Simple math formula verification (normalize 0-100) - math

How do I normalize any given number between 0 and 100?
The min is 0 and the max has no bounds (it's the search volume for a keyword).
normalized = (x-min(x))/(max(x)-min(x)) won't work since I have no definition of max.

Arcus tangens
Algebraically, you might start with some function that has poles, e.g. tan, and use its inverse, atan. That inverse will never exceed a given limit, namely π/2 in this case. Then you can use a formula of the kind
f(x) = 100 * 2/π * atan(x - min)
If that doesn't produce “nice” results for small inputs, you might want to preprocess the inputs:
f(x) = 100 * 2/π * atan(a*(x - min))
for some suitably chosen a. Making a larger than one increases values, while for 0 < a < 1 you get smaller values. According to a comment, the latter is what you'd most likely want.
You could even add a power in there:
f(x) = 100 * 2/π * atan(a*(x - min)^b) = 100 * 2/π * atan(pow(a*(x - min), b))
for some positive parameter b. Having two parameters to tweak gives you more freedom in adjusting the function to your needs. But to decide on what would be good fits, you might have to decide up front as to what values you'd expect for various inputs. A bit like in this question, although there the input range is not unbounded.
Stereographic projection
If you prefer geometric approaches: you can imagine your input as the positive half of the x axis, namely the ray from (0,0) to (∞,0). Then imagine a circle with center (0,1) and radius 1 sitting on that line. If you connect the point (0,2) with any point on the ray, the connecting line will intersect the circle in one other point. That way you can map the ray onto the right half of the circle. Now take either the angle as seen from the center of the circle, or the y coordinate of the point on the circle, or any other finite value like this, normalize input and output properly, and you have a function matching your requirements. You can also work out a formula for this, and atan will likely play a role in that.

Related

1D Hermite Cubic Splines with tangents of zero - how to make it look smoother

I am given 3 values y0, y1, y2. They are supposed to be evenly spaced, say x0 = -0.5, x1 = 0.5, x2 = 1.5. And to be able to draw a spline through all of them, the derivatives at all points are said to be dy/dx = 0.
Now the result of rendering two Catmull-Rom-Splines (which is done via GLSL fragment shader, including a nonlinear transformation) looks pretty rigit. I.e. where the curve bends, it does so smoothly, though, but the bending area is very small. Zooming out makes the bends look too sharp.
I wanted to switch to TCB-Splines (aka. Kochanek-Bartels Splines), as those provide a tension parameter - thus I hoped I could smooth the look. But I realized that all TCB-Parameters applied to a zero tangent won't do any good.
Any ideas how I could get a smoother looking curve?
The tangent vector for a 2d parametric curve f(t)=(x(t), y(t)) is defined as f'(t)=(dx(t)/dt, dy(t)/dt). When you require your curve to have dy/dx = 0 at some points, it simply means the tangent vector at those points will go horizontally (i.e., dy/dt = 0). It does not necessarily mean the tangent vector itself is a zero vector. So, you should still be able to use TCB spline to do whatever you want to do.
Obviously nobody had a good answer, but as it's my job, I found a solution: The Points are evenly spaced, and the idea is to make transitions smoother. Now it's given, that the tangents are zero at all given Points, so it is most likely that close to the points we get the strongest curvature y''(x). This means, we'd like to stretch these "areas around the points".
Considering that currently we use Catmull-Rom-Splines, sectioned between the points. That makes y(x) => y(t) , t(x) = x-x0.
This t(x) needs to be stretched around the 0- and the 1-areas. So the cosine function jumped into my mind:
Replacing t(x) = x-x0 with t(x) = 0.5 * (1.0 - cos( PI * ( x-x0 ) ) did the job for me.
Short explanation:
cosine in the range [0,PI] runs smoothly from 1 to -1.
we want to run from 0 to 1, though
so flip it: 1-cos() -> now it runs from 0 to 2
halve that: 0.5*xxx -> now it runs from 0 to 1
Another problem was to find the correct tangents. Normally, calculating such a spline using Matrix-Vector-Math, you simply derive your t-vector to get the tangents, so deriving [t³ t² t 1] yields [3t² 2t 1 0]. But here, t is not simple. Using this I found the right derived vector:
| 0.375*PI*sin(PI*t)(1-cos(PI*t))² |
| 0.500*PI*sin(PI*t)(1-cos(PI*t)) |
| 0.500*PI*sin(PI*t) |
| 0 |

