Wrong number of rows when reading a CSV file - r

I have a CSV file that I wrote with a Perl script. Files opens fine in Excel or in Simple Text and looks fine. It has 9 rows. However, when I count it with nrow() or dim(), I get 8 rows. This is causing downstream problems. Headers are 'a' to 'j'. Thanks.
a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
b 0.401374 0.467736 0.582949 0.751601 0.860567 0.967758 0.965143 0.961866 0.863406 0.914746 0.984586 0.950531 0.935572 0.949083 0.968802 0.958067 0.980222 0.9917 1.009155 1.013709 1.008558 0.99945 0.988164 0.976623 0.973183 0.96519 0.968162 0.966721 0.962864 0.965214 0.968562 0.97235 0.981299 0.99698 1.013786 1.033542 1.050533 1.060338 1.072083 1.067729 1.057589 1.053562 1.030205 1.013217 0.994013 0.986159 0.981776 0.974559 0.975097 0.969779 0.969334 0.960085 0.963134 0.963621 0.961985 0.963223 0.957363 0.980404 0.962947 0.974328 0.969675 0.976323 0.974097 0.966781 0.972603 0.962981 0.975821 0.958069 0.980906 0.975684 0.943835 0.948154 0.94311 0.942586 1.022319 1.009415 1.021423 1.059047 1.085726 1.010326 1.036282 1.057417 1.046533 1.159883 1.204652 1.151679 1.244229 1.301202 1.490301 1.304381 1.712297 1.348033 0.736757 0.640583 1.474143 5.664327 2.547607 9.543845 9.572942 4.721692 0
c 0.483217 0.29612 0.31702 0.543388 0.691817 0.734183 0.772058 0.881707 0.942905 0.921662 0.970798 0.953243 0.945404 1.019665 0.938993 0.971219 0.959108 0.987285 0.991304 1.027208 0.994463 0.984487 0.998657 0.978592 0.96603 0.961446 0.957071 0.955184 0.957707 0.954644 0.970809 0.962456 0.973713 0.991673 1.012059 1.029588 1.042737 1.06048 1.065989 1.07043 1.060842 1.046754 1.035313 1.01837 0.998625 0.985907 0.981162 0.979541 0.977763 0.976078 0.968934 0.968159 0.967233 0.97003 0.969417 0.973832 0.973617 0.984223 0.976866 0.979505 0.985046 0.977616 0.987978 0.976532 0.974292 0.982313 0.975786 0.972815 1.004171 0.974393 0.977434 0.9359 0.960213 0.985705 1.020929 1.011589 1.006536 0.988384 1.037618 1.004525 1.0499 1.075382 1.126694 1.097262 1.145451 1.138151 1.268054 1.364637 1.548332 1.784365 1.66168 1.857999 1.281119 0.714744 1.409833 5.417217 2.436466 15.516732 14.648507 4.515705 0
d 0.54739 0.417737 0.560592 0.762408 0.840282 0.906248 0.970471 0.949707 0.933483 0.934403 1.07911 0.96818 1.019784 0.984101 0.96848 0.962378 0.981269 1.010261 1.036639 1.020298 0.996359 1.002746 0.986174 0.987546 0.975991 0.963343 0.967528 0.968886 0.967459 0.962992 0.966011 0.973625 0.982147 0.995917 1.010114 1.029 1.04789 1.059755 1.07154 1.072574 1.060199 1.052861 1.040088 1.017165 0.996716 0.989731 0.970404 0.974642 0.970293 0.967025 0.964511 0.962078 0.966636 0.960035 0.957345 0.967206 0.964344 0.972463 0.970353 0.971953 0.965436 0.968887 0.979595 0.967244 0.978083 0.956349 0.976509 0.990198 0.967315 0.965619 0.937825 0.963115 0.937972 0.940783 0.950582 0.999596 0.964397 1.073948 1.011812 0.992207 0.968892 1.019393 1.036893 1.040682 1.136172 1.175936 1.370799 1.626169 1.540309 1.521391 1.696523 1.335615 1.526301 0.740462 2.008275 3.367288 3.155172 17.020668 5.690853 9.356391 0
e 0.534257 0.623387 0.658379 1.021547 1.086113 1.10879 1.092341 1.047527 0.978066 1.113138 1.097839 1.081836 1.061449 1.01633 0.977861 1.064722 0.993365 1.099759 1.082891 1.097126 1.068604 1.050802 1.035536 1.020507 1.005109 1.010964 1.00586 0.999783 0.998753 0.995041 0.991949 0.991496 0.99574 1.009774 1.028723 1.05391 1.05445 1.076628 1.073423 1.073404 1.061363 1.047512 1.033238 1.004406 0.996751 0.969424 0.958341 0.960392 0.945673 0.947249 0.95037 0.943966 0.933722 0.930457 0.930735 0.925822 0.932857 0.93624 0.926209 0.926974 0.921879 0.92411 0.938514 0.936167 0.946051 0.938521 0.91792 0.927171 0.927905 0.930573 0.941126 0.905906 0.885595 0.890934 0.956747 0.993943 1.004912 0.966991 1.029596 0.934891 0.902882 1.005912 1.055131 1.060036 1.210456 1.204307 1.363757 1.383982 1.301273 1.834122 2.071989 1.468085 2.066713 1.317749 1.516236 7.76809 3.930527 17.669452 11.815548 0 0
