R: prediction of stock price by neural-network [duplicate] - r

This question already has an answer here:
stock price prediction by using nnet
(1 answer)
Closed 9 years ago.
stock<-structure(list(week = c(1L, 2L, 5L, 2L, 3L, 4L, 3L, 2L, 1L, 5L,
1L, 3L, 2L, 4L, 3L, 4L, 2L, 3L, 1L, 4L, 3L), close_price = c(774000L,
852000L, 906000L, 870000L, 1049000L, 941000L, 876000L, 874000L,
909000L, 966000L, 977000L, 950000L, 990000L, 948000L, 1079000L,
NA, 913000L, 932000L, 1020000L, 872000L, 916000L), vol = c(669L,
872L, 3115L, 2693L, 575L, 619L, 646L, 1760L, 419L, 587L, 8922L,
366L, 764L, 6628L, 1116L, NA, 572L, 592L, 971L, 1181L, 1148L),
obv = c(1344430L, 1304600L, 1325188L, 1322764L, 1365797L,
1355525L, 1308385L, 1308738L, 1353999L, 1364475L, 1326557L,
1357572L, 1362492L, 1322403L, 1364273L, NA, 1354571L, 1354804L,
1363256L, 1315441L, 1327927L)), .Names = c("week", "close_price",
"vol", "obv"), row.names = c(16L, 337L, 245L, 277L, 193L, 109L,
323L, 342L, 106L, 170L, 226L, 133L, 72L, 234L, 208L, 329L, 107L,
103L, 71L, 284L, 253L), class = "data.frame")
This is subset of data I have. I split the data, one for training and the other for testing.
obs<- sample(1:21, 21*0.5, replace=F)
tr.Nam<- stock[obs,]; st.Nam<- stock[-obs,]
library(nnet)
Nam_nnet<-nnet(close_price~., data=tr.Nam, size=4, decay=5e-4)
summary(Nam_nnet)
y<-tr.Nam$close_price
p<-predict(Nam_nnet, st.Nam, type="raw")
p
tt<-table(y,p)
summary(tt)
tt
By this nnet procedure, I expect "p" to predict close_price. However, the values of "p" are only "1"s or "Na"s.
What should I do to predict the close_price properly, with nnet?

By default, nnet uses logistic output units, i.e., tries to predict a binary variable.
You want linear output units.
Nam_nnet <- nnet(
close_price ~ .,
data = tr.Nam,
size = 4, decay = 5e-4,
linout = TRUE
)
p <- predict(Nam_nnet, st.Nam, type="raw")
plot( p, st.Nam$close_price )
However, the internal nodes are still logistic
(and you probably want that, if you are using a neural network in the first place):
since the values of the variables are very large, the nodes saturate,
output a constant value, and the optimizer is stuck on a plateau...

Related

How to make scatterplot with colors based on a column and add a mean line through stats_summary with grouping based on another column?