Calculating Normals across a sphere with a wave-like vertex shader

I've been trying to get the correct normals for a sphere I'm messing with using a vertex shader. The algorithm can be boiled down simply to
vert.xyz += max(0, sin(time + 0.004*vert.x))*10*normal.xyz
This causes a wave to roll across the sphere.
In order to make my normals correct, I need to transform them as well. I can take the tangent vector at a given x,y,z, get a perpendicular vector (0, -vert.z, vert.y), and then cross the tangent with the perp vector.
I've been having some issue with the math though, and it's become a personal vendetta at this point. I've solved for the derivative hundreds of times but I keep getting it incorrect. How can I get the tangent?
Breaking down the above line, I can make a math function
f(x,y,z) = max(0, sin(time + 0.004*x))*10*Norm(x,y,z) + (x,y,z)
where Norm(..) is Normalize((x,y,z) - CenterOfSphere)
After applying f(x,y,z), unchanged normals
What is the correct f '(x,y,z)?
I've accounted for the weirdness caused by the max in f(...), so that's not the issue.
Edit: The most successful algorithm I have right now is as follows:
Tangent vector.x = 0.004*10*cos(0.004*vert.x + time)*norm.x + 10*sin(0.004*vert.x + time) + 1
Tangent vector.y = 10*sin(0.004*vert.x + time) + 1
Tangent vector.z = 10*sin(0.004*vert.x + time) + 1
2nd Tangent vector.x = 0
2nd Tangent vector.y = -norm.z
2nd Tangent vector.z = norm.y
Normalize both, and perform Cross(Tangent2, Tangent1). Normalize again, and done (it should be Cross(Tangent1, Tangent2), but this seems to have better results... more hints of an issue in my math!).
This yields this
Get tangent/normal by derivate of function can sometimes fail if your surface points are nonlinearly distributed and or some math singularity is present or if you make a math mistake (which is the case in 99.99%). Anyway you can always use the geometric approach:
1. you can get the tangents easy by
U(x,y,z)=f(x+d,y,z)-f(x,y,z);
V(x,y,z)=f(x,y+d,z)-f(x,y,z);
where d is some small enough step
and f(x,y,z) is you current surface point computation
not sure why you use 3 input variables I would use just 2
but therefore if the shifted point is the same as unshifted
use this instead =f(x,y,z+d)-f(x,y,z);
at the end do not forget to normalize U,V size to unit vector
2. next step
if bullet 1 leads to correct normals
then you can simply solve the U,V algebraically
so rewrite U(x,y,z)=f(x+d,y,z)-f(x,y,z); to full equation
by substituting f(x,y,z) with the surface point equation
and simplify
[notes]
sometimes well selected d can simplify normalization to multipliyng by a constant
you should add normals visualization for example like this:
to actually see what is really happening (for debug purposses)

How to compute something like the angle between two non-unit vectors

I need to sort a set of vectors in circular order. The simplest approach would be to use the angle between the vectors and a fixed axis. To get the angle, one would have to normalize the vectors which includes performing an expensive square root calculation.
As I want to avoid the costs and I don't need the particular angle - just some value that gives me the same order - I was wondering if there is a way to calculate a value for each vector that does not require the vector to be normalized and yields a similar value like the angle (i.e. if angle(x) > angle(y) then f(x) > f(y)).
The ratio of the y component to the x component should be enough to order the vectors without normalizing them. if the y:x ratio is larger, then the angle will be steeper. That'll work at least for the 1st quadrant (0 to 90 degrees), but the general idea should be enough to get you started.

The X angle between two 3D vectors?