f 0.580985 0.297751 0.444868 0.651545 0.850767 0.88177 1.045047 1.069708 1.007082 0.970515 0.995463 1.077379 0.956378 0.9633 0.963782 0.972252 1.001651 1.012825 1.024981 1.039174 1.018857 1.014041 1.004354 0.982018 0.985064 0.985249 0.976443 0.974376 0.972889 0.971678 0.975724 0.976216 0.984206 0.996217 1.017416 1.036441 1.049075 1.06143 1.068939 1.070938 1.062538 1.047006 1.032694 1.014813 0.99588 0.979417 0.969517 0.974295 0.968714 0.964257 0.964937 0.959818 0.956047 0.95799 0.95596 0.950887 0.954934 0.958854 0.961795 0.962765 0.970278 0.96375 0.963601 0.961951 0.956463 0.963495 0.957578 0.955705 0.988666 0.975476 0.967505 0.956554 0.927677 0.955343 0.973189 1.010146 1.057061 0.998942 1.042087 1.069688 1.010457 1.050207 1.037386 1.131603 1.180845 1.164758 1.302756 1.670756 1.413374 1.596161 1.643926 1.543092 0.756803 0.536158 1.850752 6.163239 0.799615 9.58566 14.422327 0 0
g 0.368286 0.133209 0.189854 0.329541 0.312233 0.371553 0.55966 0.663372 0.678283 0.811317 0.896647 0.887872 0.919798 0.945003 0.895565 0.968837 0.991214 0.987583 1.00316 1.020707 1.015521 0.985502 0.998961 0.976184 0.98338 0.973889 0.9674 0.968549 0.966232 0.966105 0.966297 0.965883 0.976568 0.999395 1.011924 1.03344 1.051626 1.059014 1.063355 1.068936 1.053488 1.045903 1.031994 1.008174 0.991796 0.972343 0.973369 0.969431 0.967085 0.963154 0.966865 0.962234 0.95759 0.96642 0.966713 0.974709 0.973966 0.981547 0.984093 0.991954 0.985628 0.996822 0.991295 0.98659 0.989936 0.978239 0.977446 1.025974 1.042636 1.040808 0.982495 0.991225 1.015466 1.008242 1.030642 1.004306 1.086892 1.097275 1.120253 1.138095 1.135337 1.209962 1.225443 1.224011 1.338381 1.450842 1.727673 1.719172 1.82727 2.074713 1.709345 2.290568 2.321692 1.542005 0.798422 8.181066 2.759658 5.513723 22.122134 13.63921 2.675538
h 0.30497 0.32974 0.424478 0.455078 0.523571 0.606559 0.660406 0.703971 0.729999 0.915297 0.981265 0.96674 0.925204 1.036524 0.953261 0.978409 0.987847 1.01834 1.019895 1.038827 1.024035 1.012836 0.994345 0.994459 0.972257 0.97309 0.978206 0.968312 0.964948 0.962225 0.96529 0.974432 0.975632 0.994073 1.010742 1.030179 1.042012 1.056884 1.058926 1.060281 1.059781 1.038339 1.029365 1.009022 0.986078 0.978875 0.9716 0.969215 0.958117 0.972496 0.968037 0.97107 0.958519 0.970863 0.969962 0.975005 0.978711 0.984085 0.984683 0.984162 0.996244 0.997889 0.994661 1.001441 0.985552 1.021569 1.000549 1.002552 0.997683 1.033186 1.013344 1.019947 1.057587 1.033291 1.069199 1.036226 1.168877 1.175308 1.22975 1.11576 1.122753 1.106146 1.224346 1.258167 1.290459 1.477277 1.427201 1.742816 1.558004 1.386269 1.910887 1.920479 1.08143 1.206672 2.082642 3.048554 3.085038 18.491473 12.365233 0 0
j 0.354463 0.327358 0.398802 0.473 0.602168 0.764142 0.819362 0.914898 0.823412 1.010715 0.854421 0.892255 0.981967 0.966507 1.021983 0.975027 0.961088 0.960516 0.971975 1.01222 0.979767 0.987716 0.98707 0.970561 0.963265 0.962699 0.958097 0.961291 0.952577 0.958112 0.9596 0.967041 0.97311 0.991703 1.006086 1.025563 1.040921 1.055595 1.05902 1.068992 1.060288 1.046614 1.037744 1.019254 0.996458 0.984552 0.986514 0.984358 0.977773 0.980087 0.972711 0.969122 0.975125 0.968046 0.968058 0.979439 0.97843 0.978518 0.98551 0.979352 0.983617 0.984822 0.986629 0.986932 0.991861 1.002382 0.999269 0.99465 0.994519 0.987402 1.000541 0.977929 0.976282 0.964102 1.032155 1.04334 1.063832 1.096302 1.105991 1.065358 1.106644 1.068104 1.064264 1.167453 1.278531 1.383359 1.417057 1.672739 1.39427 1.396529 1.94346 1.50906 1.274638 1.467406 2.337833 6.387922 0 11.099379 16.193772 4.992065 0

Functions in R can have default values for some parameters. For read.csv:
read.csv(file, header = TRUE, sep = ",", quote = "\"",
dec = ".", fill = TRUE, comment.char = "", ...)
