Identifying unique duplicates in vector in R - r

I am trying to identify duplicates based of a match of elements in two vectors. Using duplicate() provides a vector of all matches, however I would like to index which are matches with each other or not. Using the following code as an example:
x <- c(1,6,4,6,4,4)
y <- c(3,2,5,2,5,5)
frame <- data.frame(x,y)
matches <- duplicated(frame) | duplicated(frame, fromLast = TRUE)
matches
[1] FALSE TRUE TRUE TRUE TRUE TRUE
Ultimately, I would like to create a vector that identifies elements 2 and 4 are matches as well as 3,5,6. Any thoughts are greatly appreciated.

Another data.table answer, using the group counter .GRP to assign every distinct element a label:
d <- data.table(frame)
d[,z := .GRP, by = list(x,y)]
# x y z
# 1: 1 3 1
# 2: 6 2 2
# 3: 4 5 3
# 4: 6 2 2
# 5: 4 5 3
# 6: 4 5 3

How about this with plyr::ddply()
ddply(cbind(index=1:nrow(frame),frame),.(x,y),summarise,count=length(index),elems=paste0(index,collapse=","))
x y count elems
1 1 3 1 1
2 4 5 3 3,5,6
3 6 2 2 2,4
NB = the expression cbind(index=1:nrow(frame),frame) just adds an element index to each row

Using merge against the unique possibilities for each row, you can get a result:
labls <- data.frame(unique(frame),num=1:nrow(unique(frame)))
result <- merge(transform(frame,row = 1:nrow(frame)),labls,by=c("x","y"))
result[order(result$row),]
# x y row num
#1 1 3 1 1
#5 6 2 2 2
#2 4 5 3 3
#6 6 2 4 2
#3 4 5 5 3
#4 4 5 6 3
The result$num vector gives the groups.

Related

Count the amount of times value A occurs without value B and vice versa

I'm having trouble figuring out how to do the opposite of the answer to this question (and in R not python).
Count the amount of times value A occurs with value B
Basically I have a dataframe with a lot of combinations of pairs of columns like so:
df <- data.frame(id1 = c("1","1","1","1","2","2","2","3","3","4","4"),
id2 = c("2","2","3","4","1","3","4","1","4","2","1"))
I want to count, how often all the values in column A occur in the whole dataframe without the values from column B. So the results for this small example would be the output of:
df_result <- data.frame(id1 = c("1","1","1","2","2","2","3","3","4","4"),
id2 = c("2","3","4","1","3","4","1","4","2","1"),
count = c("4","5","5","3","5","4","2","3","3","3"))
The important criteria for this, is that the final results dataframe is collapsed by the pairs (so in my example rows 1 and 2 are duplicates, and they are collapsed and summed by the total frequency 1 is observed without 2). For tallying the count of occurances, it's important that both columns are examined. I.e. order of columns doesn't matter for calculating the frequency - if column A has 1 and B has 2, this counts the same as if column A has 2 and B has 1.
I can do this very slowly by filtering for each pair, but it's not really feasible for my real data where I have many many different pairs.
Any guidance is greatly appreciated.
First paste the two id columns together to id12 for later matching. Then use sapply to go through all rows to see the records where id1 appears in id12 but id2 doesn't. sum that value and only output the distinct records. Finally, remove the id12 column.
library(dplyr)
df %>% mutate(id12 = paste0(id1, id2),
count = sapply(1:nrow(.),
function(x)
sum(grepl(id1[x], id12) & !grepl(id2[x], id12)))) %>%
distinct() %>%
select(-id12)
Or in base R completely:
id12 <- paste0(df$id1, df$id2)
df$count <- sapply(1:nrow(df), function(x) sum(grepl(df$id1[x], id12) & !grepl(df$id2[x], id12)))
df <- df[!duplicated(df),]
Output
id1 id2 count
1 1 2 4
2 1 3 5
3 1 4 5
4 2 1 3
5 2 3 5
6 2 4 4
7 3 1 2
8 3 4 3
9 4 2 3
10 4 1 3
A full tidyverse version:
library(tidyverse)
df %>%
mutate(id = paste(id1, id2),
count = map(cur_group_rows(), ~ sum(str_detect(id, id1[.x]) & str_detect(id, id2[.x], negate = T))))
A more efficient approach would be to work on a tabulation format:
tab = crossprod(table(rep(seq_len(nrow(df)), ncol(df)), c(df$id1, df$id2)))
#tab
#
# 1 2 3 4
# 1 7 3 2 2
# 2 3 6 1 2
# 3 2 1 4 1
# 4 2 2 1 5
So, now, we have the times each value appears with another (irrespectively of their order in the two columns). Here on, we need a way to subset the above table by each pair and subtract the value of their cooccurence from the value of each id's total appearance.
Make a grid of all combinations:
gr = expand.grid(id1 = colnames(tab), id2 = rownames(tab), stringsAsFactors = FALSE)
Create 2-column matrices to subset the table:
id1.ij = cbind(match(gr$id1, colnames(tab)),
match(gr$id1, rownames(tab)))
id2.ij = cbind(match(gr$id1, colnames(tab)),
match(gr$id2, rownames(tab)))
Subtract the respective values:
cbind(gr, count = tab[id1.ij] - tab[id2.ij])
# id1 id2 count
#1 1 1 0
#2 2 1 3
#3 3 1 2
#4 4 1 3
#5 1 2 4
#6 2 2 0
#7 3 2 3
#8 4 2 3
#9 1 3 5
#10 2 3 5
#11 3 3 0
#12 4 3 4
#13 1 4 5
#14 2 4 4
#15 3 4 3
#16 4 4 0
Of course, if we do not need the full grid of values, we can set:
gr = unique(df)
which results in:
# id1 id2 count
#1 1 2 4
#3 1 3 5
#4 1 4 5
#5 2 1 3
#6 2 3 5
#7 2 4 4
#8 3 1 2
#9 3 4 3
#10 4 2 3
#11 4 1 3