I have two 3D vectors called A and B that both only have a 3D position. I know how to find the angle along the unit circle ranging from 0-360 degrees with the atan2 function by doing:
EDIT: (my atan2 function made no sense, now it should find the "y-angle" between 2 vectors):
toDegrees(atan2(A.x-B.x,A.z-B.z))+180
But that gives me the Y angle between the 2 vectors.
I need to find the X angle between them. It has to do with using the x, y and z position values. Not the x and z only, because that gives the Y angle between the two vectors.
I need the X angle, I know it sounds vague but I don't know how to explain. Maybe for example you have a camera in 3D space, if you look up or down than you rotate the x-axis. But now I need to get the "up/down" angle between the 2 vectors. If I rotate that 3D camera along the y-axis, the x-axis doens't change. So with the 2 vectors, no matter what the "y-angle" is between them, the x-angle between the 2 vectors wil stay the same if y-angle changes because it's the "up/down" angle, like in the camara.
Please help? I just need a line of math/pseudocode, or explanation. :)
atan2(crossproduct.length,scalarproduct)
The reason for using atan2 instead of arccos or arcsin is accuracy. arccos behaves very badly close to 0 degrees. Small computation errors in argument will lead to disproportionally big errors in result. arcsin has same problem close to 90 degrees.
Computing the altitude angle
OK, it might be I finally understood your comment below about the result being independent of the y angle, and about how it relates to the two vectors. It seems you are not really interested in two vectors and the angle between these two, but instead you're interested in the difference vector and the angle that one forms against the horizontal plane. In a horizontal coordinate system (often used in astronomy), that angle would be called “altitude” or “elevation”, as opposed to the “azimuth” you compute with the formula in your (edited) question. “altitude” closely relates to the “tilt” of your camera, whereas “azimuth” relates to “panning”.
We still have a 2D problem. One coordinate of the 2D vector is the y coordinate of the difference vector. The other coordinate is the length of the vector after projecting it on the horizontal plane, i.e. sqrt(x*x + z*z). The final solution would be
x = A.x - B.x
y = A.y - B.y
z = A.z - B.z
alt = toDegrees(atan2(y, sqrt(x*x + z*z)))
az = toDegrees(atan2(-x, -z))
The order (A - B as opposed to B - A) was chosen such that “A above B” yields a positive y and therefore a positive altitude, in accordance with your comment below. The minus signs in the azimuth computation above should replace the + 180 in the code from your question, except that the range now is [-180, 180] instead of your [0, 360]. Just to give you an alternative, choose whichever you prefer. In effect you compute the azimuth of B - A either way. The fact that you use a different order for these two angles might be somewhat confusing, so think about whether this really is what you want, or whether you want to reverse the sign of the altitude or change the azimuth by 180°.
Orthogonal projection
For reference, I'll include my original answer below, for those who are actually looking for the angle of rotation around some fixed x axis, the way the original question suggested.
If this x angle you mention in your question is indeed the angle of rotation around the x axis, as the camera example suggests, then you might want to think about it this way: set the x coordinate to zero, and you will end up with 2D vectors in the y-z plane. You can think of this as an orthogonal projection onto said plain. Now you are back to a 2D problem and can tackle it there.
Personally I'd simply call atan2 twice, once for each vector, and subtract the resulting angles:
toDegrees(atan2(A.z, A.y) - atan2(B.z, B.y))
The x=0 is implicit in the above formula simply because I only operate on y and z.
I haven't fully understood the logic behind your single atan2 call yet, but the fact that I have to think about it this long indicates that I wouldn't want to maintain it, at least not without a good explanatory comment.
I hope I understood your question correctly, and this is the thing you're looking for.
Just like 2D Vectors , you calculate their angle by solving cos of their Dot Product
You don't need atan, you always go for the dot product since its a fundamental operation of vectors and then use acos to get the angle.
double angleInDegrees = acos ( cos(theta) ) * 180.0 / PI;