I have a data.frame (see below) and I would like to build a scatterplot, where colours of dots is based on a factor column (replicate). I simultaneously want to add a line that represents the mean of y, for each x. The problem is that when I define the stat_summary it uses the colours I requested for groupingand hence I get three mean lines (for each color) instead of one. Trying to redefine groups either in ggplot() or stat_summary() function did not work.
if I disable colors I get what I want (a single mean line).
How do I have colors (plot # 1), yet still have a single mean line (plot # 2)?
structure(list(conc = c(10L, 10L, 10L, 25L, 25L, 25L, 50L, 50L,
50L, 75L, 75L, 75L, 100L, 100L, 100L, 200L, 200L, 200L, 300L,
300L, 300L, 400L, 400L, 400L, 500L, 500L, 500L, 750L, 750L, 750L,
1000L, 1000L, 1000L), citric_acid = c(484009.63, 409245.09, 303193.26,
426427.47, 332657.35, 330875.96, 447093.71, 344837.39, 302873.98,
435321.69, 359146.09, 341760.28, 378298.37, 342970.87, 323146.92,
362396.98, 361246.41, 290638.14, 417357.82, 351927.66, 323611.37,
416280.3, 359430.65, 327950.99, 431167.14, 361429.91, 291901.43,
340166.41, 353640.91, 341839.08, 393392.69, 311375.19, 342103.54
), MICIT = c(20771.28, 18041.97, 12924.35, 49814.13, 38683.32,
38384.72, 106812.16, 82143.12, 72342.43, 156535.39, 128672.12,
119397.14, 187208.46, 167814.92, 159418.62, 350813.47, 357227.48,
295948.31, 505553.77, 523282.46, 489652.3, 803544.84, 704431.61,
654753.29, 1030485.41, 895451.64, 717698.52, 1246839.19, 1309712.63,
1212111.53, 1930503.38, 1499838.89, 1642091.64), replicate = structure(c(1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L
), .Label = c("1", "2", "3"), class = "factor"), MICITNorm = c(0.0429150139016862,
0.0440859779160698, 0.0426274317575529, 0.116817357005636, 0.116285781751102,
0.116009395182412, 0.238903293897827, 0.238208275500519, 0.238853235263062,
0.359585551549246, 0.358272367659634, 0.34935932285636, 0.494869856298879,
0.489297881187402, 0.493331701877276, 0.968036405822146, 0.98887482369721,
1.01827072661558, 1.21131974956166, 1.48690347328766, 1.51308744189056,
1.93029754230503, 1.95985403582026, 1.99649737297637, 2.38999059622215,
2.47752500616233, 2.45870162403795, 3.6653801002868, 3.70350995307641,
3.54585417793659, 4.90731889298706, 4.81682207885606, 4.79998435561351
)), class = "data.frame", row.names = c(NA, -33L))
ggplot(xx, aes (conc, MICIT, colour = replicate)) + geom_point () +
stat_summary(geom = "line", fun = mean)
Use aes(group = 1):
ggplot(xx, aes(conc, MICIT, colour = replicate)) +
geom_point() +
geom_line() +
stat_summary(aes(group = 1), geom = "line", fun = mean)