Create a rolling index of pairs over groups

I need to create (with R) a rolling index of pairs from a data set that includes groups. Consider the following data set:
times <- c(4,3,2)
V1 <- unlist(lapply(times, function(x) seq(1, x)))
df <- data.frame(group = rep(1:length(times), times = times),
V1 = V1,
rolling_index = c(1,1,2,2,3,3,4,5,5))
df
group V1 rolling_index
1 1 1 1
2 1 2 1
3 1 3 2
4 1 4 2
5 2 1 3
6 2 2 3
7 2 3 4
8 3 1 5
9 3 2 5
The data frame I have includes the variables group and V1. Within each group V1 designates a running index (that may or may not start at 1).
I want to create a new indexing variable that looks like rolling_index. This variable groups rows within the same group and consecutive V1 value, thus creating a new rolling index. This new index must be consecutive over groups. If there is an uneven amount of rows within a group (e.g. group 2), then the last, single row gets its own rolling index value.
You can try
library(data.table)
setDT(df)[, gr:=as.numeric(gl(.N, 2, .N)), group][,
rollindex:=cumsum(c(TRUE,abs(diff(gr))>0))][,gr:= NULL]
# group V1 rolling_index rollindex
#1: 1 1 1 1
#2: 1 2 1 1
#3: 1 3 2 2
#4: 1 4 2 2
#5: 2 1 3 3
#6: 2 2 3 3
#7: 2 3 4 4
#8: 3 1 5 5
#9: 3 2 5 5
Or using base R
indx1 <- !duplicated(df$group)
indx2 <- with(df, ave(group, group, FUN=function(x)
gl(length(x), 2, length(x))))
cumsum(c(TRUE,diff(indx2)>0)|indx1)
#[1] 1 1 2 2 3 3 4 5 5
Update
The above methods are based on the 'group' column. Suppose you already have a sequence column ('V1') by group as showed in the example, creation of rolling index is easier
cumsum(!!df$V1 %%2)
#[1] 1 1 2 2 3 3 4 5 5
As mentioned in the post, if the 'V1' column do not start at '1' for some groups, we can get the sequence from the 'group' and then do the cumsum as above
cumsum(!!with(df, ave(seq_along(group), group, FUN=seq_along))%%2)
#[1] 1 1 2 2 3 3 4 5 5
There is probably a simpler way but you can do:
rep_each <- unlist(mapply(function(q,r) {c(rep(2, q),rep(1, r))},
q=table(df$group)%/%2,
r=table(df$group)%%2))
df$rolling_index <- inverse.rle(x=list(lengths=rep_each, values=seq(rep_each)))
df$rolling_index
#[1] 1 1 2 2 3 3 4 5 5

