I have a query about the output statistics gained from linear mixed models (using the lmer function) relative to the output statistics taken from the estimated marginal means gained from this model
Essentially, I am running an LMM comparing the within-subjects effect of different contexts (with "Negative" coded as the baseline) on enjoyment ratings. The LMM output suggests that the difference between negative and polite contexts is not significant, with a p-value of .35. See the screenshot below with the relevant line highlighted:
LMM output
However, when I then run the lsmeans function on the same model (with the Holm correction), the p-value for the comparison between Negative and Polite context categories is now .05, and all of the other statistics have changed too. Again, see the screenshot below with the relevant line highlighted:
LSMeans output
I'm probably being dense because my understanding of LMMs isn't hugely advanced, but I've tried to Google the reason for this and yet I can't seem to find out why? I don't think it has anything to do with the corrections because the smaller p-value is observed when the Holm correction is used. Therefore, I was wondering why this is the case, and which value I should report/stick with and why?
Thank you for your help!
Regression coefficients and marginal means are not one and the same. Once you learn these concepts it'll be easier to figure out which one is more informative and therefore which one you should report.
After we fit a regression by estimating its coefficients, we can predict the outcome yi given the m input variables Xi = (Xi1, ..., Xim). If the inputs are informative about the outcome, the predicted yi is different for different Xi. If we average the predictions yi for examples with Xij = xj, we get the marginal effect of the jth feature at the value xj. It's crucial to keep track of which inputs are kept fixed (and at what values) and which inputs are averaged over (aka marginalized out).
In your case, contextCatPolite in the coefficients summary is the difference between Polite and Negative when smileType is set to its reference level (no reward, I'd guess). In the emmeans contrasts, Polite - Negative is the average difference over all smileTypes.
Interactions have a way of making interpretation more challenging and your model includes an interaction between smileType and contextCat. See Interaction analysis in emmeans.
To add to #dipetkov's answer, the coefficients in your LMM are based on treatment coding (sometimes called 'dummy' coding). With the interactions in the model, these coefficients are no longer "main-effects" in the traditional sense of factorial ANOVA. For instance, if you have:
y = b_0 + b_1(X_1) + b_2(X_2) + b_3 (X_1 * X_2)
...b_1 is "the effect of X_1" only when X_2 = 0:
y = b_0 + b_1(X_1) + b_2(0) + b_3 (X_1 * 0)
y = b_0 + b_1(X_1)
Thus, as #dipetkov points out, 1.625 is not the difference between Negative and Polite on average across all other factors (which you get from emmeans). Instead, this coefficient is the difference between Negative and Polite specifically when smileType = 0.
If you use contrast coding instead of treatment coding, then the coefficients from the regression output would match the estimated marginal means, because smileType = 0 would now be on average across smile types. The coding scheme thus has a huge effect on the estimated values and statistical significance of regression coefficients, but it should not effect F-tests based on the reduction in deviance/variance (because no matter how you code it, a given variable explains the same amount of variance).
https://stats.oarc.ucla.edu/spss/faq/coding-systems-for-categorical-variables-in-regression-analysis/
I would like to get the confidence interval (CI) for the predicted mean of a Linear Mixed Effect Model on a large dataset (~40k rows), which is itself a subset of an even larger dataset. This CI is then used for estimating the uncertainty of another calculation that uses the mean and its related CI as input data.
I managed to create a prediction estimate and interval for the full dataset, but a Prediction Interval is not the same and much larger than a CI. Beside bootstrapping (which takes way too much time with this much data), I cannot find a method that would allow me to estimate a CI – either because it is throwing errors or because it only offers to calculate Prediction intervals.
I quite recently moved into LME and I might therefore have overseen some obvious method.
Here is what I did so far in more detail:
The input data is confidential and I can therefore unfortunately not share any extract.
But in general, we have one dependent variable (y) representing the probability of a event and 2 categorical (c1 and c2) and two continuous variables (x1 and x2) with some weighting factor (w1). Some values in the dataset are missing. An extract of the first rows of the data could look like the example below:
c1
c2
x1
x2
w1
y
London
small
1
10
NA
NA
London
small
1
20
NA
NA
London
large
2
10
0.2
0.1
Paris
small
1
10
0.2
0.23
Paris
large
2
10
0.3
0.3
Based on this input data, I am then fitting a LMER model in the following form:
lmer1 <- lme4::lmer( y ~ x1 * poly(x2, 5) + ((x1 * poly(x2 ,5)) | c1),
data = df,
weights = w1,
control = lme4::lmerControl(check.conv.singular = lme4::.makeCC(action = "ignore", tol = 1e-3)))
This runs for some minutes and returns several warnings:
Warning messages: 1: In optwrap(optimizer, devfun, getStart(start,
rho$pp), lower = rho$lower, : convergence code 5 from nloptwrap:
NLOPT_MAXEVAL_REACHED: Optimization stopped because maxeval (above)
was reached.
