Usage of Difference Equations(recurrence relations) in IT fields - math

I'm doing a IT diploma and Mathematics also be tought there.In these days, we have to learn Difference Equations(recurrence relations) and I'm confused with what are the usages of these concepts in different areas of IT like computing, algorithms and data structures, circuit analysis, etc.
Can someone please explain why we learn these concepts and usage of them. It will be helpful my learnings.

Unutbu has an excellent explanation and link to what is a recurrence relation. Here is a small window into the why.
Computer scientists need to know how algorithms compare to one another (in terms of speed or memory space). The Recurrence Relations help provide this comparison (on an order of magnitude).
Here is a general question: How many possible moves in chess are there? If there are 318 billion moves (for the first four), could you use an exhaustive algorithm to search for the best, first move? If that is impractical, what algorithms might trim that to a reasonable size? The complexity measures give us an insight into the difficulty of the problem and into the practicality of a given algorithm.

Recurrence relations come up in complexity theory. The number of steps performed by a recursive algorithm can be expressed as a recurrence relation, such as
The goal then is to express T as (or bound T by) a (hopefully simple) function of n.
The master theorem is one example of how this is done.

Related

Math solver with steps

I have a very hard time with math yet I always seem to find myself in ever increasingly difficult math courses. Over the years I have amassed a small 'fortune' of various scripts and programs. They are written in a variety of languages, from C to Java to Python and even a few in Lisp (I like to fool around with different languages). These are great for getting fast answers or checking my homework, but not so great for showing how those answers were gotten. My question is how would I go about adding a 'solver' aspect to these various programs? It doesn't need to be language specific, but just a concept or maybe a specific word or definition would be of immense help. I basically want to do a Wolfram Alpha type program, where you punch in the problem and it shows a step by step solution. I have spent the last couple of days researching this, but I am always redirected towards an app or, frustratingly, to Wolfram Alpha itself. Any suggestions would be much appreciated. Thank you.
What categories of math are you talking about?
There does not seem to be a universal math solving program, what you mentioned sounds to me like the concept of a complicated math system(like MatLab).
And for, I think, a large scale of mathematical problems, the algorithms for computer programs to solve them differ from our ways to solve them.
Rather than a universal algorithm to achieve your goal, I think you can divide your problem into pieces, and achieve them with different sets of programs, there is a thesis Symbolic Integration by Joel Moses, the first chapters give a good view of how to divide a math problem into programmable cases(in the example of solving quadratic equations), and the last hundred pages is a set of algorithms for solving irrational integration, interpreted in LISP.

Heuristic function meaning

I've searched for meaning of heuristic function but everything I got is that it's function that ranks alternatives in search algorithms. But I suppose that it is not full definition of heuristics. As an example, heuristic of tree rank is used in Disjoint Union Set problem, but there's no searching!
I still don't understand, what does mean heuristic. Do you know any math definitions?
In its broadest sense, heuristics is the art of obtaining adequate results in short time from incomplete information.
As an example, the best known algorithms that solve the travelling salesman problem (i.e. finding the cheapest Hamiltonian cycle in a edge-weighted graph) have exponential time complexity. A heuristic algorithm to this problem is one that will often find a Hamiltonian cycle that is not much more expensive than the optimal solution, but will use only polynomial time.
A heuristic is a problem solving technique that comes from intuition,common sense,experience and is basically an easier and short method to solve problems.
It is applicable to human as well as machines.
Example: For example you choose to eat one of the fruits from the bucket because it looks fresh and ripe.(what you thought before picking up the fruit was an example of heuristic)
A heuristic function can be explained with an example of objective type question.
Suppose you are facing an objective test of 4 options of which only one is correct.
Now there is a question whose answer you do not know.
But then you look at the options and start thinking 1st is least probable and so is 3rd and so and so...
So basically you are rejecting least probable answers based on you experience and knwoledge related to those options
Thus it can be said that you are using a heuristic function.
Similarly for computers a heuristic function can be designed by keeping in mind the constraints of what you want from your program to do.

Math behind Bump(ing)?

I was randomly looking at the FAQ for bu.mp (http://bu.mp/faq), and this part caught my eye:
Q: No way. What if somebody else bumps
at the same time?
Way. We use various techniques to
limit the pool of potential matches,
including location information and
characteristics of the bump event. If
you are bumping in a particularly
dense area (ex, at a conference), and
we cannot resolve a unique match after
a single bump, we'll just ask you to
bump again. Our CTO has a PhD in
Quantum Mechanics and can show the
math behind that, but we suggest
downloading Bump and trying it
yourself!
Is there really any reason why there might be some non-trivial math behind bumping, or is the "Our CTO has a PhD in Quantum Mechanics and can show the math behind that" probably just a bit tongue-in-cheek? [I'm having a hard time imagining why something more complicated than looking at the location+time would be necessary, but maybe I'm just underestimating the problem or the kinds of data an iPhone could collect from a bump (e.g., some kind of tremor waveform?).]
I sincerely doubt there's any overly complex math involved. It just matches "bumps" that occur within a very short span of time in a particular area.
If there is more than one match within that particular timespan AND within that area it probably asks you to bump again.
The joke comes from:
One of the most shocking facts of quantum mechanics, first derived by Werner Heisemberg, is that operators does not always commute. There are a lot of different formulations and interpretations of this fact aka "uncertainty principle".
One of the most usual incarnations of the principle, and the historically first stated is
Which can be interpreted as:
"If you measure the linear momentum (mass * velocity) of something up to a great precision, you will not be able to do the same with its position"
This effect and interpretation has been object of tests, perhaps the most famous were those by Einstein (gedanken experiments) some refuted by Niels Bohr.
To be able to observe the effect, the involved mass of course should be very SMALL, so it is "visible" only for subatomic particles, never ever for something so big as an iPhone.
Similar inequalities hold for other conjugate operators, such as time and Energy.
Things are much more complicated when general relativity is taken on account (think for example in the concept of "time" .. which time?) and I think that is the idea behind the phrase "Our CTO has a PhD in Quantum Mechanics and can show the math behind".
To clarify: IF the iPhone should manifest quantum mechanics behavior, then Bump could not do the pairing (position and velocity or time and acceleration) of the phones trying to "bump"

