Rotation matrix by yaw - math

I want to set the yaw of a rotation matrix so an object points to a specific position using this code
Vector3 dist = transform().position() - mPlayerTarget;
transform().rotationZ(atan2(dist.x(), dist.y()));
This would produce the right results, except the rotation is inverse, so instead of following the target point it rotates away from it.
Vector3 dist = transform().position() - mPlayerTarget;
transform().rotationZ(-atan2(dist.x(), dist.y()));
(with -atan2) the object follows the target, but it's offset by a 90 degrees to the right. The rotationZ implementation looks like this:
float cz = cosf(rotation);
float sz = sinf(rotation);
matrix.mMatrix[0] = cz;
matrix.mMatrix[1] = sz;
matrix.mMatrix[2] = 0;
matrix.mMatrix[3] = -sz;
matrix.mMatrix[4] = cz;
matrix.mMatrix[5] = 0;
matrix.mMatrix[6] = 0;
matrix.mMatrix[7] = 0;
matrix.mMatrix[8] = 1;
I'm using iOS OpenGL ES 2.0. Something seems fundamentally wrong here, the first version should be the one producing the right results? All the other transformations seem to work properly. What could go wrong here? I don't know where to look for errors...

First thing is atan2 - it is usually defined as atan2(y, x), whereas you have it the other way around.
Another source of issues might be the direction of your dist vector - it goes from the target towards the transform position. Try reversing it.

Related

how to color point cloud from image pixels?

I am using google tango tablet to acquire point cloud data and RGB camera images. I want to create 3D scan of the room. For that i need to map 2D image pixels to point cloud point. I will be doing this with a lot of point clouds and corresponding images.Thus I need to write a code script which has two inputs 1. point cloud and 2. image taken from the same point in same direction and the script should output colored point cloud. How should i approach this & which platforms will be very simple to use?
Here is the math to map a 3D point v to 2D pixel space in the camera image (assuming that v already incorporates the extrinsic camera position and orientation, see note at bottom*):
// Project to tangent space.
vec2 imageCoords = v.xy/v.z;
// Apply radial distortion.
float r2 = dot(imageCoords, imageCoords);
float r4 = r2*r2;
float r6 = r2*r4;
imageCoords *= 1.0 + k1*r2 + k2*r4 + k3*r6;
// Map to pixel space.
vec3 pixelCoords = cameraTransform*vec3(imageCoords, 1);
Where cameraTransform is the 3x3 matrix:
[ fx 0 cx ]
[ 0 fy cy ]
[ 0 0 1 ]
with fx, fy, cx, cy, k1, k2, k3 from TangoCameraIntrinsics.
pixelCoords is declared vec3 but is actually 2D in homogeneous coordinates. The third coordinate is always 1 and so can be ignored for practical purposes.
Note that if you want texture coordinates instead of pixel coordinates, that is just another linear transform that can be premultiplied onto cameraTransform ahead of time (as is any top-to-bottom vs. bottom-to-top scanline addressing).
As for what "platform" (which I loosely interpreted as "language") is simplest, the native API seems to be the most straightforward way to get your hands on camera pixels, though it appears people have also succeeded with Unity and Java.
* Points delivered by TangoXYZij already incorporate the depth camera extrinsic transform. Technically, because the current developer tablet shares the same hardware between depth and color image acquisition, you won't be able to get a color image that exactly matches unless both your device and your scene are stationary. Fortunately in practice, most applications can probably assume that neither the camera pose nor the scene changes enough in one frame time to significantly affect color lookup.
This answer is not original, it is simply meant as a convenience for Unity users who would like the correct answer, as provided by #rhashimoto, worked out for them. My contribution (hopefully) is providing code that reduces the normal 16 multiplies and 12 adds (given Unity only does 4x4 matrices) to 2 multiplies and 2 adds by dropping out all of the zero results. I ran a little under a million points through the test, checking each time that my calculations agreed with the basic matrix calculations - defined as the absolute difference between the two results being less than machine epsilon - I'm as comfortable with this as I can be knowing that #rhashimoto may show up and poke a giant hole in it :-)
If you want to switch back and forth, remember this is C#, so the USEMATRIXMATH define must appear at the beginning of the file.
Given there's only one Tango device right now, and I'm assuming the intrinsics are constant across all of the devices, I just dumped them in as constants, such that
fx = 1042.73999023438
fy = 1042.96997070313
cx = 637.273986816406
cy = 352.928985595703
k1 = 0.228532999753952
k2 = -0.663019001483917
k3 = 0.642908990383148
Yes they can be dumped in as constants, which would make things more readable, and C# is probably smart enough to optimize it out - however, I spent too much of my life in Agner Fogg's stuff, and will always be paranoid.
The commented out code at the bottom is for testing the difference, should you desire. You'll have to uncomment some other stuff, and comment out the returns if you want to test the results.
My thanks again to #rhashimoto, this is far far better than what I had
I have stayed true to his logic, remember these are pixel coordinates, not UV coordinates - he is correct that you can premultiply the transform to get normalized UV values, but since he schooled me on this once already, I will stick with exactly the math he presented before I fiddle with too much :-)
static public Vector2 PictureUV(Vector3 tangoDepthPoint)
{
Vector2 imageCoords = new Vector2(tangoDepthPoint.x / tangoDepthPoint.z, tangoDepthPoint.y / tangoDepthPoint.z);
float r2 = Vector2.Dot(imageCoords, imageCoords);
float r4 = r2*r2;
float r6 = r2*r4;
imageCoords *= 1.0f + 0.228532999753952f*r2 + -0.663019001483917f*r4 + 0.642908990383148f*r6;
Vector3 ic3 = new Vector3(imageCoords.x,imageCoords.y,1);
#if USEMATRIXMATH
Matrix4x4 cameraTransform = new Matrix4x4();
cameraTransform.SetRow(0,new Vector4(1042.73999023438f,0,637.273986816406f,0));
cameraTransform.SetRow(1, new Vector4(0, 1042.96997070313f, 352.928985595703f, 0));
cameraTransform.SetRow(2, new Vector4(0, 0, 1, 0));
cameraTransform.SetRow(3, new Vector4(0, 0, 0, 1));
Vector3 pixelCoords = cameraTransform * ic3;
return new Vector2(pixelCoords.x, pixelCoords.y);
#else
//float v1 = 1042.73999023438f * imageCoords.x + 637.273986816406f;
//float v2 = 1042.96997070313f * imageCoords.y + 352.928985595703f;
//float v3 = 1;
return new Vector2(1042.73999023438f * imageCoords.x + 637.273986816406f,1042.96997070313f * imageCoords.y + 352.928985595703);
#endif
//float dx = Math.Abs(v1 - pixelCoords.x);
//float dy = Math.Abs(v2 - pixelCoords.y);
//float dz = Math.Abs(v3 - pixelCoords.z);
//if (dx > float.Epsilon || dy > float.Epsilon || dz > float.Epsilon)
// UnityEngine.Debug.Log("Well, that didn't work");
//return new Vector2(v1, v2);
}
As one final note, do note the code he provided is GLSL - if you're just using this for pretty pictures, use it - this is for those that actually need to perform additional processing.

