Related
fff5=function(x)x*31*24 * (1/(31*24))*0.30 + 400*31*24 * (1/(31*24))*0.025 + ( (10 * 31 * 24 - 100*31*24/20 )/(31*24) * 6 ) - 200
fff5 function describes the cost of Amazon Elastic File System where x is the Gb of storage in Standard plan for 24hours per day 31 days, 400 is the gb of storage in EFS Infrequent Access with 24 hours per day 31 days and 10 is the MB/s throughput 24 hours per day 31 days, 200 is the maximum budget.
When i do:
uniroot(fff5, lower=0, upper=1, extendInt = "yes",maxiter = 10000)$root
[1] 533.3333
I find the highest value of GB's that can be stored in the standard plan 24 hours a day 31 days plus the cost of 400gb in the Infrequent Access and plus the cost of 10mb in the throughput with a maximum budget of 200:
fff5(533.3333)
>[1] -0.00001
> fff5(533.3334)
[1] 0.00002
How to do the same for the other two unknowns (y, z)? How to find root with more than one unknown?? How to find all the combinations of value of x y z that makes this function positive.
fff6=function(x,y,z)x*31*24 * (1/(31*24))*0.30 + y*31*24 * (1/(31*24))*0.025 + ( (z* 31 * 24 - 100*31*24/20 )/(31*24) * 6 ) - 200
The equation you propose is of the type
ax + by + cz + d = 0
that's a plan. This means that your solutions are infinite and are all points belonging to the plane defined by the equation.
Since there are infinite solutions, the only thing you can do is try to narrow the space where to look for them as much as possible.
You can choose one unknown (for example x) and treat the other two as parameters
At this point, assign reasonable values to y and z. Unfortunately I don't know what those variables indicate, but I assume they have the same order of magnitude as x found in the previous point (~ 500)
yy <- seq(400, 600, 10)
zz <- seq(400, 600, 10)
These two variables must be recombined in order to obtain a grid:
df_grid <- expand.grid(y = yy, z = zz)
ATTENTION: the longer the vectors, the heavier the calculation will be.
Now you can find the x solutions via uniroot (passing the y and z as numbers) and the solutions of your problem (within the chosen range) will be all triples x, y, z
fff6=function(x,y,z) { x*31*24 * (1/(31*24))*0.30 +
y*31*24 * (1/(31*24))*0.025 +
( (z* 31 * 24 - 100*31*24/20 )/(31*24) * 6 ) - 200
}
x_sol <- NULL
for (i in 1:nrow(df_grid)) {
xs <- uniroot(fff6, c(-10000, 10000), y = df_grid$y[i], z = df_grid$z[i] )$root
x_sol <- c(x_sol, xs)
}
df_grid$x <- x_sol
NOTE1: There are more elegant ways to avoid writing the previous for loop. For example:
x_sol <- mapply(function(y, z) uniroot(fff6, interval = c(-10000,10000),
y=y, z=z)$root, df_grid$y, df_grid$z))
df_grid$x <- x_sol
NOTE2: The range I have chosen shows negative solutions (which I suspect are not useful). A possible choice for obtaining positive solutions is:
yy <- seq(100, 300, 10)
zz <- seq(10, 30, 1)
Choose to search for solutions in an appropriate range!
I'm more experienced with R than many of my peers, yet it sometimes takes hours to move a novel-to-me concept into the code line, and usually a few more to get a successful output. I don't know how to describe this in R language, so I hope you can help me- either with sample code, or pointing me in the right direction.
I have c(X1,X2,X3,...Xn) for starting variable, a non-random numeric value.
I have c(Y1,Y2,Y3,...Yn) for change variable, a non-random numeric value denoting by how much to change X, give or take, and a value between 0-10.
I have c(Z1,Z2,Z3,...Zn) which is the min and max range of X.