header=TRUE means que first row is assume to be the header of the file. This means, it won't be recognized as data by R. If you read your file with header=FALSE
read.csv(file, header=FALSE)
you will get the 9 rows.

Related

Is there Zlib for R ? raw inflate function - how to decompress hexadecimal values

I need to decompress hex values and convert those to string.
Actual problem is that i'm not able to figure out how to decompress hex values
Hex do not contain any headers,
If i copy hex codes to CyberChef i'm able to decompress those and have original string
In CyberChef only Raw Inflate operation is needed
So i'm hoping help how to do raw inflate in R
I have tried memDecompress using all options without success (i.e gzip etc)
UPDATE:
Here is a sample from hex:
e3 0e 71 0d 0e f1 54 c8 cb 2f 52 30 02 00
which i'm able to convert using CyberChef to string
".TESTI nor 2"
RLdata<- sqlQuery(connection, ..... AS Varbinary(max) AS NOTEShort ......
> RLdata$NOTEshort[4268]
[[1]]
[1] e3 0e 71 0d 0e f1 54 c8 cb 2f 52 30 02 00
> unlist(RLdata$NOTEshort[4268])
[1] e3 0e 71 0d 0e f1 54 c8 cb 2f 52 30 02 00
> memDecompress(unlist(RLdata$NOTEshort[4268]),type = "gzip", asChar = TRUE)
Error in memDecompress(unlist(RLdata$NOTEshort[4268]), type = "gzip", :
internal error -3 in memDecompress(2)
> memDecompress(unlist(RLdata$NOTEshort[4268]),type = "unknown", asChar = TRUE)
[1] "ã\016q\r\016ñTÈË/R0\002"
Warning message:
In memDecompress(unlist(RLdata$NOTEshort[4268]), type = "unknown", :
unknown compression, assuming none
If you convert it into Base64 and then decode it back to Hex I think it decompresses to original, but may have been changed by a bug fix. It used to do this a couple of years back but I haven't used CyberChef in a while, sorry
Had to do this using python3. Zlib.decompress() did the trick.
Link to python solution
Read Dynamics NAV Table Metadata with SQL

Problems with convergency when using solnp function in R

When solving a portfolio optimization problem with an additional 1-norm constraint on the portfolio weights, I faced with convergency problems.
Description of the exercise:
For given N assets with T observations of their returns find the value of 1Norm constraint Theta, such that the last period portfolio return (T-th one) is maximized. That is, solve the problem: min_w w'COVw$ s.t. w1+w2+...+wN=1 and |w1|+|w2|+...+|wN|<=Theta and, out of all values of Theta, choose the one with the maximum value of w'r_T, where r_T is the vector of assets returns in the last period and COV is the variance-covariance matrix of asset returns.
Description of the problem:
First I tried the "naive" approach: with a grid of 0.001 for Theta from 1 to 6 I was going to solve the portfolio optimization problem and compute the last period portfolio return for each Theta. The idea was to choose then the value of Theta with the largest corresponding last period return. However, I noticed that for quite a few values of Theta the solnp function did not converge. The problem occured mostly for small values of Theta: from 1 to 3. For larger values no problems with convergency were detected.
The second approach was to use solnp function twice: first as the function to find Theta and second as the inner part of the objective function. However, I could not find reliable estimates in this way: the values I got did not deliver the optimal solution. Apparently, the objective function is not smooth, but gosolnp function does not find the solution.
The code with data (6 assets with 120 return observations) is provided below. Any suggestions are welcome.