Efficient method of extracting a point from a 3D plane

I've come across this method of extracting a location from a 3D plane.
I've tested this and it works correctly, but for such a primitive operation, I was wondering if there was a, more efficient method in common practice.
void position_from_plane(float r_co[3], const float p[4])
{
const float p_len_sq = p[0]*p[0] + p[1]*p[1] + p[2]*p[2];
const float d = (-p[3] / p_len_sq) - 1.0f;
r_co[0] = p[0] + p[0]*d;
r_co[1] = p[1] + p[1]*d;
r_co[2] = p[2] + p[2]*d;
}
Note: this simply offsets the plane's direction component to find a point on a plane, it could of course return a point somewhere else on the plane and still be a correct answer, offsetting the planes orientation is just the most direct way to find this point.
Your code looks good. You can shorten it somewhat to this:
void position_from_plane(float r_co[3], const float p[4])
{
const float d = -p[3] / (p[0]*p[0] + p[1]*p[1] + p[2]*p[2]);
r_co[0] = p[0]*d;
r_co[1] = p[1]*d;
r_co[2] = p[2]*d;
}
You could get slightly shorter code if you were to intersect one of the coordinate axes with your plane. But you'd pay for that by needing a case distinction, which I'd rather avoid. Unless you can guarantee that the plane won't be parallel to one of the coordinate axes, that is.

THREE.js: Why is my object flipping whilst travelling along a spline?