2: In checkConv(attr(opt, “derivs”), opt$par, ctrl =
control$checkConv, : unable to evaluate scaled gradient
3: In checkConv(attr(opt, “derivs”), opt$par, ctrl =
control$checkConv, : Model failed to converge: degenerate Hessian with
11 negative eigenvalues
I increased the MAXEVAL parameter but this still did not help to get rid of the warnings and I found that despite these warnings, the model is still fitted. I therefore started to apply different methods to get a prediction of the mean for the whole dataset and the related CI for the mean.
predictInterval
I started with creating a Prediction Interval for the full dataset:
predictions <- merTools::predictInterval(lmer1,
newdata = df,
which = "full",
n.sims = 1000,
include.resid.var = FALSE,
level=0.95,
stat="mean")
However, as stated above, the Prediction Interval is not the same as the CI (see also https://datascienceplus.com/prediction-interval-the-wider-sister-of-confidence-interval/).
I found that the general predict function has the option to set interval to either “prediction” or “confidence”, but this option does not exist with the prediction from a LMER object. And I could not find another possibility to switch from Prediction Interval to CI – even though I would believe that the data drawn should be sufficient to do this.
confint
I then saw that there is a function called “confint”, but when running this function I get the following error:
predicition_ci = lme4::confint.merMod(lmer1)
Computing profile confidence intervals ...
Error in zeta(shiftpar, start = opt[seqpar1][-w]) : profiling
detected new, lower deviance
In addition: Warning messages:
1: In commonArgs(par, fn, control, environment()) : maxfun < 10 *
length(par)^2 is not recommended.
2: In optwrap(optimizer, devfun, x#theta, lower = x#lower, calc.derivs
= TRUE, : convergence code 1 from bobyqa: bobyqa -- maximum number of function evaluations exceeded
I found this thread (Error when estimating CI for GLMM using confint()), which said that I need to reduce the “devtol” parameter by setting a different profile. But doing so results in the same error:
lmer1_devtol = profile(lmer1, devtol = 1e-7)
Error in zeta(shiftpar, start = opt[seqpar1][-w]) : profiling
detected new, lower deviance
In addition: Warning messages:
1: In commonArgs(par, fn, control, environment()) : maxfun < 10 *
length(par)^2 is not recommended.
2: In optwrap(optimizer, devfun, x#theta, lower = x#lower, calc.derivs
= TRUE, : convergence code 1 from bobyqa: bobyqa -- maximum number of function evaluations exceeded
add_ci
I found the function “add_ci” but this again resulted in another error:
predictions_ci = ciTools::add_ci(df, lmer1,
alpha = 0.05)
Error in levelfun(r, n, allow.new.levels = allow.new.levels) : new
levels detected in newdata
I then set the new “allow.new.levels” parameter to TRUE like in the description of the prediction function, but this parameter seems not to be carried through:
predictions_ci = ciTools::add_ci(df, lmer1,
alpha = 0.05,
allow.new.levels = TRUE)
Error in levelfun(r, n, allow.new.levels = allow.new.levels) : new
levels detected in newdata
Diag
I found a method to calculate CI intervals for the sleepstudy data, which uses a matrix conversion with diag.
Designmat <- model.matrix(as.formula("y ~ x1 * poly(x2, 5)")[-2], df)
predvar <- diag(Designmat %*% vcov(lmer1) %*% t(Designmat))
#With new data
newdat = df
newdat$pred <- predict(lmer1, newdat, allow.new.levels = TRUE)
Designmat <- model.matrix(formula(lmer1)[-2], newdat)
But the diag method does not work for such large datasets.
bootMer
As said earlier, the boostrapping of the confidence interval with bootMer is taking too much time for this subset of data (I started it 1 day ago and it is still running). I tried to use some parallel processing with the sleepstudy sample data but this could not increase the speed dramatically, so I would assume it will have the same effect on my large dataset.
merBoot <- bootMer(lmer1, predict, nsim = 1000, re.form = NA)
Others
I have read through all these post (and more), but none of them could help me to get the CI in reasonable time for my case. But maybe I have overseen something.
https://stats.stackexchange.com/questions/344012/confidence-intervals-from-bootmer-in-r-and-pros-cons-of-different-interval-type
https://stats.stackexchange.com/questions/117641/how-trustworthy-are-the-confidence-intervals-for-lmer-objects-through-effects-pa
How to get coefficients and their confidence intervals in mixed effects models?