> exp_d
[,1] [,2] [,3] [,4] [,5] [,6]
1 1.3724 0.9081 -0.0695 5.7168 1.9642 1.4222
2 0.6095 1.5075 5.3842 2.7154 2.6838 6.3154
3 -2.6779 -0.1359 -0.4374 1.4287 0.0709 -0.7967
4 -3.5365 -4.3572 -2.0112 -3.5898 -2.3460 -4.0970
5 3.1210 3.6608 2.0944 3.1292 2.8965 3.4614
6 2.7364 1.8411 3.2639 2.9678 2.6067 2.3950
7 -1.0001 -0.3782 3.9316 -0.2621 0.0347 4.4635
8 3.9022 6.3784 6.6192 5.0044 3.5568 8.6305
9 -1.6000 -0.9889 -3.1676 1.3025 0.2071 -2.4764
10 -1.3184 0.8741 3.4796 3.0510 -0.7634 -0.5452
11 5.5482 3.3467 13.3256 5.4076 5.1017 7.4921
12 -1.5484 1.3040 -3.9474 -0.9628 -3.0156 -1.6326
13 4.3331 5.2347 3.9846 9.2369 6.7429 7.2603
14 2.3503 -2.2044 0.8600 3.9191 1.2181 -1.9651
15 2.3981 2.2316 0.3990 5.3864 4.3919 5.9674
16 -0.1633 -2.1458 -5.8357 -3.6349 -4.2840 -6.6219
17 10.4346 8.0620 10.2275 7.0560 6.7676 6.6346
18 5.5505 2.6016 2.4506 2.4954 1.8547 3.4755
19 3.2031 2.7804 3.5948 -0.4774 -0.3667 -2.3168
20 -4.7913 -1.7203 -4.1271 -0.6762 -1.1395 -2.7296
21 7.3930 8.6229 9.4570 12.2800 6.1327 7.8254
22 4.2158 10.6845 9.9723 2.9145 6.0000 4.4979
23 7.5326 1.9540 2.5740 2.6065 -0.1128 0.6388
24 -8.5131 -8.3044 -6.8294 -3.6094 -4.1224 -5.4164
25 -0.4048 -0.4017 -0.8867 1.3590 0.1098 0.9017
26 6.1240 5.0517 3.6990 8.7368 5.3867 6.9468
27 5.7317 4.4538 6.1762 3.4108 1.9153 4.4896
28 6.8299 3.1244 1.6621 1.3590 1.4325 2.0067
29 8.6705 11.1936 12.2831 11.1602 13.2781 13.1497
30 0.9055 -0.5953 -0.6462 0.9332 -0.0008 1.2917
31 -0.0340 1.9379 1.4480 6.5262 4.8373 2.6307
32 0.7414 1.1014 0.3820 -0.5791 0.8306 3.1476
33 -5.9533 -3.4602 -4.1597 -1.3835 2.2098 -0.0642
34 -0.0822 2.7549 0.5136 2.2172 1.1145 2.8362
35 -10.2009 -9.3603 -12.8907 -5.7297 -4.1622 -6.1709
36 6.9673 9.4356 6.4064 12.4593 9.3500 7.5052
37 -0.0681 -0.7029 3.8633 3.5471 6.2018 4.9529
38 -0.8885 -0.4641 -0.4544 7.2353 12.5430 6.9497
39 -4.2569 -4.3105 -3.6218 -4.4211 -4.9685 -6.3175
40 -21.7261 -19.3351 -19.8329 -24.1865 -14.0943 -10.3723
41 -16.4096 -9.8425 -12.3366 -14.2535 -10.9314 -7.6677
42 -2.7511 -2.7249 -1.8488 3.3988 0.5515 1.3170
43 6.2347 9.4395 8.4631 7.1735 3.3113 2.9221
44 1.3502 1.2075 4.3779 3.4639 1.8818 1.2221
45 9.0009 11.0661 10.7647 6.8160 8.3348 5.3573
46 -6.0956 -1.7406 -3.4814 -2.3610 -1.7939 -6.6523
47 -3.7611 -2.3132 -2.9578 0.7061 -2.2643 -1.3650
48 -16.9330 -16.6497 -18.9287 -17.8490 -13.1565 -11.8439
49 6.5208 3.7280 2.5406 4.4017 4.2198 5.2644
50 -3.7646 -1.6135 -2.5073 1.1969 -0.8000 -1.6232
51 -13.6823 -14.6721 -19.1619 -12.0325 -11.7394 -17.0858
52 -10.1007 -7.6801 -10.7443 -9.4278 -7.3264 -11.4835
53 0.2234 -2.7838 -2.6023 -2.3616 -2.8339 -6.6002
54 -10.4236 -11.0266 -17.2866 -5.8057 -9.1776 -9.7245
55 9.9121 11.3602 15.4627 4.7170 6.9823 13.5911
56 13.2032 11.6577 17.0900 12.8706 6.7357 12.1756
57 -4.3440 -2.9204 -6.9601 -4.1971 -10.3577 -8.8826
58 -12.8949 -14.0212 -18.2229 -8.8412 -11.1070 -11.3490
59 -9.6709 -8.7006 -13.8440 -11.3932 -15.9343 -20.3630
60 10.1262 7.7295 20.3174 12.8509 16.1956 25.2657
61 -8.5867 -8.9411 -5.7363 -5.1668 -10.1775 -12.2143
62 -1.6114 -1.1797 -3.7504 0.8986 -1.5948 0.0531
63 -26.5722 -30.0521 -33.8286 -28.8671 -28.1493 -35.1131
64 4.2319 9.2071 5.4593 9.5401 3.2588 11.7214
65 -7.7335 -7.2915 -9.3902 -6.1288 -16.6307 -14.5665
66 -13.7987 -16.5088 -22.4192 -11.5667 -18.8221 -20.6686
67 2.4924 3.9264 10.5116 -3.4347 1.9132 6.6353
68 -2.4754 1.9822 1.3833 7.1142 1.7366 0.3507
69 -10.5259 -12.1366 -10.6244 -10.2031 -15.1403 -14.7460
70 -19.3072 -17.1449 -16.0430 -18.1275 -20.1476 -18.5418
71 -17.1387 -24.8400 -17.4741 -19.2184 -25.9531 -25.4360
72 0.9540 6.2481 1.0364 -1.7110 0.0545 8.8476
73 31.9086 36.1125 63.2475 28.1955 48.6209 67.7847