Replace values in a series exceeding a threshold

In a dataframe I'd like to replace values in a series where they exceed a given threshold.
For example, within a group ('ID') in a series designated by 'time', if 'value' ever exceeds 3, I'd like to make all following entries also equal 3.
ID <- as.factor(c(rep("A", 3), rep("B",3), rep("C",3)))
time <- rep(1:3, 3)
value <- c(c(1,1,2), c(2,3,2), c(3,3,2))
dat <- cbind.data.frame(ID, time, value)
dat
ID time value
A 1 1
A 2 1
A 3 2
B 1 2
B 2 3
B 3 2
C 1 3
C 2 3
C 3 2
I'd like it to be:
ID time value
A 1 1
A 2 1
A 3 2
B 1 2
B 2 3
B 3 3
C 1 3
C 2 3
C 3 3
This should be easy, but I can't figure it out. Thanks!
The ave function makes this very easy by allowing you to apply a function to each of the groupings. In this case, we will adapth the cummax (cumulative maximum) to see if we've seen a 3 yet.
dat$value2<-with(dat, ave(value, ID, FUN=
function(x) ifelse(cummax(x)>=3, 3, x)))
dat;
# ID time value value2
# 1 A 1 1 1
# 2 A 2 1 1
# 3 A 3 2 2
# 4 B 1 2 2
# 5 B 2 3 3
# 6 B 3 2 3
# 7 C 1 3 3
# 8 C 2 3 3
# 9 C 3 2 3
You could also just use FUN=cummax if you want never-decreasing values. I wasn't sure about the sequence c(1,2,1) if you wanted to keep that unchanged or not.
If you can assume your data are sorted by group, then this should be fast, essentially relying on findInterval() behind the scenes:
library(IRanges)
id <- Rle(ID)
three <- which(value>=3L)
ir <- reduce(IRanges(three, end(id)[findRun(three, id)])))
dat$value[as.integer(ir)] <- 3L
This avoids looping over the groups.

R append columns in different ways

I have a dataset with multiple columns:
Value1 Value3 Annotation Value4 Value2
1 4 s 9 4
2 5 t 0 4
3 6 q 4 4
The order of the values and the position of Annotation is unknown.
Now I'm trying to append multiple columns and try to keep the Annotation correct. The result should be a 2 column matrix
eg. when I try to append Value1 and Value3:
Annotation Valuelist
s 1
t 2
q 3
s 4
t 5
q 6
I found the method append() but I can't figure out how to make sure the annotation is correct.
The stack function might come in handy for what you want to do in base R:
cbind(mydf["Annotation"], stack(mydf[c("Value1", "Value3")])["values"])
# Annotation values
# 1 s 1
# 2 t 2
# 3 q 3
# 4 s 4
# 5 t 5
# 6 q 6
stack normally creates two columns, "values" and "ind" (in that order), so we select just the first to match what you describe.
A similar approach can be taken with melt from "reshape2":
library(reshape2)
melt(mydf, id.vars="Annotation",
measure.vars=c("Value1", "Value3"))[c("Annotation", "value")]
# Annotation value
# 1 s 1
# 2 t 2
# 3 q 3
# 4 s 4
# 5 t 5
# 6 q 6
You could construct this with something like:
columns <- c("Value1", "Value3")
data.frame(Annotation=rep(dat$Annotation, length(columns)),
Valuelist=as.vector(as.matrix(dat[columns])))
# Annotation Valuelist
# 1 s 1
# 2 t 2
# 3 q 3
# 4 s 4
# 5 t 5
# 6 q 6