What I want to observe is the random sampling of all numbers X, which have all randomly had corresponding Y variable subtracted or added to them. What I'm trying to ask in this problem, is how many times will I draw X values which are exactly the X values which I initially input as well as give or take only a low Y value.
For instance,
Exes<-c(135,462,579,222)
Whys<-c(1,3,3,2)
Zees<-c(c(115,155),c(450,474),c(510,648),c(200,244))
First iteration: X=c(135,562,579,222), second iteration: X=c(130,471,585,230)<- as you can see, X of second iteration has changed by (-5*Y1), (+3*Y2), (+2*Y3), and (+11*Y4)
What I want to output is a list of randomized X values which have changed by only a factor of their corresponding Y value, and always fall within the range of given Z values. Further, I want to examine how many times at least one- and only one- X value will be be significantly different from the corresponding,starting input X.
I feel like I'm not wording the question succinctly, but I also feel that this is why I've posted. I'm not trying to ask for hand-holding, but rather seeking advice.
I am not sure that I understood the question, do you want to reiterate the process numerous times? is it for the purpose of simulation?. Here is a start of a solution.
library(dplyr)
x <- c(135,462,579,222)
y <- c(1,3,3,2)
z.lower <- c(115, 450, 510, 200)
z.upper <- c(155, 474, 648, 244)
temp.df <- data.frame(x, y, z.lower, z.upper)
df %>%
mutate(samp = sample(seq(-10, 10, 1), nrow(temp.df))) %>% ### Sample numbers between 0 and 10
mutate(new.val = x + samp * y) %>% ### Create new X
mutate(is.bound = new.val < z.upper & new.val > z.lower) ### Check that falls in bounds
x y z.lower z.upper samp new.val is.bound
1 135 1 115 155 -10 125 TRUE
2 462 3 450 474 10 492 FALSE
3 579 3 510 648 8 603 TRUE
4 222 2 200 244 6 234 TRUE
For this dataset, this is a possibility:
Exes<-c(135,462,579,222)
Whys<-c(1,3,3,2)
Zees<-c(c(115,155),c(450,474),c(510,648),c(200,244))
n = 10000
x_range_l <- split(Zees, rep(seq_len(length(Zees) / 2), each = 2))
mapply(function(y, x_range) sample(seq(from = x_range[1], to = x_range[2], by = y), size = n, replace = T),
Whys, x_range_l)
Note that this option depends more on the Zees than the Exes. A more complete way to do it would be:
Exes<-c(135,462,579,222)
Whys<-c(1,3,3,2)
Why_Range <- c(20, 4, 13, 11)
x_range_l <- Map(function(x, y, rng) c(x - y * rng, x + y * rng), Exes, Whys, Why_Range)
n = 10000
mapply(function(y, x_range) sample(seq(from = x_range[1], to = x_range[2], by = y), size = n, replace = T),
Whys, x_range_l)
I'm new to R and programming in general, and I'm struggling with a for-loop for building the lx function in a life table.
I have the age function x, the death function qx (the probability that someone aged exactly x will die before reaching age x+1), and the surviving function px = 1 - qx.
I want to write a function that returns a vector with all the lx values from first to last age in my table. The function is simple...
I've defined cohort = 1000000. The first age in my table is x = 5, so, considering x = 5...
l_(x) = cohort
And, from now on, l_(x+n) = l_(x+n-1)*p_(x+n-1)
I've searched about for-loops, and I can only get my code working for lx[1] and lx[2], and I get nothing for lx[n] if n > 2.
I wrote that function:
living_x <- function(px, cohort){
result <- vector("double", length(px))
l_x <- vector("double", length(px))
for (i in 1:length(px)){
if (i == 1){
l_x[i] = cohort
}
else l_x[i] = l_x[i-1]*px[i-1]
result[i] = l_x
print(result)
}
}
When I run it, I get several outputs (more than length(px)) and "There were 50 or more warnings (use warnings() to see the first 50)".