74 48.7266 55.3725 83.5754 31.3211 50.9661 62.5277
75 -2.8054 -4.5841 -12.4737 -1.0366 -6.5149 -5.0087
76 -16.2535 -19.6450 -23.8672 -10.7514 -17.5126 -23.2272
77 -0.2972 -8.2786 -13.2053 -2.7223 -8.9288 -16.3816
78 -5.1581 -4.2529 -11.0631 6.8503 1.0438 -3.5633
79 4.3896 1.3914 7.8950 -0.0120 3.0297 8.7685
80 -17.8468 -18.4137 -20.8881 -14.9493 -16.5816 -17.3738
81 7.0790 6.1577 16.0332 0.9569 9.8608 6.7577
82 45.4453 54.8024 56.5610 33.7390 51.8933 57.4905
83 59.9378 62.1965 73.3394 16.9717 26.7781 41.6260
84 32.9373 23.3035 18.5882 11.3683 15.5089 21.9496
85 -14.1385 -12.7712 -7.2418 -8.8583 -13.0573 -9.2208
86 10.5585 10.1102 8.2144 10.5958 15.7784 18.8615
87 -7.6121 -13.3352 -20.9042 -9.1454 -12.3603 -19.3866
88 -8.4949 -12.4200 -13.8362 -6.1614 -10.5922 -17.7448
89 4.4492 4.6618 6.1086 9.6900 12.2772 12.6924
90 4.7702 4.0567 0.4565 2.1093 1.8286 3.3536
91 21.5203 28.5643 38.3403 9.8669 16.8246 24.1368
92 -0.2935 1.1796 5.3723 -2.3815 -3.1241 -3.8100
93 4.7722 2.0674 -0.0727 -0.0029 -0.1362 -0.6200
94 2.8356 -1.3170 -1.8303 -1.7780 -2.3152 -4.6160
95 -7.3381 -9.8907 -12.0504 -6.4033 -8.5879 -13.5106
96 3.7672 0.0811 -2.3100 2.6280 2.4811 2.8615
97 -18.0226 -21.5042 -24.4760 -8.3110 -11.7051 -23.1790
98 10.9235 9.4125 12.2230 6.0718 4.4464 5.7691
99 -0.9255 -0.5806 -3.5672 -0.2597 -0.1487 -0.1050
100 -0.9250 -1.6380 -4.1937 -0.4115 -2.7080 -7.3690
101 17.4218 15.4433 12.5284 10.2402 5.0137 10.6573
102 4.9409 1.7554 1.5981 0.7507 0.5333 -2.2372
103 -5.5523 -3.3988 -3.0325 -3.0099 -2.8838 -9.3128
104 -3.5225 -4.8589 -5.8780 -0.8581 -1.6838 -12.9875
105 -5.9234 -7.4692 -11.2668 -2.9715 -3.3289 -7.7499
106 6.7174 9.3484 10.2238 8.0311 9.8871 13.0598
107 -2.4801 2.3317 1.7345 3.1370 4.3390 3.9570
108 -1.7502 5.9262 0.8071 6.3821 5.6136 8.0813
109 9.1528 12.9358 12.7537 6.9882 6.3196 17.1148
110 4.2227 8.6796 14.4462 2.5694 2.2001 3.7475
111 5.0917 5.5331 0.5575 4.6757 0.6768 1.1198
112 10.9064 10.8504 6.8068 6.6016 7.9769 6.0328
113 6.6969 10.4475 18.9743 3.0389 5.6087 14.5739
114 5.7713 10.1556 2.2152 2.9835 5.8064 8.6858
115 10.3194 7.6727 22.3771 3.2881 9.5299 12.2406
116 1.9010 6.5601 6.7824 1.9137 2.8060 7.1039
117 0.5096 2.3380 0.8324 2.6378 0.0632 -1.0088
118 -14.3931 -13.9743 -15.4640 -7.1563 -8.3505 -10.2494
119 4.9011 5.5856 8.6767 5.0578 5.1107 6.5508
120 -2.2080 -0.2588 -1.2498 3.6325 2.1402 0.2676
#define equality constraint function
equal <- function(x) c(sum(x))
#define inequality constraint function
in_inequal <- function(x) c(sum(abs(x)))
#define objective function1
obj_f <- function(x) {
int_r <- t(x)%*%V_C_M%*%x
c(as.numeric(int_r))
}
#define objective function2
ex_obj_f <- function(x) {
tteta <- x
port_w <- solnp(rep(1/n,n), fun = obj_f, eqfun=equal, eqB=1,
ineqfun = in_inequal, ineqLB = 0, ineqUB = tteta, control = list(trace=0))
lp_ret <- exp_d[nrow(exp_d),]%*%port_w$pars
-lp_ret
}
#First "naive" attempt
exp_d <- as.matrix(exp_d)
n <- 6
V_C_M <- cov(exp_d)
res <- matrix(0:0, nrow = 5000, ncol = 3)
for (i in 1:5000) {
tteta <- 1 + i*0.001
port_w <- solnp(rep(1/n,n), fun = obj_f, eqfun=equal, eqB=1, ineqfun = in_inequal, ineqLB = 0, ineqUB = tteta, control = list(trace=0))
lp_ret <- exp_d[nrow(exp_d),]%*%port_w$pars
res[i,1] <- tteta
res[i,2] <- lp_ret
res[i,3] <- port_w$convergence
}
#Second Approach (the result really depends on the starting value of the parameter)
tt_op1 <- solnp(pars = 1.5, fun = ex_obj_f, LB = 1, UB = 10, control = list(trace=1))
tt_op2 <- gosolnp(pars = 1.5, fun = ex_obj_f, LB = 1, UB = 10)
P.S. I have read posts with similar problems here, but coud not find a solution to my question.