Collision Detection between Accelerating Spheres

I am writing a physics engine/simulator which incorporates 3D space flight, planetary/stellar gravitation, ship thrust and relativistic effects. So far, it is going very well, however, one thing that I need help with is the math of the collision detection algorithm.
The iterative simulation of movement that I am using is basically as follows:
(Note: 3D Vectors are ALL CAPS.)
For each obj
obj.ACC = Sum(all acceleration influences)
obj.POS = obj.POS + (obj.VEL * dT) + (obj.ACC * dT^2)/2 (*EQ.2*)
obj.VEL = obj.VEL + (obj.ACC * dT)
Next
Where:
obj.ACC is the acceleration vector of the object
obj.POS is the position or location vector of the object
obj.VEL is the velocity vector of the object
obj.Radius is the radius (scalar) of the object
dT is the time delta or increment
What I basically need to do is to find some efficient formula that derives from (EQ.2) above for two objects (obj1, obj2) and tell if they ever collide, and if so, at what time. I need the exact time both so that I can determine if it is in this particular time increment (because acceleration will be different at different time increments) and also so that I can locate the exact position (which I know how to do, given the time)
For this engine, I am modelling all objects as spheres, all this formula/algorithm needs to do is to figure out at what points:
(obj1.POS - obj2.POS).Distance = (obj1.Radius + obj2.Radius)
where .Distance is a positive scalar value. (You can also square both sides if this is easier, to avoid the square root function implicit in the .Distance calculation).
(yes, I am aware of many, many other collision detection questions, however, their solutions all seem to be very particular to their engine and assumptions, and none appear to match my conditions: 3D, spheres, and acceleration applied within the simulation increments. Let me know if I am wrong.)
Some Clarifications:
1) It is not sufficient for me to check for Intersection of the two spheres before and after the time increment. In many cases their velocities and position changes will far exceed their radii.
2) RE: efficiency, I do not need help (at this point anyway) with respect to determine likely candidates for collisions, I think that I have that covered.
Another clarification, which seems to be coming up a lot:
3) My equation (EQ.2) of incremental movement is a quadratic equation that applies both Velocity and Acceleration:
obj.POS = obj.POS + (obj.VEL * dT) + (obj.ACC * dT^2)/2
In the physics engines that I have seen, (and certainly every game engine that I ever heard of) only linear equations of incremental movement that apply only Velocity:
obj.POS = obj.POS + (obj.VEL * dT)
This is why I cannot use the commonly published solutions for collision detection found on StackOverflow, on Wikipedia and all over the Web, such as finding the intersection/closest approach of two line segments. My simulation deals with variable accelerations that are fundamental to the results, so what I need is the intersection/closest approach of two parabolic segments.
On the webpage AShelley referred to, the Closest Point of Approach method is developed for the case of two objects moving at constant velocity. However, I believe the same vector-calculus method can be used to derive a result in the case of two objects both moving with constant non-zero acceleration (quadratic time dependence).
In this case, the time derivative of the distance-squared function is 3rd order (cubic) instead of 1st order. Therefore there will be 3 solutions to the Time of Closest Approach, which is not surprising since the path of both objects is curved so multiple intersections are possible. For this application, you would probably want to use the earliest value of t which is within the interval defined by the current simulation step (if such a time exists).
I worked out the derivative equation which should give the times of closest approach:
0 = |D_ACC|^2 * t^3 + 3 * dot(D_ACC, D_VEL) * t^2 + 2 * [ |D_VEL|^2 + dot(D_POS, D_ACC) ] * t + 2 * dot(D_POS, D_VEL)
where:
D_ACC = ob1.ACC-obj2.ACC
D_VEL = ob1.VEL-obj2.VEL (before update)
D_POS = ob1.POS-obj2.POS (also before update)
and dot(A, B) = A.x*B.x + A.y*B.y + A.z*B.z
(Note that the square of the magnitude |A|^2 can be computed using dot(A, A))
To solve this for t, you'll probably need to use formulas like the ones found on Wikipedia.
Of course, this will only give you the moment of closest approach. You will need to test the distance at this moment (using something like Eq. 2). If it is greater than (obj1.Radius + obj2.Radius), it can be disregarded (i.e. no collision). However, if the distance is less, that means the spheres collide before this moment. You could then use an iterative search to test the distance at earlier times. It might also be possible to come up with another (even more complicated) derivation which takes the size into account, or possible to find some other analytic solution, without resorting to iterative solving.