ggpairs formatting for points only

I'm looking to increase the size of the points AND outline them in black while keeping the line weight the same across the remaining plots.
library(ggplot2)
library(GGally)
pp <- ggpairs(pp.sed, columns = c(1,2), aes(color=pond.id, alpha = 0.5)) +
theme_bw()
print(pp)
Which gives me the following figure:
Data for reproducibility, and TIA!
> dput(pp.sed)
structure(list(Fe.259.941 = c(905.2628883, 825.7883359, 6846.128702,
1032.932924, 997.8037721, 588.9599882, 6107.641947, 798.4493611,
1046.38376, 685.2485692, 6452.273486, 730.8656684, 902.8585447,
1039.886406, 7408.801001, 2512.089991, 911.2101809, 941.3712067,
659.1069185, 1070.090445, 1017.666402, 925.3221586, 645.0500668,
954.0009756, 1022.594904, 803.5865352, 7653.184537, 1082.714082,
1048.51115, 773.9070604, 6889.060748, 973.0971769, 1002.091143,
798.9670583, 5089.035978, 2361.713222, 970.8258109, 748.3574529,
3942.04816, 889.1760124), Mn.257.611 = c(17.24667962, 14.90488024,
14.39265671, 20.51133433, 19.92596564, 11.76690074, 19.76386229,
14.29779164, 20.23646264, 13.55374658, 16.8847698, 13.11784439,
15.91777975, 20.64068844, 16.78681661, 28.61732162, 15.88328987,
19.59750367, 13.09735943, 21.59458118, 17.680152, 19.87127449,
12.8082581, 20.12050221, 17.57143193, 18.72196029, 16.21525793,
22.0518966, 18.39642397, 18.32238508, 16.17696923, 20.69668404,
17.96018218, 18.71945309, 16.50162126, 30.60719123, 17.69058768,
14.99048753, 16.28302375, 18.32277507), pond.id = structure(c(6L,
5L, 2L, 1L, 3L, 5L, 2L, 1L, 3L, 5L, 2L, 1L, 6L, 3L, 2L, 4L, 6L,
3L, 4L, 4L, 6L, 3L, 4L, 1L, 6L, 3L, 2L, 1L, 6L, 3L, 2L, 1L, 6L,
3L, 2L, 1L, 6L, 5L, 2L, 1L), .Label = c("LIL", "RHM", "SCS",
"STN", "STS", "TS"), class = "factor")), class = "data.frame", row.names = c(11L,
12L, 13L, 15L, 26L, 27L, 28L, 30L, 36L, 37L, 38L, 40L, 101L,
102L, 103L, 105L, 127L, 128L, 129L, 131L, 142L, 143L, 144L, 146L,
157L, 158L, 159L, 161L, 172L, 173L, 174L, 176L, 184L, 185L, 186L,
188L, 199L, 200L, 201L, 203L))
The GGally package already offers a family of wrap_xxx functions which could be used to set parameters to override default behaviour, e.g. using wrap you could override the default size of points using wrap(ggally_points, size = 5).
To use the wrapped function instead of the default you have to call
ggpairs(..., lower = list(continuous = wrap(ggally_points, size = 5))).
Switching the outline is a bit more tricky. Using wrap we could switch the shape of the points to 21 and set the outline color to "black". However, doing so the points are no longer colored. Unfortunately I have found no way to override the mapping. While it is possible to add a global fill aes, a drawback of doing so is that we lose the black outline for the densities.
One option to fix that is to write a wrapper for ggally_points which adjusts the mapping so that the fill aes is used instead of color.
library(ggplot2)
library(GGally)
ggally_points_filled <- function(data, mapping, ...) {
names(mapping)[grepl("^colour", names(mapping))] <- "fill"
ggally_points(data, mapping, ..., shape = 21)
}
w_ggally_points_filled <- wrap(ggally_points_filled, size = 5, color = "black")
ggpairs(pp.sed, columns = c(1, 2), aes(color = pond.id, alpha = 0.5),
lower = list(continuous = w_ggally_points_filled)) +
theme_bw()

stock price prediction by using nnet

stock<-structure(list(week = c(1L, 2L, 5L, 2L, 3L, 4L, 3L, 2L, 1L, 5L,
1L, 3L, 2L, 4L, 3L, 4L, 2L, 3L, 1L, 4L, 3L),
close_price = c(774000L,
852000L, 906000L, 870000L, 1049000L, 941000L, 876000L, 874000L,
909000L, 966000L, 977000L, 950000L, 990000L, 948000L, 1079000L,
NA, 913000L, 932000L, 1020000L, 872000L, 916000L),
vol = c(669L,
872L, 3115L, 2693L, 575L, 619L, 646L, 1760L, 419L, 587L, 8922L,
366L, 764L, 6628L, 1116L, NA, 572L, 592L, 971L, 1181L, 1148L),
obv = c(1344430L, 1304600L, 1325188L, 1322764L, 1365797L,
1355525L, 1308385L, 1308738L, 1353999L, 1364475L, 1326557L,
1357572L, 1362492L, 1322403L, 1364273L, NA, 1354571L, 1354804L,
1363256L, 1315441L, 1327927L)),
.Names = c("week", "close_price", "vol", "obv"),
row.names = c(16L, 337L, 245L, 277L, 193L, 109L, 323L, 342L, 106L,
170L, 226L, 133L, 72L, 234L, 208L, 329L, 107L, 103L, 71L, 284L, 253L),
class = "data.frame")
I have data set like this form called Nam which has observations of 349 and I want to use nnet to predict close_price.
obs<- sample(1:21, 20*0.5, replace=F)
tr.Nam<- stock[obs,]; st.Nam<- stock[-obs,]
# tr.Nam is a training data set while st.Nam is test data.
library(nnet)
Nam_nnet<-nnet(close_price~., data=tr.Nam, size=2, decay=5e-4)
By this statement, I think I made a certain function to predict close_price.
summary(Nam_nnet)
y<-tr.Nam$close_price
p<-predict(Nam_nnet, tr.Nam, type="raw")
I expected p to be the predicted value of close_price, but it has only values of 1. Why doesn't p have the continuous value of close_price?
tt<-table(y,p)
summary(tt)
tt
I think I could do a bit better with a reproducible example but I think the problem may be one (or more) of several reasons. Firstly, do a str(data) to make sure each variable is of the correct type (factor, numeric, etc.). Also, Neural Nets usually respond better to standardized, scaled, and centered data otherwise the inputs get oversaturated with larger numeric inputs which might be the case if the 'week' variable is numeric.
In summary, definitely check the types of each variable to make sure you are inputting the correct forms and consider scaling your data to be smooth and so the inputs are of comparable magnitudes.