Your model can be formulated as a pure QP (quadratic programming) problem instead of a difficult nonlinear problem with a nonlinear non-differentiable constraint.
The constraint
sum(i, |x(i)|) <= Theta
can be linearized in different ways. One possible reformulation is
-y(i) <= x(i) <= y(i)
sum(i, y(i)) <= Theta
non-negative (or free) variable y(i)
Now you can solve the model with a QP solver instead of a general purpose NLP solver.

Plain text to Hexadecimal manually

How to manually convert a plain text to hexadecimal ?
Eg Hexadecimal form of Hello
P.S I do not need code but the manual way to convert.
--Convert the string to its ASCII form
--Convert ASCII(decimal) to Hex
Eg Hello in ASCII is
H is 72 ,e is 101, l is 108 , o is 111
And the Hex value of
72 is 48
101 is 65
108 is 6c
111 is 6f
So the Hex representation of Hello is 48656c6c6f
For example Hello present in text take that string character-wise, where H=72(int value) to HEXADECIMAL
DIVISION= 72 / 16 RESULT = 4 REMAINDER (in HEX)= 8(4.5-4=0.5,0.5*16=8)
DIVISION=4 / 16 RESULT = 0 REMAINDER (in HEX)= 4
Till Result becomes zero
ANSWER H=48(hex)
likewise for for all
finally,Hello=48656c6c6f

How to analyse a "Binding loop"

I have a Qt/QML application with a C++ model and a QML visualisation.
At run-time (start-up), I get a warning
QML Item: Binding loop detected for property "xyz"
I see no obvious loop in my QML.
Can I enable more debugging to understand where this loop comes from? Other suggestions?
I usually do this by placing a breakpoint in the Qt code that prints the warning. For that, you need to have a Qt with debug symbols.
Searching for "Binding loop detected" in the Qt sources gives me QQmlAbstractBinding::printBindingLoopError(). Placing a breakpoint there will usually lead to a backtrace that gives a clear picture of the situation.
Update: David Edmundson has developed a little tool that displays a QML-only backtrace on binding loops, see his blog here. Under the hood is does exactly what is described here, only that it is nicely automated and wrapped in a Python script.
