rin/f]^2/4)/(1-[Rin/f]^2/2)
If you plot the above formula alongside tan(Rin/f), you can see that they are very similar in shape. Basically, distortion from the tangent becomes severe before sin(w) becomes much different from w.
The inverse formula should be something like:
Rin/f = [Rout/f] / sqrt( sqrt(([Rout/f]^2+1) * (sqrt([Rout/f]^2+1) + 1) / 2 )
I blindly implemented the formulas from here, so I cannot guarantee it would do what you need.
Use auto_zoom to get the value for the zoom parameter.
def dist(x,y):
return sqrt(x*x+y*y)
def fisheye_to_rectilinear(src_size,dest_size,sx,sy,crop_factor,zoom):
""" returns a tuple of dest coordinates (dx,dy)
(note: values can be out of range)
crop_factor is ratio of sphere diameter to diagonal of the source image"""
# convert sx,sy to relative coordinates
rx, ry = sx-(src_size[0]/2), sy-(src_size[1]/2)
r = dist(rx,ry)
# focal distance = radius of the sphere
pi = 3.1415926535
f = dist(src_size[0],src_size[1])*factor/pi
# calc theta 1) linear mapping (older Nikon)
theta = r / f
# calc theta 2) nonlinear mapping
# theta = asin ( r / ( 2 * f ) ) * 2
# calc new radius
nr = tan(theta) * zoom
# back to absolute coordinates
dx, dy = (dest_size[0]/2)+rx/r*nr, (dest_size[1]/2)+ry/r*nr
# done
return (int(round(dx)),int(round(dy)))
def fisheye_auto_zoom(src_size,dest_size,crop_factor):
""" calculate zoom such that left edge of source image matches left edge of dest image """
# Try to see what happens with zoom=1
dx, dy = fisheye_to_rectilinear(src_size, dest_size, 0, src_size[1]/2, crop_factor, 1)
# Calculate zoom so the result is what we wanted
obtained_r = dest_size[0]/2 - dx
required_r = dest_size[0]/2
zoom = required_r / obtained_r
return zoom
I took what JMBR did and basically reversed it. He took the radius of the distorted image (Rd, that is, the distance in pixels from the center of the image) and found a formula for Ru, the radius of the undistorted image.
You want to go the other way. For each pixel in the undistorted (processed image), you want to know what the corresponding pixel is in the distorted image.
In other words, given (xu, yu) --> (xd, yd). You then replace each pixel in the undistorted image with its corresponding pixel from the distorted image.
Starting where JMBR did, I do the reverse, finding Rd as a function of Ru. I get:
Rd = f * sqrt(2) * sqrt( 1 - 1/sqrt(r^2 +1))
where f is the focal length in pixels (I'll explain later), and r = Ru/f.
The focal length for my camera was 2.5 mm. The size of each pixel on my CCD was 6 um square. f was therefore 2500/6 = 417 pixels. This can be found by trial and error.
Finding Rd allows you to find the corresponding pixel in the distorted image using polar coordinates.
The angle of each pixel from the center point is the same:
theta = arctan( (yu-yc)/(xu-xc) ) where xc, yc are the center points.
Then,
xd = Rd * cos(theta) + xc
yd = Rd * sin(theta) + yc
Make sure you know which quadrant you are in.
Here is the C# code I used
public class Analyzer
{
private ArrayList mFisheyeCorrect;
private int mFELimit = 1500;
private double mScaleFESize = 0.9;
public Analyzer()
{
//A lookup table so we don't have to calculate Rdistorted over and over
//The values will be multiplied by focal length in pixels to
//get the Rdistorted
mFisheyeCorrect = new ArrayList(mFELimit);
//i corresponds to Rundist/focalLengthInPixels * 1000 (to get integers)
for (int i = 0; i < mFELimit; i++)
{
double result = Math.Sqrt(1 - 1 / Math.Sqrt(1.0 + (double)i * i / 1000000.0)) * 1.4142136;
mFisheyeCorrect.Add(result);
}
}
public Bitmap RemoveFisheye(ref Bitmap aImage, double aFocalLinPixels)
{
Bitmap correctedImage = new Bitmap(aImage.Width, aImage.Height);
//The center points of the image
double xc = aImage.Width / 2.0;
double yc = aImage.Height / 2.0;
Boolean xpos, ypos;
//Move through the pixels in the corrected image;
//set to corresponding pixels in distorted image
for (int i = 0; i < correctedImage.Width; i++)
{
for (int j = 0; j < correctedImage.Height; j++)
{
//which quadrant are we in?