Error when estimating CI for GLMM using confint()
https://stats.stackexchange.com/questions/235018/r-extract-and-plot-confidence-intervals-from-a-lmer-object-using-ggplot
How to get confidence intervals for lmer object?
Confidence intervals for the predicted probabilities from glmer object, error with bootMer
https://rdrr.io/cran/ciTools/man/add_ci.lmerMod.html
Error when estimating Confidence interval in lme4
https://fromthebottomoftheheap.net/2018/12/10/confidence-intervals-for-glms/
https://cran.r-project.org/web/packages/merTools/vignettes/Using_predictInterval.html
https://drewtyre.rbind.io/classes/nres803/week_12/lab_12/
Unsurprising to me but unfortunate for you, nonconvergence of mixed model estimation and difficulty in generating confidence intervals results from the misuse of a linear model for data with a limited dependent variable. "Despite these warnings, the model is still fitted" is a dangerous practice, as iterations are not to be used from predictions if not converged. As you described, the dependent variable (y) represents the probability of an event, which is a continuous variable between zero and one. Using a linear model to predict probability constitutes a linear probability regression, which requires censoring predicted outcomes (e.g. forcing all predicted values greater than .99 to be .99 while forcing all predicted values smaller than .01 to be .01) and adjusting for heterogenous variances using weighted least squares (see https://bookdown.org/ccolonescu/RPoE4/heteroskedasticity.html). Having continuous variables produce both fixed and random effects also burden the convergence, while some or all the random effects of continuous variables may not be necessary. The use of weights can be also problematic.
Instead of a linear probability regression, beta regression works best for dependent variables which are proportions and probabilities. Beta regression without random effects is done in betareg::betareg(). glmmTMB::glmmTMB() handles beta regression with random effects. Start from a simple setting where only the intercept has random effects such as
glmmTMB(y ~ 1 + x1 * poly(x2, 5) + c2 + (1 | c1), family = list(family = "beta", link ="logit"), data = df)
You may compare the result with glmer() and lmer()
glmer(y ~ 1 + x1 * poly(x2, 5) + c2 + (1 | c1), family = gaussian(link = "logit"), data = df)
lmer(log(y/(1-y)) ~ 1 + x1 * poly(x2, 5) + c2 + (1 | c1), data = df)
glmer() and lmer() with the above specifications are equivalent, and both assume that predicting log(y/(1-y)) has normal residuals, while glmmTMB() assumes that y follows a gamma distribution. lmer() results are easier to explain and receive wider support from other packages, since they are linear models. On the other hand, glmmTMB() may fit better according to AIC, BIC, and log likelihood. Note that all three requires y strictly in (0, 1) noninclusive. To include occasional zeros and ones, manipulate observations at both boundaries by introducing a small tolerance usually equal to half of the smaller distance from a boundary to its closest observed value (see https://stats.stackexchange.com/questions/109702 and https://graphworkflow.com/eda/bounded01/). For probabilities with either or both of many zeros and ones, zero-, one-, and zero-one–inflated beta regression is fitted via gamlss::gamlss(). See Korosteleva, O. (2019). Advanced regression models with SAS and R. CRC Press.
Add random effects of slopes if necessary according to likelihood ratio tests. Make sure there are enough levels in c1 (e.g. more than 10 different cities) to necessitate mixed effect models. The {glmmTMB} package extends glm() and glmer(). Its alternative {brms} package is built for Bayesian approach. Note that the weights = argument in glmmTMB() as in glm() specifies that values in weights are inversely proportional to the dispersions and are not automatically scaled to sum to one unless integer values which specifies number of observation units. Therefore, you need to investigate what w1 stands for and evaluate how to use it in modeling.
merTools::predictInterval() generates many kinds of intervals for mixed models, some comparable to confidence intervals and prediction intervals in linear models without random effects. However, it supports lmer() model objects only. See https://cran.r-project.org/web/packages/merTools/vignettes/merToolsIntro.html and https://cran.r-project.org/web/packages/merTools/vignettes/Using_predictInterval.html.
predictInterval(lmer(), include.resid.var = F) includes uncertainty from both fixed and random effects of all coefficients including the intercept but excludes variation from multiple measurements of the same group or individual. This can be considered similar to prediction intervals of linear models without random effects. predictInterval(lmer(), include.resid.var = F, fix.intercept.variance = T) generates shorter CI than above by accounting for covariance between the fixed and random effects of the intercept. predictInterval(lmer(), include.resid.var = F, ignore.fixed.terms = "(Intercept)") also shortens CI by removing uncertainty from the fixed effect of the intercept. If there are no random slopes other than random intercept, the last two methods are comparable to confidence intervals of of linear models without random effects. confint(lmear()) and confint(profile(lmear())) generates confidence intervals of modal parameters such as a slope, so they do not produce confidence intervals of predicted outcomes.