Example:
Rectangle {
id: parent
width: child.width + 1
height: child.height + 1
Rectangle {
id: child
anchors.fill: parent
}
}
Backtrace:
1 QQmlAbstractBinding::printBindingLoopError qqmlabstractbinding.cpp 178 0x7ffff6eb36da
2 QQmlBinding::update qqmlbinding.cpp 221 0x7ffff6eb9abe
3 QQmlBinding::update qqmlbinding_p.h 97 0x7ffff6eba354
4 QQmlBinding::expressionChanged qqmlbinding.cpp 260 0x7ffff6eb9e68
5 QQmlJavaScriptExpressionGuard_callback qqmljavascriptexpression.cpp 361 0x7ffff6eb223e
6 QQmlNotifier::emitNotify qqmlnotifier.cpp 94 0x7ffff6e9087a
7 QQmlData::signalEmitted qqmlengine.cpp 763 0x7ffff6e19a45
8 QMetaObject::activate qobject.cpp 3599 0x7ffff683655e
9 QMetaObject::activate qobject.cpp 3578 0x7ffff6836364
10 QQuickItem::widthChanged moc_qquickitem.cpp 1104 0x7ffff7a7ba49
11 QQuickItem::geometryChanged qquickitem.cpp 3533 0x7ffff7a6e9cd
12 QQuickItem::setSize qquickitem.cpp 6389 0x7ffff7a75f35
13 QQuickAnchorsPrivate::setItemSize qquickanchors.cpp 400 0x7ffff7a60d94
14 QQuickAnchorsPrivate::fillChanged qquickanchors.cpp 177 0x7ffff7a5fe0e
15 QQuickAnchorsPrivate::itemGeometryChanged qquickanchors.cpp 441 0x7ffff7a6106f
16 QQuickItem::geometryChanged qquickitem.cpp 3523 0x7ffff7a6e96c
17 QQuickItem::setWidth qquickitem.cpp 6091 0x7ffff7a74c1d
18 QQuickItem::qt_static_metacall moc_qquickitem.cpp 874 0x7ffff7a7b0dc
19 QQuickItem::qt_metacall moc_qquickitem.cpp 946 0x7ffff7a7b4d8
20 QQuickRectangle::qt_metacall moc_qquickrectangle_p.cpp 610 0x7ffff7c189c2
21 QMetaObject::metacall qmetaobject.cpp 296 0x7ffff680118b
22 QQmlPropertyPrivate::writeBinding qqmlproperty.cpp 1512 0x7ffff6e33ec3
23 QQmlBinding::update qqmlbinding.cpp 199 0x7ffff6eb992a
24 QQmlBinding::update qqmlbinding_p.h 97 0x7ffff6eba354
25 QQmlBinding::expressionChanged qqmlbinding.cpp 260 0x7ffff6eb9e68
26 QQmlJavaScriptExpressionGuard_callback qqmljavascriptexpression.cpp 361 0x7ffff6eb223e
27 QQmlNotifier::emitNotify qqmlnotifier.cpp 94 0x7ffff6e9087a
28 QQmlData::signalEmitted qqmlengine.cpp 763 0x7ffff6e19a45
29 QMetaObject::activate qobject.cpp 3599 0x7ffff683655e
30 QMetaObject::activate qobject.cpp 3578 0x7ffff6836364
31 QQuickItem::widthChanged moc_qquickitem.cpp 1104 0x7ffff7a7ba49
32 QQuickItem::geometryChanged qquickitem.cpp 3533 0x7ffff7a6e9cd
33 QQuickItem::setSize qquickitem.cpp 6389 0x7ffff7a75f35
34 QQuickAnchorsPrivate::setItemSize qquickanchors.cpp 400 0x7ffff7a60d94
35 QQuickAnchorsPrivate::fillChanged qquickanchors.cpp 177 0x7ffff7a5fe0e
36 QQuickAnchorsPrivate::update qquickanchors.cpp 431 0x7ffff7a60fc6
37 QQuickAnchorsPrivate::updateOnComplete qquickanchors.cpp 425 0x7ffff7a60f93
38 QQuickItem::componentComplete qquickitem.cpp 4593 0x7ffff7a70944
39 QQmlObjectCreator::finalize qqmlobjectcreator.cpp 1207 0x7ffff6ecab66
40 QQmlComponentPrivate::complete qqmlcomponent.cpp 928 0x7ffff6e38609
41 QQmlComponentPrivate::completeCreate qqmlcomponent.cpp 964 0x7ffff6e386ee
42 QQmlComponent::completeCreate qqmlcomponent.cpp 957 0x7ffff6e386a0
43 QQmlComponent::create qqmlcomponent.cpp 791 0x7ffff6e37edd
44 QQuickView::continueExecute qquickview.cpp 476 0x7ffff7b720d4
45 QQuickViewPrivate::execute qquickview.cpp 124 0x7ffff7b7101f
46 QQuickView::setSource qquickview.cpp 253 0x7ffff7b71426
47 main main.cpp 24 0x4033e4
In the backtrace, one can see that the anchors.fill anchor for the child item is calculated when loading the file (frame 35, 36). That causes the child item's width to change (frame 31), which causes a binding update (frame 25) for a binding on the "width" property (frame 17) on the parent item. That in turn forces a recalculation of the child anchors (frame 14), which changes the child's width (frame 10), which updates a binding (frame 4). That is the same binding that was already being updated in frame 25, hence a binding loop exists. One can see that the this pointer in frame 25 and frame 4 are the same, i.e. the same binding is updated recursively.
Thanks much for the receipt however it did not help me. In case somebody will need it, adding another possible solution. I was getting binding loops in ListView trying to set all items width and list width to item max value:
ListView {
implicitWidth: contentItem.childrenRect.width
delegate: listItem
}
Item {
id: listItem
width: Math.max(internalWidth, listView.implicitWidth)
}
Binding loop error appeared on items count update but not every time - only on some batch binding updates, while the is no actual binding loop. Was able to solve the issue by moving binding expression to Binding QML Type and adding delayed property to it:
Item { // Item causing binding loop
Binding on item_property_causing_loop {
value: <binding_expression>
when: <when_expression> // Optional however could also help
delayed: true // Prevent intermediary values from being assigned
}
}
So in my case it is:
Item { // Item causing binding loop
id: listItem
Binding on width {
value: Math.max(internalWidth, listView.implicitWidth)
when: index >= 0 // Optional however could also help
delayed: true // Prevent intermediary values from being assigned
}
}

reading in datetime from csv evokes "unconverted data remains: 0" TypeError

I am trying to index a datetime that is being formed from 3 columns representing (year, dayofyear, and 2400hr time).
