Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 8 years ago.
Improve this question
I am reading a review to compare Mathematica to APL/J. One question raised in the article seems very interesting to me:
Is Mathematica really the way to go to express our creative thoughts –
viz back to a 17th century notation designed for parchment instead of
forward to a twentieth-century one designed for computers?
Can one share examples of Iverson's notation vs traditional math notation to demonstrate the edge of APL/J on expressing and solving math problems? This would be greatly helpful for new comers.
One example: Alternating series.
Alternating sum is very common in mathematics. But it is cumbersome to put the sign before each term:
in APL and J, because of the order of operations, it is
-/a
I recommend reading Iverson's paper Notation as a Tool of Thought, kindly provided by the J folks. It deals precisely with this issue.
In it you'll find many Math proofs derived using APL instead of the classical notation, along with accompanying commentary. Here's a redacted example, proving Gauss's formula for the arithmetic series:
+/⍳n
+/⌽⍳n ⍝ as + is associative and commutative
((+/⍳n)+(+/⌽⍳n))÷2 ⍝ as x=(x+x)÷2
(+/(⍳n)+(⌽⍳n))÷2 ⍝ as + is associative and commutative
(+/(n/n+1))÷2 ⍝ summing each respective x∊⍳n and y∊⌽⍳n, y=n+1-x → (x+y)=n+1
(n×n+1)÷2 ⍝ per definition of × (times)
Other articles by Iverson, Hui and friends are also illuminating. Again, the J folks provide a notable library.
Related
Closed. This question is not about programming or software development. It is not currently accepting answers.
This question does not appear to be about a specific programming problem, a software algorithm, or software tools primarily used by programmers. If you believe the question would be on-topic on another Stack Exchange site, you can leave a comment to explain where the question may be able to be answered.
Closed 3 months ago.
Improve this question
For a school project I have to determine a function u(t) of time. I have derived an expression of the following form:
(https://i.stack.imgur.com/vNrYb.png)
with a,b,c,d constants (not necessarily integers). I have figured out that this problem is only solvable with numerical integration with initial condition u(0)=u_0, yet I don't know how to do this particular problem.
I have looked at all the numerical integration methods I have learnt so far, but they all seem to apply for polynomials or for functions where you know the function evaluations at specific points.
There are lots of ways to calculate an approximate value for u(t), some simple but requiring a lot of iterations, and more complex requiring fewer iterations. Assuming a,b,c,d are real numbers, and u_0 = u(0) then for t > 0, one could just split the interval between 0 and t into N sub-intervals and calculate
u_(i+1) = u_i + (du/dt)(t_i)*t/N
where t_i = i*t/N
then,
u_N = u(t).
If N is not sufficiently large, the result will be inaccurate. To obtain a satisfactory N is more art than science. Just printing the results for increasing N should give you an idea of how large N needs to be to obtain the level of accuracy you need. Adding higher order terms (d^2u/dt^2 etc.) can sometimes improve speed and accuracy.
You can't numerically integrate anything unless you have values for all those constants.
I don't know what numerical integration schemes you looked at, but I think Euler's method or Runga-Kutta would both be worth trying.
You don't say which language you want to use. Python would be a fine choice. So would Java. Lots of libraries to help.
Wolfram Alpha has a closed-form solution here. It's a separable, non-linear ODE. You'll need to know hypergeometric functions to evaluate.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 1 year ago.
Improve this question
I am studying "FAMILIES OF SETS" in the book "Real analysis for graduate
students(v 3.1)" by Richard F. Bass and I could not figure out this example.
The example
Definition of an algebra and sigma-algebra
They are stating that
Verifying parts (1) and (2) of the definition is easy.
This is exactly the part I do not understand.
I do not understand how we define the complement for a set {0,1,2}. The set {0,1,2} should be in D, as it is countable, but what is its complement? It seems that it is {...,-3-2-1} union {3,4,5,...}. Are these sets both countable?
And what about the set {1.1, 2.5, 3.4}, how do we define the complement of such a set? (and how do we show that it is in fact in D?)
P.S.
I do not know how to write formulas so I'm sorry for the ugly mathematical writing
The complement of {0,1,2} in R is every real number except those three. It's also in the algebra because that was the definition, you defined an algebra of all countable subsets or the complements of countable subsets.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 6 years ago.
Improve this question
I am by no means a math person, but I am really trying to figure out how create a graphable function from some data plots I measure from a chemical titration. I have been trying to learn R and I would like to know if anyone can explain to me or point me to a guide to create a mathmatic function of the titration graph below.