You may also find the following functions and packages useful for generating CIs of mixed effect models.
ggeffect() {ggeffects} predictions() {marginaleffects} and margins() prediction() {margins} {predictions}
They can produce predictions averaged over observed distribution of covariates, instead of making predictions by holding some predictors at specific values such as means or modes which can be misleading and not useful.
I have a model of exponential decay in the form Y = exp{a + bX + cW}. In R, I represent this as a generalized linear model (GLM) using a gamma random component with log link function.
fitted <- glm(Y ~ X + W, family=Gamma(link='log'))
I know from this post that for the standard errors to really represent an exponential rather than gamma random component, I need to specify the dispersion parameter as being 1 when I call summary.
summary(fitted, dispersion=1)
summary(fitted) # not the same!
Now, I want to find the 95% confidence intervals for my estimates of a, b, c. However, there seems to be no way to specify the dispersion parameter for the confint, even though I know it should affect the confidence interval (because it affects the standard error).
confint(fitted)
confint(fitted, dispersion=1) # same as the last confint :(
So, in order to get the confidence intervals corresponding to an exponential rather than gamma random component, how do I specify the dispersion parameter when computing the confidence interval for a GLM?
Suppose I have a following formula for a mixed effects model:
Performance ~ 1 + WorkingHours + Tenure + (1 + WorkingHours + Tenure || JobClass)
then I can specify priors for fixed slopes and fixed intercept as:
prior = normal(c(mu1,mu2), c(sd1,sd2), autoscale = FALSE)
prior_intercept = normal(mean, scale, autoscale = FALSE)
But how do I specify the priors for random slopes and intercept using
prior_covariance = decov(regularization, concentration, shape, scale)
(or)
lkj(regularization, scale, df)
if I know the variance between the slopes and intercepts and the correlation between them.
I am unable to understand how to specify the parameters for the above mixed effects formula.
Because you're working in a Bayesian model, you aren't going to specify the correlations or variances. You're going to specify a likelihood distribution of covariance matrices (by way of the correlation matrix and vector of variances) by giving the values for a few parameters.
The regularization parameter is a positive real value that determines how likely things are to be correlated. A value of 1 is sort of the "anything's possible" option (this is the default). Values greater than 1 mean that you believe there are few, if any, correlations. Values less than 1 mean you believe there is a lot of correlation.
The scale parameter is related to the sum of the variances. In particular, the scale parameter is equal to the square root of the average variance.
The concentration parameter is used to control how the total variance is distributed among the different variables. A value of 1 is saying you don't have an expectation. Larger values say that you believe that the variables have similar proportions of the total variance. Values between 0 and 1 mean that you think there are dissimilar contributions.
The shape parameter is used for a Gamma distribution that acts as a prior on the scale.
Then, finally, df is your prior degrees of freedom.
So, decov and lkj are each giving you a different way to express your expectations about properties of the covariance matrix, but they won't let you specify which specific variables you believe to be correlated with which other specific variables. It should decide that as part of the model fitting process.
This is all from the rstanarm documentation
I need to fit Y_ij ~ NegBin(m_ij,k), hence a negative binomial distribution to a count. However, the data I have observed are censored, I know the value of y_ij, but it could be more than that value. Writting down the loglikelihood going with this problem is:
ll = \sum_{i=1}^n w_i (c_i log(P(Y_ij=y_ij|X_ij)) + (1- c_i) log(1- \sum_{k=1}^32 P(Y_ij = k|X_ij)))
Where X_ij represent the design matrix (with the covariates of interest), w_i is the weight for each observation, y_ij is the response variable and P(Y_ij=y_ij|Xij) is the negative binomial distribution where the m_ij=exp(X_ij \beta) and \alpha is the overdispersion parameter.
Does someone knows if there exist a build-in code in R that could be used to obtain this?
Check this paper out: Regression Models for Count Data in R