Fitting gaussian to data geom_point in ggplot2

I have the following data set
structure(list(Collimator = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L), .Label = c("n", "y"), class = "factor"), angle = c(0L,
15L, 30L, 45L, 60L, 75L, 90L, 105L, 120L, 135L, 150L, 165L, 180L,
0L, 15L, 30L, 45L, 60L, 75L, 90L, 105L, 120L, 135L, 150L, 165L,
180L), X1 = c(2099L, 11070L, 17273L, 21374L, 23555L, 23952L,
23811L, 21908L, 19747L, 17561L, 12668L, 6008L, 362L, 53L, 21L,
36L, 1418L, 6506L, 10922L, 12239L, 8727L, 4424L, 314L, 38L, 21L,
50L), X2 = c(2126L, 10934L, 17361L, 21301L, 23101L, 23968L, 23923L,
21940L, 19777L, 17458L, 12881L, 6051L, 323L, 40L, 34L, 46L, 1352L,
6569L, 10880L, 12534L, 8956L, 4418L, 344L, 58L, 24L, 68L), X3 = c(2074L,
11109L, 17377L, 21399L, 23159L, 23861L, 23739L, 21910L, 20088L,
17445L, 12733L, 6046L, 317L, 45L, 26L, 46L, 1432L, 6495L, 10862L,
12300L, 8720L, 4343L, 343L, 38L, 34L, 60L), average = c(2099.6666666667,
11037.6666666667, 17337, 21358, 23271.6666666667, 23927, 23824.3333333333,
21919.3333333333, 19870.6666666667, 17488, 12760.6666666667,
6035, 334, 46, 27, 42.6666666667, 1400.6666666667, 6523.3333333333,
10888, 12357.6666666667, 8801, 4395, 333.6666666667, 44.6666666667,
26.3333333333, 59.3333333333)), .Names = c("Collimator", "angle",
"X1", "X2", "X3", "average"), row.names = c(NA, -26L), class = "data.frame")
I first scale average counts for both collimator y and n to a make the highest counts 1
df <- ddply(df, .(Collimator), transform,
norm.average = average / max(average))
and plot the curves:
ggplot(df, aes(x=angle,y=norm.average,col=Collimator)) +
geom_point() + geom_line()
Using geom_line is quite unpleasing on the eye and I would rather fit to the data using stat_smooth. Each data set should be symmetric about the mean so I think a Gaussian fit should be ideal. How can I fit a Gaussian to the dataset collimator="y" and collimator="n" in ggplot2 or using base R. Also I would like to output the mean and standard deviation. Can this be done?
By definition your data is not Gaussian but a kind of Gaussian-like shape, and here is the example of the visualization of fitting:
fit <- dlply(df, .(Collimator), function(x) {
co <- coef(nls(norm.average ~ exp(-(angle - m)^2/(2 * s^2)), data = x, start = list(s = 50, m = 80)))
stat_function(fun = function(x) exp(-(x - co["m"])^2/(2 * co["s"]^2)), data = x)
})
ggplot(df, aes(x = angle, y = norm.average, col = Collimator)) + geom_point() + fit
Updated
To obtain the parameters:
fit <- dlply(df, .(Collimator), function(x) {
co <- coef(nls(norm.average ~ exp(-(angle - m)^2/(2 * s^2)), data = x, start = list(s = 50, m = 80)))
r <- stat_function(fun = function(x) exp(-(x - co["m"])^2/(2 * co["s"]^2)), data = x)
attr(r, ".coef") <- co
r
})
then,
> ldply(fit, attr, ".co")
Collimator s m
1 n 52.99117 82.60820
2 y 21.99518 86.61268