When I run warnings(), I get "In result[i] <- l_x : number of items to replace is not a multiple of replacement length" for every number.
Also, everything I try besides it give me different errors or only calculate lx for lx[1] and lx[2]. I know there's something really wrong with my code, but I still couldn't identify it. I'd be glad if someone could give me a hint to find out what to change.
Thank you!
Here's an approach using dplyr from the tidyverse packages, to use px to calculate lx. This can be done similarly in "Base R" using excerpt$lx = 100000 * cumprod(1 - lag(excerpt$qx)).
lx is provided in the babynames package, so we can check our work:
library(tidyverse)
library(babynames)
# Get excerpt with age, qx, and lx.
excerpt <- lifetables %>%
filter(year == 2010, sex == "F") %>%
select(x, qx_given = qx, lx_given = lx)
excerpt
# A tibble: 120 x 3
x qx_given lx_given
<dbl> <dbl> <dbl>
1 0 0.00495 100000
2 1 0.00035 99505
3 2 0.00022 99471
4 3 0.00016 99449
5 4 0.00012 99433
6 5 0.00011 99421
7 6 0.00011 99410
8 7 0.0001 99399
9 8 0.0001 99389
10 9 0.00009 99379
# ... with 110 more rows
Using that data to estimate lx_calc:
est_lx <- excerpt %>%
mutate(px = 1 - qx_given,
cuml_px = cumprod(lag(px, default = 1)),
lx_calc = cuml_px * 100000)
And finally, comparing visually the given lx with the one calculated based on px. They match exactly.
est_lx %>%
gather(version, val, c(lx_given, lx_calc)) %>%
ggplot(aes(x, val, color = version)) + geom_line()
I could do it in a very simple way after thinking for some minutes more.
lx = c()
for (i in 2:length(px)){
lx[1] = 10**6
lx[i] = lx[i-1]*px[i-1]
}
There's a mobile phone simulator which simulates phones rotation angle (accelerometer).
The user gives it X-Y-Z rotation which are between -180 and 180 and the result is a number between -1 and 1.
I need to do the same thing in my current project.
Here are some examples.
Example number 1:
X = -80 ,
Y = 140 ,
Z = -120
And the result:
X = 0.66g ,
Y = -0.64g ,
Z = -0.4g
Example number 2:
X = 90 ,
Y = 15 ,
Z = -100 ,
And the result:
X = -0.95g ,
Y = 0.25g ,
Z = 0.17g
I'v been searching for 2 days with no luck. Hope someone can help me here.
Just an intuitive answer:
Your X, Y, Z are basically polar(spherical) coordinates. You can apply a Jacobi transformation to convert them to a cartesian space. Then multiply it with some random(or meaningful) speed vector to get sort of a correlated fake acceleration.
I have a dataset of species and their rough locations in a 100 x 200 meter area. The location part of the data frame is not in a format that I find to be usable. In this 100 x 200 meter rectangle, there are two hundred 10 x 10 meter squares named A through CV. Within each 10 x 10 square there are four 5 x 5 meter squares named 1, 2, 3, and 4, respectively (1 is south of 2 and west of 3. 4 is east of 2 and north of 3). I want to let R know that A is the square with corners at (0 ,0), (10,0), (0,0), and (0,10), that B is just north of A and has corners (0,10), (0,20), (10,10), and (10,20), and K is just east of A and has corners at (10,0), (10,10), (20,0), and (20,10), and so on for all the 10 x 10 meter squares. Additionally, I want to let R know where each 5 x 5 meter square is in the 100 x 200 meter plot.
So, my data frame looks something like this
10x10 5x5 Tree Diameter
A 1 tree1 4
B 1 tree2 4
C 4 tree3 6
D 3 tree4 2
E 3 tree5 3
F 2 tree6 7
G 1 tree7 12
H 2 tree8 1
I 2 tree9 2
J 3 tree10 8
K 4 tree11 3
L 1 tree12 7
M 2 tree13 5
Eventually, I want to be able to plot the 100 x 200 meter area and have each 10 x 10 meter square show up with the number of trees, or number of species, or total biomass
What is the best way to turn the data I have into spatial data that R can use for graphing and perhaps analysis?