Following up from my original post Three.JS Object following a spline path - rotation / tangent issues & constant speed issue, I am still having the issue that the object flips at certain points along the path.
View this happening on this fiddle: http://jsfiddle.net/jayfield1979/T2t59/7/
function moveBox() {
if (counter <= 1) {
box.position.x = spline.getPointAt(counter).x;
box.position.y = spline.getPointAt(counter).y;
tangent = spline.getTangentAt(counter).normalize();
axis.cross(up, tangent).normalize();
var radians = Math.acos(up.dot(tangent));
box.quaternion.setFromAxisAngle(axis, radians);
counter += 0.005
} else {
counter = 0;
}
}
The above code is what moves my objects along the defined spline path (an oval in this instance). It was mentioned by #WestLangley that: "Warning: cross product is not well-defined if the two vectors are parallel.".
As you can see, from the shape of the path, I am going to encounter a number of parallel vectors. Is there anything I can do to prevent this flipping from happening?
To answer the why question in the title. The reason its happening is that at some points on the curve the vector up (1,0,0) and the tangent are parallel. This means their cross product is zero and the construction of the quaternion fails.
You could follow WestLangley suggestion. You really want the up direction to be the normal to the plane the track is in.
Quaternion rotation is tricky to understand the setFromAxisAngle function rotates around the axis by a given angle.
If the track lies in the X-Y plane then we will want to rotate around the Z-axis. To find the angle use Math.atan2 to find the angle of the tangent
var angle = Math.atan2(tangent.y,tangent.x);
putting this together set
var ZZ = new THREE.Vector3( 0, 0, 1 );
and
tangent = spline.getTangentAt(counter).normalize();
var angle = Math.atan2(tangent.y,tangent.x);
box.quaternion.setFromAxisAngle(ZZ, angle);
If the track leaves the X-Y plane things will get trickier.

How do I take a 2D point, and project it into a 3D Vector by a perspective camera

I have a 2D Point (x,y) and I want to project it to a Vector, so that I can perform a ray-trace to check if the user clicked on a 3D Object, I have written all the other code, Except when I got back to my function to get the Vector from the xy cords of the mouse, I was not accounting for Field-Of-View, and I don't want to guess what the factor would be, as 'voodoo' fixes are not a good idea for a library. any math-magicians wanna help? :-).
Heres my current code, that needs FOV of the camera applied:
sf::Vector3<float> Camera::Get3DVector(int Posx, int Posy, sf::Vector2<int> ScreenSize){
//not using a "wide lens", and will maintain the aspect ratio of the viewport
int window_x = Posx - ScreenSize.x/2;
int window_y = (ScreenSize.y - Posy) - ScreenSize.y/2;
float Ray_x = float(window_x)/float(ScreenSize.x/2);
float Ray_y = float(window_y)/float(ScreenSize.y/2);
sf::Vector3<float> Vector(Ray_x,Ray_y, -_zNear);
// to global cords
return MultiplyByMatrix((Vector/LengthOfVector(Vector)), _XMatrix, _YMatrix, _ZMatrix);
}
You're not too fart off, one thing is to make sure your mouse is in -1 to 1 space (not 0 to 1)
Then you create 2 vectors:
Vector3 orig = Vector3(mouse.X,mouse.Y,0.0f);
Vector3 far = Vector3(mouse.X,mouse.Y,1.0f);
You also need to use the inverse of your perspective tranform (or viewprojection if you want world space)
Matrix ivp = Matrix::Invert(Projection)
Then you do:
Vector3 rayorigin = Vector3::TransformCoordinate(orig,ivp);
Vector3 rayfar = Vector3::TransformCoordinate(far,ivp);
If you want a ray, you also need direction, which is simply:
Vector3 raydir = Normalize(rayfar-rayorigin);

Cocos2D/Math - clean angle conversion

Mornin' SO!
I'm just trying to hone my math-fu, and I have some questions regarding Cocos2D in particular. Since Cocos2D wants to 'simplify' things, all sprites have a rotation property, ranging from 0-360 (359?) CW. This forces you to do some rather (for me) mind-humping conversions when dealing with functions like atan.
So f.ex. this method:
- (void)rotateTowardsPoint:(CGPoint)point
{
// vector from me to the point
CGPoint v = ccpSub(self.position, point);
// ccpToAngle is just a cute wrapper for atan2f
// the macro is self explanatory and the - is to flip the direction I guess
float angle = -CC_RADIANS_TO_DEGREES(ccpToAngle(v));
// just to get it all in the range of 0-360
if(angle < 0.f)
angle += 360.0f;
// but since '0' means east in Cocos..
angle += 180.0f;
// get us in the range of 0-360 again
if(angle > 360.0f)
angle -= 360.0f;
self.rotation = angle;
}
works as intended. But to me it looks kind of brute forced. Is there a cleaner way to achieve the same effect?
It is enough to do
float angle = -CC_RADIANS_TO_DEGREES(ccpToAngle(v));
self.rotation = angle + 180.0f;
for equivalent transformations
// vector from me to the point
CGPoint v = ccpSub(self.position, point);
actually, that's vector from point to you.
// just to get it all in the range of 0-360
you don't need to do that.

Resources