xpos = i > xc;
ypos = j > yc;
//Find the distance from the center
double xdif = i-xc;
double ydif = j-yc;
//The distance squared
double Rusquare = xdif * xdif + ydif * ydif;
//the angle from the center
double theta = Math.Atan2(ydif, xdif);
//find index for lookup table
int index = (int)(Math.Sqrt(Rusquare) / aFocalLinPixels * 1000);
if (index >= mFELimit) index = mFELimit - 1;
//calculated Rdistorted
double Rd = aFocalLinPixels * (double)mFisheyeCorrect[index]
/mScaleFESize;
//calculate x and y distances
double xdelta = Math.Abs(Rd*Math.Cos(theta));
double ydelta = Math.Abs(Rd * Math.Sin(theta));
//convert to pixel coordinates
int xd = (int)(xc + (xpos ? xdelta : -xdelta));
int yd = (int)(yc + (ypos ? ydelta : -ydelta));
xd = Math.Max(0, Math.Min(xd, aImage.Width-1));
yd = Math.Max(0, Math.Min(yd, aImage.Height-1));
//set the corrected pixel value from the distorted image
correctedImage.SetPixel(i, j, aImage.GetPixel(xd, yd));
}
}
return correctedImage;
}
}
I found this pdf file and I have proved that the maths are correct (except for the line vd = *xd**fv+v0 which should say vd = **yd**+fv+v0).
http://perception.inrialpes.fr/CAVA_Dataset/Site/files/Calibration_OpenCV.pdf
It does not use all of the latest co-efficients that OpenCV has available but I am sure that it could be adapted fairly easily.
double k1 = cameraIntrinsic.distortion[0];
double k2 = cameraIntrinsic.distortion[1];
double p1 = cameraIntrinsic.distortion[2];
double p2 = cameraIntrinsic.distortion[3];
double k3 = cameraIntrinsic.distortion[4];
double fu = cameraIntrinsic.focalLength[0];
double fv = cameraIntrinsic.focalLength[1];
double u0 = cameraIntrinsic.principalPoint[0];
double v0 = cameraIntrinsic.principalPoint[1];
double u, v;
u = thisPoint->x; // the undistorted point
v = thisPoint->y;
double x = ( u - u0 )/fu;
double y = ( v - v0 )/fv;
double r2 = (x*x) + (y*y);
double r4 = r2*r2;
double cDist = 1 + (k1*r2) + (k2*r4);
double xr = x*cDist;
double yr = y*cDist;
double a1 = 2*x*y;
double a2 = r2 + (2*(x*x));
double a3 = r2 + (2*(y*y));
double dx = (a1*p1) + (a2*p2);
double dy = (a3*p1) + (a1*p2);
double xd = xr + dx;
double yd = yr + dy;
double ud = (xd*fu) + u0;
double vd = (yd*fv) + v0;
thisPoint->x = ud; // the distorted point
thisPoint->y = vd;
This can be solved as an optimization problem. Simply draw on curves in images that are supposed to be straight lines. Store the contour points for each of those curves. Now we can solve the fish eye matrix as a minimization problem. Minimize the curve in points and that will give us a fisheye matrix. It works.
It can be done manually by adjusting the fish eye matrix using trackbars! Here is a fish eye GUI code using OpenCV for manual calibration.

Perpendicular on a line from a given point

How can I draw a perpendicular on a line segment from a given point? My line segment is defined as (x1, y1), (x2, y2), If I draw a perpendicular from a point (x3,y3) and it meets to line on point (x4,y4). I want to find out this (x4,y4).
I solved the equations for you:
k = ((y2-y1) * (x3-x1) - (x2-x1) * (y3-y1)) / ((y2-y1)^2 + (x2-x1)^2)
x4 = x3 - k * (y2-y1)
y4 = y3 + k * (x2-x1)
Where ^2 means squared
From wiki:
In algebra, for any linear equation
y=mx + b, the perpendiculars will all
have a slope of (-1/m), the opposite
reciprocal of the original slope. It
is helpful to memorize the slogan "to
find the slope of the perpendicular
line, flip the fraction and change the
sign." Recall that any whole number a
is itself over one, and can be written
as (a/1)
To find the perpendicular of a given
line which also passes through a
particular point (x, y), solve the
equation y = (-1/m)x + b, substituting
in the known values of m, x, and y to
solve for b.