Here's a start.
## set up a vector of all 10x10 position tags
tags10 <- c(LETTERS,
paste0("A",LETTERS),
paste0("B",LETTERS),
paste0("C",LETTERS[1:22]))
A function to convert (e.g.) {"J",3} to the center of the corresponding sub-square.
convpos <- function(pos10,pos5) {
## convert letters to major (x,y) positions
p1 <- as.numeric(factor(pos10,levels=tags10)) ## or use match()
p1.x <- ((p1-1) %% 10) *10+5 ## %% is modulo operator
p1.y <- ((p1-1) %/% 10)*10+5 ## %/% is integer division
## sort out sub-positions
p2.x <- ifelse(pos5 <=2,2.5,7.5) ## {1,2} vs {3,4} values
p2.y <- ifelse(pos5 %%2 ==1 ,2.5,7.5) ## odd {1,3} vs even {2,4} values
c(p1.x+p2.x,p1.y+p2.y)
}
usage:
convpos("J",2)
convpos(mydata$tenbytenpos,mydata$fivebyfivepos)
Important notes:
this is a proof of concept, I can pretty much guarantee I haven't got the correspondence of x and y coordinates quite right. But you should be able to trace through this line-by-line and see what it's doing ...
it should work correctly on vectors (see second usage example above): I switched from switch to ifelse for that reason
your column names (10x10) are likely to get mangled into something like X10.10 when reading data into R: see ?data.frame and ?check.names
Similar to what #Ben Bolker has done, here's a lookup function (though you may need to transpose something to make the labels match what you describe).
tenbyten <- c(LETTERS[1:26],
paste0("A",LETTERS[1:26]),
paste0("B",LETTERS[1:26]),
paste0("C",LETTERS[1:22]))
tenbyten <- matrix(rep(tenbyten, each = 2), ncol = 10)
tenbyten <- t(apply(tenbyten, 1, function(x){rep(x, each = 2)}))
# the 1234 squares
squares <- matrix(c(rep(c(1,2),10),rep(c(4,3),10)), nrow = 20, ncol = 20)
# stick together into a reference grid
my.grid <- matrix(paste(tenbyten, squares, sep = "-"), nrow = 20, ncol = 20)
# a lookup function for the site grid
coordLookup <- function(tbt, fbf, .my.grid = my.grid){
x <- col(.my.grid) * 5 - 2.5
y <- row(.my.grid) * 5 - 2.5
marker <- .my.grid == paste(tbt, fbf, sep = "-")
list(x = x[marker], y = y[marker])
}
coordLookup("BB",2)
$x
[1] 52.5
$y
[1] 37.5
If this isn't what you're looking for, then maybe you'd prefer a SpatialPolygonsDataFrame, which has proper polygon IDs, and you attach data to, etc. In that case just Google around for how to make one from scratch, and manipulate the row() and col() functions to get your polygon corners, similar to what's given in this lookup function, which only returns centroids.
Edit: getting SPDF started:
This is modified from the function example and can hopefully be a good start:
library(sp)
# really you have a 20x20 grid, counting the small ones.
# c(2.5,2.5) specifies the distance in any direction from the cell center
grd <- GridTopology(c(1,1), c(2.5,2.5), c(20,20)))
grd <- as.SpatialPolygons.GridTopology(grd)
# get centroids
coords <- coordinates(polys)
# make SPDF, with an extra column for your grid codes, taken from the above.
# you can add further columns to this data.frame(), using polys#data
polys <- SpatialPolygonsDataFrame(grd,
data=data.frame(x=coords[,1], y=coords[,2], my.ID = as.vector(my.grid),
row.names=getSpPPolygonsIDSlots(grd)))