2014,323,1203,47.77,320.9
2014,323,1204,48.46,402.6
2014,323,1205,49.2,422.7
2014,323,1206,49.82,432.4
2014,323,1207,50.03,438.6
2014,323,1208,50.15,445.4
2014,323,1209,50.85,449.7
2014,323,1210,50.85,454.4
2014,323,1211,50.85,458.1
2014,323,1212,50.91,460.2
I am using the following code:
In [1]:
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
In [2]:
def parse(yr, yearday, hrmn):
date_string = ' '.join([yr, yearday, hrmn])
print(date_string)
return datetime.strptime(date_string,"%Y %j %H%M")
In [3]:
df = pd.read_csv('home_prepped.dat', parse_dates={'datetime':[0,1,2]},
date_parser=parse, index_col='datetime', header=None)
I have had success bringing it in when the data was flawed (had extra data over DST change), and now that it is fixed (removed and stitched back together) I am having this error (in its entirety):
2014 92 2355
2014 92 2356
2014 92 2357
2014 92 2358
2014 92 2359
2014 92 2400
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-9c710834ee23> in <module>()
1
----> 2 df = pd.read_csv('home_prepped.dat', parse_dates={'datetime':[0,1,2]}, date_parser=parse, index_col='datetime', header=None)
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in parser_f(filepath_or_buffer, sep, dialect, compression, doublequote, escapechar, quotechar, quoting, skipinitialspace, lineterminator, header, index_col, names, prefix, skiprows, skipfooter, skip_footer, na_values, na_fvalues, true_values, false_values, delimiter, converters, dtype, usecols, engine, delim_whitespace, as_recarray, na_filter, compact_ints, use_unsigned, low_memory, buffer_lines, warn_bad_lines, error_bad_lines, keep_default_na, thousands, comment, decimal, parse_dates, keep_date_col, dayfirst, date_parser, memory_map, float_precision, nrows, iterator, chunksize, verbose, encoding, squeeze, mangle_dupe_cols, tupleize_cols, infer_datetime_format, skip_blank_lines)
463 skip_blank_lines=skip_blank_lines)
464
--> 465 return _read(filepath_or_buffer, kwds)
466
467 parser_f.__name__ = name
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in _read(filepath_or_buffer, kwds)
249 return parser
250
--> 251 return parser.read()
252
253 _parser_defaults = {
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in read(self, nrows)
708 raise ValueError('skip_footer not supported for iteration')
709
--> 710 ret = self._engine.read(nrows)
711
712 if self.options.get('as_recarray'):
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in read(self, nrows)
1209 data = dict((k, v) for k, (i, v) in zip(names, data))
1210
-> 1211 names, data = self._do_date_conversions(names, data)
1212 index, names = self._make_index(data, alldata, names)
1213
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in _do_date_conversions(self, names, data)
1033 data, names = _process_date_conversion(
1034 data, self._date_conv, self.parse_dates, self.index_col,
-> 1035 self.index_names, names, keep_date_col=self.keep_date_col)
1036
1037 return names, data
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in _process_date_conversion(data_dict, converter, parse_spec, index_col, index_names, columns, keep_date_col)
2100
2101 _, col, old_names = _try_convert_dates(converter, colspec,
-> 2102 data_dict, orig_names)
2103
2104 new_data[new_name] = col
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in _try_convert_dates(parser, colspec, data_dict, columns)
2132 to_parse = [data_dict[c] for c in colnames if c in data_dict]
2133
-> 2134 new_col = parser(*to_parse)
2135 return new_name, new_col, colnames
2136
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc in converter(*date_cols)
2048 dayfirst=dayfirst)
2049 except Exception:
-> 2050 return generic_parser(date_parser, *date_cols)
2051
2052 return converter
/Volumes/anaconda/anaconda/lib/python2.7/site-packages/pandas/io/date_converters.pyc in generic_parser(parse_func, *cols)
36 for i in range(N):
37 args = [c[i] for c in cols]
---> 38 results[i] = parse_func(*args)
39
40 return results
<ipython-input-2-57e18ddd7deb> in parse(yr, yearday, hrmn)
1 def parse(yr, yearday, hrmn):
2 date_string = ' '.join([yr, yearday, hrmn])
----> 3 return datetime.strptime(date_string,"%Y %j %H%M")
/Volumes/anaconda/anaconda/python.app/Contents/lib/python2.7/_strptime.pyc in _strptime(data_string, format)
326 if len(data_string) != found.end():
327 raise ValueError("unconverted data remains: %s" %
--> 328 data_string[found.end():])
329
330 year = None
ValueError: unconverted data remains: 0
I am looking for suggestions as to how to debug or work around this. I have gone through the data and according to what I have read in similar posts I should be looking for extraneous time data, which is not there.
Thanks.

Resources