The slope of the line, m, through (x1, y1) and (x2, y2) is m = (y1 - y2) / (x1 - x2)
I agree with peter.murray.rust, vectors make the solution clearer:
// first convert line to normalized unit vector
double dx = x2 - x1;
double dy = y2 - y1;
double mag = sqrt(dx*dx + dy*dy);
dx /= mag;
dy /= mag;
// translate the point and get the dot product
double lambda = (dx * (x3 - x1)) + (dy * (y3 - y1));
x4 = (dx * lambda) + x1;
y4 = (dy * lambda) + y1;
You know both the point and the slope, so the equation for the new line is:
y-y3=m*(x-x3)
Since the line is perpendicular, the slope is the negative reciprocal. You now have two equations and can solve for their intersection.
y-y3=-(1/m)*(x-x3)
y-y1=m*(x-x1)
You will often find that using vectors makes the solution clearer...
Here is a routine from my own library:
public class Line2 {
Real2 from;
Real2 to;
Vector2 vector;
Vector2 unitVector = null;
public Real2 getNearestPointOnLine(Real2 point) {
unitVector = to.subtract(from).getUnitVector();
Vector2 lp = new Vector2(point.subtract(this.from));
double lambda = unitVector.dotProduct(lp);
Real2 vv = unitVector.multiplyBy(lambda);
return from.plus(vv);
}
}
You will have to implement Real2 (a point) and Vector2 and dotProduct() but these should be simple:
The code then looks something like:
Point2 p1 = new Point2(x1, y1);
Point2 p2 = new Point2(x2, y2);
Point2 p3 = new Point2(x3, y3);
Line2 line = new Line2(p1, p2);
Point2 p4 = getNearestPointOnLine(p3);
The library (org.xmlcml.euclid) is at:
http://sourceforge.net/projects/cml/
and there are unit tests which will exercise this method and show you how to use it.
#Test
public final void testGetNearestPointOnLine() {
Real2 p = l1112.getNearestPointOnLine(new Real2(0., 0.));
Real2Test.assertEquals("point", new Real2(0.4, -0.2), p, 0.0000001);
}
Compute the slope of the line joining points (x1,y1) and (x2,y2) as m=(y2-y1)/(x2-x1)
Equation of the line joining (x1,y1) and (x2,y2) using point-slope form of line equation, would be y-y2 = m(x-x2)
Slope of the line joining (x3,y3) and (x4,y4) would be -(1/m)
Again, equation of the line joining (x3,y3) and (x4,y4) using point-slope form of line equation, would be y-y3 = -(1/m)(x-x3)
Solve these two line equations as you solve a linear equation in two variables and the values of x and y you get would be your (x4,y4)
I hope this helps.
cheers
Find out the slopes for both the
lines, say slopes are m1 and m2 then
m1*m2=-1 is the condition for
perpendicularity.
Matlab function code for the following problem
function Pr=getSpPoint(Line,Point)
% getSpPoint(): find Perpendicular on a line segment from a given point
x1=Line(1,1);
y1=Line(1,2);
x2=Line(2,1);
y2=Line(2,1);
x3=Point(1,1);
y3=Point(1,2);
px = x2-x1;
py = y2-y1;
dAB = px*px + py*py;
u = ((x3 - x1) * px + (y3 - y1) * py) / dAB;
x = x1 + u * px;
y = y1 + u * py;
Pr=[x,y];
end
Mathematica introduced the function RegionNearest[] in version 10, 2014. This function could be used to return an answer to this question:
{x4,y4} = RegionNearest[Line[{{x1,y1},{x2,y2}}],{x3,y3}]
This is mostly a duplicate of Arnkrishn's answer. I just wanted to complete his section with a complete Mathematica code snippet:
m = (y2 - y1)/(x2 - x1)
eqn1 = y - y3 == -(1/m)*(x - x3)
eqn2 = y - y1 == m*(x - x1)
Solve[eqn1 && eqn2, {x, y}]
This is a C# implementation of the accepted answer. It's also using ArcGis to return a MapPoint as that's what we're using for this project.