Thanks in advance.
What you are looking for is a Interpolation. I'm not a R programmer, but I'll try to answer anyway.
Some of the more common ways to achieve this function you want is by Polynomial Interpolation which usually gives back a Nth degree polynomial function, where N is the number of data points minus one (1 point gives a constant, 2 points make a line, 3 makes a*x^2 + b*x + c and so on).
Other common alternatives I've learn are used in Computer Graphics are Splines, B-spline, Bézier curve and Hermite interpolation. Those make the curve smoother and good looking (I've told they originated in the car industry so they are less true to the data points).
TL;DR: I've found evidence that there is a implementation of spline in R from the question Interpolation in R which may lead you to your solution.
Hope you get to know better your tool and do a great work.
When doing this kind of work in Computer Science we call it Numerical Methods (at least here in my university), I've done some class and homework in this area while attending to the Numerical Methods Course (it can be found at github) but it's nothing worth noting.
I would add a lot of links to Wikipedia but StackOverflow didn't allow it.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
My employer asked me to do a project for our local team. Actually, it will be a way to help our work to finished faster.
We have a local database where we add exercises divided in two fields. The question and the solution. My employer wants since we are a team and we work at the same time, to create a system like stackoverflow's similar questions. When one of the team tries to submit a new data in the database, then it will check if there are other fields which may be duplicates.
The reason he asked me is because I have done something similar in the past but only for text using techniques like TF-IDF and Latent Semantic Analysis. But now, since the math symbols are all in Latex, I cannot find a way to check for duplicates.
I have tried to apply TF-IDF to the text only, but it doesn't work.
Any suggestion?
Edit:
Sorry for the broad topic. I will try to give more examples about my problem.
All the texts are exercises of primary and secondary schools. It is a mix of text and numbers-equations-symbols. If there were only text, I could use TF-IDF to find possible duplicates. Now, several exercises have a little or are without text.
Examples:
1) a. Solve the following equation: (x+1)*(x-1) = 5
b. Find the x: x^2 - 1 = 5
They are the same equation but with a different expression. So, I don't want to mark them as duplicates.
2) a. Solve the following equation: 3x + 7 = 12
b. Find the solution: 7 + 3x = 12
c. Find the x: 3x = 12 - 7
a and b should be duplicate whereas the c will not be.
You could try using MathJax to convert the LaTeX equation into MathML an XML format. You could then use tools to examine that structure. There are probably a few other tools which can convert your equation into some kind of tree structure.
Equality of mathematical expressions is a complex problem. There are question that should you treat (x+1)*(x-1) as being equal to x^2-1, algebraically they are the same.
You might want to investigate computer algebra systems which have a lot of sophisticated features for manipulating expressions.
One technique is to evaluate the expression at a number of points. If the values agree then its a good indication that the expressions are the same.
It might be easier to give a better answer if there was some idea of the type of problems you are working with, polynomials, integrals etc.?
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
i'd like to know how to solve a definite integral in Mathematica.
I do know all variables except b, and need to solve for F(b)=0.
How can i solve it in Mathematica?
Here is my try:
NSolve[Integrate[1/(8*(1 - ff) (2 Pi)^0.5) E^(-0.5*((x - 1.1)/(1 - ff)/8)^2), {x, 0, 9999}] == -0.44531779637243296, ff]
These integrals can be trivially expressed in terms of an error function: Wiki, Mathworld. Hence what you need here is a library to (i) calculate error functions, (ii) numerically solve non-linear equations. Virtually any language has this, so pick anything you're familiar with. In Mathematica, look up Erf and NSolve.
I'd start by plugging it into Wolfram Alpha and see what it gives you.
Mathematica should be able to do it. I think of statistics first when R comes up; I don't know about its calculus capabilities. Excel is not the first choice.
If I were you, I'd be less worried about the software and more worried about the solution itself. A function of this form might be well known. Plot each one and visually check to see what the functions look like and how easy they might be to integrate.
Like this:
http://www.wolframalpha.com/input/?i=graph+exp%28-%28%28x%2B5%29%2F1.5%29%5E2%29
You should be wondering why it's three similar looking integrals. Those singularities in the plot tell you why.
If there's no closed form solutions, you'll have to go with a numerical one. You'll have to choose an algorithm (simple Euler or Runga Kutta or something else), interval sizes, etc. You'll want to know about singular points and how best to tackle them.
Choosing a package is just the start.
You might find http://r.789695.n4.nabble.com/calculus-using-R-td1676727.html helpful.