Scaling data in R data frame and fitting gaussian to geom_point

2 questions based on my data.frame
structure(list(Collimator = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L), .Label = c("n", "y"), class = "factor"), angle = c(0L,
15L, 30L, 45L, 60L, 75L, 90L, 105L, 120L, 135L, 150L, 165L, 180L,
0L, 15L, 30L, 45L, 60L, 75L, 90L, 105L, 120L, 135L, 150L, 165L,
180L), X1 = c(2099L, 11070L, 17273L, 21374L, 23555L, 23952L,
23811L, 21908L, 19747L, 17561L, 12668L, 6008L, 362L, 53L, 21L,
36L, 1418L, 6506L, 10922L, 12239L, 8727L, 4424L, 314L, 38L, 21L,
50L), X2 = c(2126L, 10934L, 17361L, 21301L, 23101L, 23968L, 23923L,
21940L, 19777L, 17458L, 12881L, 6051L, 323L, 40L, 34L, 46L, 1352L,
6569L, 10880L, 12534L, 8956L, 4418L, 344L, 58L, 24L, 68L), X3 = c(2074L,
11109L, 17377L, 21399L, 23159L, 23861L, 23739L, 21910L, 20088L,
17445L, 12733L, 6046L, 317L, 45L, 26L, 46L, 1432L, 6495L, 10862L,
12300L, 8720L, 4343L, 343L, 38L, 34L, 60L), average = c(2099.6666666667,
11037.6666666667, 17337, 21358, 23271.6666666667, 23927, 23824.3333333333,
21919.3333333333, 19870.6666666667, 17488, 12760.6666666667,
6035, 334, 46, 27, 42.6666666667, 1400.6666666667, 6523.3333333333,
10888, 12357.6666666667, 8801, 4395, 333.6666666667, 44.6666666667,
26.3333333333, 59.3333333333)), .Names = c("Collimator", "angle",
"X1", "X2", "X3", "average"), row.names = c(NA, -26L), class = "data.frame")
I wish to plot detector counts versus angle with and without a collimator attached to the device. I guess geom_point is probably the best way to summarise the data
p <- ggplot(df, aes(x=angle,y=average,col=Collimator)) + geom_point() + geom_line()
Instead of plotting average count in the y-axis, I would prefer to rescale the data so that the angle with max counts has a value 1 for both collimator Y and N. The way I have done this seems quite cumbersome
range01 <- function(x){(x-min(x))/(max(x)-min(x))}
coly = subset(df,Collimator=='y')
coly$norm_count = range01(coly$average)
coln = subset(df,Collimator=='n')
coln$norm_count = range01(coln$average)
df = rbind(coln,coly)
p <- ggplot(df, aes(x=angle,y=norm_count,col=Collimator) + geom_point() + geom_line()
I'm sure this can be done in a more efficient manner, applying the function to the data.frame based on the variable 'Collimator'. How can I do this?
Also I want to fit a function to the data rather than using geom_line. I think a Gaussian function may work in this case but have no idea how/if I can implement this in stat_smooth. Also can I pull out mead/standard deviation from such a fit?
ggplot2 goes hand in hand with the package plyr:
df <- ddply(df,.(Collimator),
transform,
norm_count1 = (average - min(average)) / (max(average) - min(average)) )
joran's answer scales the highest value to 1 and the lowest to 0; if you just want to scale to make the highest value 1 (and leaving 0 as 0), it is even simpler.
library("plyr")
df <- ddply(df, .(Collimator), transform,
norm.average = average / max(average))
The the plot is
ggplot(df, aes(x=angle,y=norm.average,col=Collimator)) +
geom_point() + geom_line()

Resources