private MapPoint GenerateLinePoint(double startPointX, double startPointY, double endPointX, double endPointY, double pointX, double pointY)
{
double k = ((endPointY - startPointY) * (pointX - startPointX) - (endPointX - startPointX) * (pointY - startPointY)) / (Math.Pow(endPointY - startPointY, 2)
+ Math.Pow(endPointX - startPointX, 2));
double resultX = pointX - k * (endPointY - startPointY);
double resultY = pointY + k * (endPointX - startPointX);
return new MapPoint(resultX, resultY, 0, SpatialReferences.Wgs84);
}
Thanks to Ray as this worked perfectly for me.
c#arcgis
Just for the sake of completeness, here is a solution using homogeneous coordinates.
The homogeneous points are:
p1 = (x1,y1,1), p2 = (x2,y2,1), p3 = (x3,y3,1)
a line through two points is their cross-product
l_12 := p1 x p2 = (y1-y2, x2-x1, x1*y2 - x2*y1)
The (signed) distance of a point to a line is their dot product.
d := l_12 * p3 = x3*(y1-y2) + y3*(x2-x1) + x1*y2 - x2*y1
The vector from p4 to p3 is d times the normal vector of l_12 divided by the squared length of the normal vector.
n2 := (y1-y2)^2 + (x2-x1)^2
p4 := p3 + d/n2*(y1-y2, x2-x1, 0)
Note: if you divide l_12 by the length of the normal vector
l_12 := l_12 / sqrt((y1-y2)^2 + (x2-x1)^2)
the distance d will be the euclidean distance.
First, calculate the linear function determined by the points
(x1,y2),(x2,y2).
We get:
y1 = mx+b1 where m and b1 are constants.
This step is easy to calculate by the formula of linear function between two points.
Then, calculate the linear function y that goes through (x3,y3).
The function slope is -m, where m is the slope of y1.
Then calculate the const b2 by the coordinates of the point (x3,y3).
We get y2 = -mx+b2 where m and b2 are constants.
The last thing to do is to find the intersection of y1, y2.
You can find x by solving the equation: -mx+b2 = mx+b1, then place x in one of the equations to find y.
This is a vectorized Matlab function for finding pairwise projections of m points onto n line segments. Here xp and yp are m by 1 vectors holding coordinates of m different points, and x1, y1, x2 and y2 are n by 1 vectors holding coordinates of start and end points of n different line segments.
It returns m by n matrices, x and y, where x(i, j) and y(i, j) are coordinates of projection of i-th point onto j-th line.
The actual work is done in first few lines and the rest of the function runs a self-test demo, just in case where it is called with no parameters. It's relatively fast, I managed to find projections of 2k points onto 2k line segments in less than 0.05s.
function [x, y] = projectPointLine(xp, yp, x1, y1, x2, y2)
if nargin > 0
xd = (x2-x1)';
yd = (y2-y1)';
dAB = xd.*xd + yd.*yd;
u = bsxfun(#rdivide, bsxfun(#times, bsxfun(#minus, xp, x1'), xd) + ...
bsxfun(#times, bsxfun(#minus, yp, y1'), yd), dAB);
x = bsxfun(#plus, x1', bsxfun(#times, u, xd));
y = bsxfun(#plus, y1', bsxfun(#times, u, yd));
else
nLine = 3;
nPoint = 2;
xp = rand(nPoint, 1) * 2 -1;
yp = rand(nPoint, 1) * 2 -1;
x1 = rand(nLine, 1) * 2 -1;
y1 = rand(nLine, 1) * 2 -1;
x2 = rand(nLine, 1) * 2 -1;
y2 = rand(nLine, 1) * 2 -1;
tic;
[x, y] = projectPointLine(xp, yp, x1, y1, x2, y2);
toc
close all;
plot([x1'; x2'], [y1'; y2'], '.-', 'linewidth', 2, 'markersize', 20);
axis equal;
hold on
C = lines(nPoint + nLine);
for i=1:nPoint
scatter(x(i, :), y(i, :), 100, C(i+nLine, :), 'x', 'linewidth', 2);
scatter(xp(i), yp(i), 100, C(i+nLine, :), 'x', 'linewidth', 2);
end
for i=1:nLine
scatter(x(:, i)', y(:, i)', 100, C(i, :), 'o', 'linewidth', 2);
end
end
end

Resources