Calculating the occurrences of numbers in the subsets of a data.frame

I have a data frame in R which is similar to the follows. Actually my real ’df’ dataframe is much bigger than this one here but I really do not want to confuse anybody so that is why I try to simplify things as much as possible.
So here’s the data frame.
id <-c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3)
a <-c(3,1,3,3,1,3,3,3,3,1,3,2,1,2,1,3,3,2,1,1,1,3,1,3,3,3,2,1,1,3)
b <-c(3,2,1,1,1,1,1,1,1,1,1,2,1,3,2,1,1,1,2,1,3,1,2,2,1,3,3,2,3,2)
c <-c(1,3,2,3,2,1,2,3,3,2,2,3,1,2,3,3,3,1,1,2,3,3,1,2,2,3,2,2,3,2)
d <-c(3,3,3,1,3,2,2,1,2,3,2,2,2,1,3,1,2,2,3,2,3,2,3,2,1,1,1,1,1,2)
e <-c(2,3,1,2,1,2,3,3,1,1,2,1,1,3,3,2,1,1,3,3,2,2,3,3,3,2,3,2,1,3)
df <-data.frame(id,a,b,c,d,e)
df
Basically what I would like to do is to get the occurrences of numbers for each column (a,b,c,d,e) and for each id group (1,2,3) (for this latter grouping see my column ’id’).
So, for column ’a’ and for id number ’1’ (for the latter see column ’id’) the code would be something like this:
as.numeric(table(df[1:10,2]))
##The results are:
[1] 3 7
Just to briefly explain my results: in column ’a’ (and regarding only those records which have number ’1’ in column ’id’) we can say that number '1' occured 3 times and number '3' occured 7 times.
Again, just to show you another example. For column ’a’ and for id number ’2’ (for the latter grouping see again column ’id’):
as.numeric(table(df[11:20,2]))
##After running the codes the results are:
[1] 4 3 3
Let me explain a little again: in column ’a’ and regarding only those observations which have number ’2’ in column ’id’) we can say that number '1' occured 4 times, number '2' occured 3 times and number '3' occured 3 times.
So this is what I would like to do. Calculating the occurrences of numbers for each custom-defined subsets (and then collecting these values into a data frame). I know it is not a difficult task but the PROBLEM is that I’m gonna have to change the input ’df’ dataframe on a regular basis and hence both the overall number of rows and columns might change over time…
What I have done so far is that I have separated the ’df’ dataframe by columns, like this:
for (z in (2:ncol(df))) assign(paste("df",z,sep="."),df[,z])
So df.2 will refer to df$a, df.3 will equal df$b, df.4 will equal df$c etc. But I’m really stuck now and I don’t know how to move forward…
Is there a proper, ”automatic” way to solve this problem?
How about -
> library(reshape)
> dftab <- table(melt(df,'id'))
> dftab
, , value = 1
variable
id a b c d e
1 3 8 2 2 4
2 4 6 3 2 4
3 4 2 1 5 1
, , value = 2
variable
id a b c d e
1 0 1 4 3 3
2 3 3 3 6 2
3 1 4 5 3 4
, , value = 3
variable
id a b c d e
1 7 1 4 5 3
2 3 1 4 2 4
3 5 4 4 2 5
So to get the number of '3's in column 'a' and group '1'
you could just do
> dftab[3,'a',1]
[1] 4
A combination of tapply and apply can create the data you want:
tapply(df$id,df$id,function(x) apply(df[id==x,-1],2,table))
However, when a grouping doesn't have all the elements in it, as in 1a, the result will be a list for that id group rather than a nice table (matrix).
$`1`
$`1`$a
1 3
3 7
$`1`$b
1 2 3
8 1 1
$`1`$c
1 2 3
2 4 4
$`1`$d
1 2 3
2 3 5
$`1`$e
1 2 3
4 3 3
$`2`
a b c d e
1 4 6 3 2 4
2 3 3 3 6 2
3 3 1 4 2 4
$`3`
a b c d e
1 4 2 1 5 1
2 1 4 5 3 4
3 5 4 4 2 5
I'm sure someone will have a more elegant solution than this, but you can cobble it together with a simple function and dlply from the plyr package.
ColTables <- function(df) {
counts <- list()
for(a in names(df)[names(df) != "id"]) {
counts[[a]] <- table(df[a])
}
return(counts)
}
results <- dlply(df, "id", ColTables)
This gets you back a list - the first "layer" of the list will be the id variable; the second the table results for each column for that id variable. For example:
> results[['2']]['a']
$a
1 2 3
4 3 3
For id variable = 2, column = a, per your above example.
A way to do it is using the aggregate function, but you have to add a column to your dataframe
> df$freq <- 0
> aggregate(freq~a+id,df,length)
a id freq
1 1 1 3
2 3 1 7
3 1 2 4
4 2 2 3
5 3 2 3
6 1 3 4
7 2 3 1
8 3 3 5
Of course you can write a function to do it, so it's easier to do it frequently, and you don't have to add a column to your actual data frame
> frequency <- function(df,groups) {
+ relevant <- df[,groups]
+ relevant$freq <- 0
+ aggregate(freq~.,relevant,length)
+ }
> frequency(df,c("b","id"))
b id freq
1 1 1 8
2 2 1 1
3 3 1 1
4 1 2 6
5 2 2 3
6 3 2 1
7 1 3 2
8 2 3 4
9 3 3 4
You didn't say how you'd like the data. The by function might give you the output you like.
by(df, df$id, function(x) lapply(x[,-1], table))

Resources