Edit: because of the higher order, some of the solutions to the equation are actually moments of farthest separation. I believe in all cases either 1 of the 3 solutions or 2 of the 3 solutions will be a time of farthest separation. You can test analytically whether you're at a min or a max by evaluating the second derivative with respect to time (at the values of t which you found by setting the first derivative to zero):
D''(t) = 3 * |D_ACC|^2 * t^2 + 6 * dot(D_ACC, D_VEL) * t + 2 * [ |D_VEL|^2 + dot(D_POS, D_ACC) ]
If the second derivative evaluates to a positive number, then you know the distance is at a minimum, not a maximum, for the given time t.
Draw a line between the start location and end location of each sphere. If the resulting line segments intersect the spheres definitely collided at some point and some clever math can find at what time the collision occurred. Also make sure to check if the minimum distance between the segments (if they don't intersect) is ever less than 2*radius. This will also indicate a collision.
From there you can backstep your delta time to happen exactly at collision so you can correctly calculate the forces.
Have you considered using a physics library which already does this work? Many libraries use far more advanced and more stable (better integrators) systems for solving the systems of equations you're working with. Bullet Physics comes to mind.
op asked for time of collision. A slightly different approach will compute it exactly...
Remember that the position projection equation is:
NEW_POS=POS+VEL*t+(ACC*t^2)/2
If we replace POS with D_POS=POS_A-POS_B, VEL with D_VEL=VEL_A-VEL_B, and ACC=ACC_A-ACC_B for objects A and B we get:
$D_NEW_POS=D_POS+D_VEL*t+(D_ACC*t^2)/2
This is the formula for vectored distance between the objects. In order to get the squared scalar distance between them, we can take the square of this equation, which after expansion looks like:
distsq(t) = D_POS^2+2*dot(D_POS,D_VEL)*t + (dot(D_POS, D_ACC)+D_VEL^2)*t^2 + dot(D_VEL,D_ACC)*t^3 + D_ACC^2*t^4/4
In order to find the time where collision occurs, we can set the equation equal to the square of the sum of radii and solve for t:
0 = D_POS^2-(r_A+r_B)^2 + 2*dot(D_POS,D_VEL)*t + (dot(D_POS, D_ACC)+D_VEL^2)*t^2 + dot(D_VEL,D_ACC)*t^3 + D_ACC^2*t^4/4
Now, we can solve for the equation using the quartic formula.
The quartic formula will yield 4 roots, but we are only interested in real roots. If there is a double real root, then the two objects touch edges at exactly one point in time. If there are two real roots, then the objects continuously overlap between root 1 and root 2 (i.e. root 1 is the time when collision starts and root 2 is the time when collision stops). Four real roots means that the objects collide twice, continuously between root pairs 1,2 and 3,4.
In R, I used polyroot() to solve as follows:
# initial positions
POS_A=matrix(c(0,0),2,1)
POS_B=matrix(c(2,0),2,1)
# initial velocities
VEL_A=matrix(c(sqrt(2)/2,sqrt(2)/2),2,1)
VEL_B=matrix(c(-sqrt(2)/2,sqrt(2)/2),2,1)
# acceleration
ACC_A=matrix(c(sqrt(2)/2,sqrt(2)/2),2,1)
ACC_B=matrix(c(0,0),2,1)
# radii
r_A=.25
r_B=.25
# deltas
D_POS=POS_B-POS_A
D_VEL=VEL_B-VEL_A
D_ACC=ACC_B-ACC_A
# quartic coefficients
z=c(t(D_POS)%*%D_POS-r*r, 2*t(D_POS)%*%D_VEL, t(D_VEL)%*%D_VEL+t(D_POS)%*%D_ACC, t(D_ACC)%*%D_VEL, .25*(t(D_ACC)%*%D_ACC))
# get roots
roots=polyroot(z)
# In this case there are only two real roots...
root1=as.numeric(roots[1])
root2=as.numeric(roots[2])
# trajectory over time
pos=function(p,v,a,t){
T=t(matrix(t,length(t),2))
return(t(matrix(p,2,length(t))+matrix(v,2,length(t))*T+.5*matrix(a,2,length(t))*T*T))
}
# plot A in red and B in blue
t=seq(0,2,by=.1) # from 0 to 2 seconds.
a1=pos(POS_A,VEL_A,ACC_A,t)
a2=pos(POS_B,VEL_B,ACC_B,t)
plot(a1,type='o',col='red')
lines(a2,type='o',col='blue')
# points of a circle with center 'p' and radius 'r'
circle=function(p,r,s=36){
e=matrix(0,s+1,2)
for(i in 1:s){
e[i,1]=cos(2*pi*(1/s)*i)*r+p[1]
e[i,2]=sin(2*pi*(1/s)*i)*r+p[2]
}
e[s+1,]=e[1,]
return(e)
}
# plot circles with radius r_A and r_B at time of collision start in black
lines(circle(pos(POS_A,VEL_A,ACC_A,root1),r_A))
lines(circle(pos(POS_B,VEL_B,ACC_B,root1),r_B))
# plot circles with radius r_A and r_B at time of collision stop in gray
lines(circle(pos(POS_A,VEL_A,ACC_A,root2),r_A),col='gray')
lines(circle(pos(POS_B,VEL_B,ACC_B,root2),r_B),col='gray')
Object A follows the red trajectory from the lower left to the upper right. Object B follows the blue trajectory from the lower right to the upper left. The two objects collide continuously between time 0.9194381 and time 1.167549. The two black circles just touch, showing the beginning of overlap - and overlap continues in time until the objects reach the location of the gray circles.
Seems like you want the Closest Point of Approach (CPA). If it is less than the sum of the radiuses, you have a collision. There is example code in the link. You can calculate each frame with the current velocity, and check if the CPA time is less than your tick size. You could even cache the cpa time, and only update when acceleration was applied to either item.

Resources