query language for graph sets: data modeling question

Suppose I have a set of directed graphs. I need to query those graphs. I would like to get a feeling for my best choice for the graph modeling task. So far I have these options, but please don't hesitate to suggest others:
Proprietary implementation (matrix)
and graph traversal algorithms.
RDBM and SQL option (too space consuming)
RDF and SPARQL option (too slow)
What would you guys suggest? Regards.
EDIT: Just to answer Mad's questions:
Each one is relatively small, no more than 200 vertices, 400 edges. However, there are hundreds of them.
Frequency of querying: hard to say, it's an experimental system.
Speed: not real time, but practical, say 4-5 seconds tops.
You didn't give us enough information to respond with a well thought out answer. For example: what size are these graphs? With what frequencies do you expect to query these graphs? Do you need real-time response to these queries? More information on what your application is for, what is your purpose, will be helpful.
Anyway, to counter the usual responses that suppose SQL-based DBMSes are unable to handle graphs structures effectively, I will give some references:
Graph Transformation in Relational Databases (.pdf), by G. Varro, K. Friedl, D. Varro, presented at International Workshop on Graph-Based Tools (GraBaTs) 2004;
5 Conclusion and Future Work
In the paper, we proposed a new graph transformation engine based on off-the-shelf
relational databases. After sketching the main concepts of our approach, we carried
out several test cases to evaluate our prototype implementation by comparing it to
the transformation engines of the AGG [5] and PROGRES [18] tools.
The main conclusion that can be drawn from our experiments is that relational
databases provide a promising candidate as an implementation framework for graph
transformation engines. We call attention to the fact that our promising experimental
results were obtained using a worst-case assessment method i.e. by recalculating
the views of the next rule to be applied from scratch which is still highly inefficient,
especially, for model transformations with a large number of independent matches
of the same rule. ...
They used PostgreSQL as DBMS, which is probably not particularly good at this kind of applications. You can try LucidDB and see if it is better, as I suspect.
Incremental SQL Queries (more than one paper here, you should concentrate on " Maintaining Transitive Closure of Graphs in SQL "): "
.. we showed that transitive closure, alternating paths, same generation, and other recursive queries, can be maintained in SQL if some auxiliary relations are allowed. In fact, they can all be maintained using at most auxiliary relations of arity 2. ..
Incremental Maintenance of Shortest Distance and Transitive Closure in First Order Logic and SQL.
Edit: you give more details so... I think the best way is to experiment a little with both a main-memory dedicated graph library and with a DBMS-based solution, then evaluate carefully pros and cons of both solutions.
For example: a DBMS need to be installed (if you don't use an "embeddable" DBMS like SQLite), only you know if/where your application needs to be deployed and what your users are. On the other hand, a DBMS gives you immediate benefits, like persistence (I don't know what support graph libraries gives for persisting their graphs), transactions management and countless other. Are these relevant for your application? Again, only you know.
The first option you mentioned seems best. If your graph won't have many edges (|E|=O(|V|)) then you might earn better complexity of time and space using Dictionary:
var graph = new Dictionary<Vertex, HashSet<Vertex>>();
An interesting graph library is QuickGraph. Never used it but it seems promising :)
I wrote and designed quite a few graph algorithms for various programming contests and in production code. And I noticed that every time I need one, I have to develop it from scratch, assembling together concepts from graph theory (BFS, DFS, topological sorting etc).
Perhaps a lack of experience is a reason, but it seems to me that there's still no reasonable general-purpose query language to solve graph problems. Pick a couple of general-purpose graph libraries and solve your particular task in a programming (not query!) language. That will give you best performance and space consumption, but will also require understanding of graph theory basic concepts and of their limitations.
And the last one: do not use SQL for graphs.

Is mathematics necessary for programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I happened to debate with a friend during college days whether advanced mathematics is necessary for any veteran programmer. He used to argue fiercely against that. He said that programmers need only basic mathematical knowledge from high school or fresh year college math, no more no less, and that almost all of programming tasks can be achieved without even need for advanced math. He argued, however, that algorithms are fundamental & must-have asset for programmers.
My stance was that all computer science advances depended almost solely on mathematics advances, and therefore a thorough knowledge in mathematics would help programmers greatly when they're working with real-world challenging problems.
I still cannot settle on which side of the arguments is correct. Could you tell us your stance, from your own experience?
To answer your question as it was posed I would have to say, "No, mathematics is not necessary for programming". However, as other people have suggested in this thread, I believe there is a correlation between understanding mathematics and being able to "think algorithmically". That is, to be able to think abstractly about quantity, processes, relationships and proof.
I started programming when I was about 9 years old and it would be a stretch to say I had learnt much mathematics by that stage. However, with a bit of effort I was able to understand variables, for loops, goto statements (forgive me, I was Vic 20 BASIC and I hadn't read any Dijkstra yet) and basic co-ordinate geometry to put graphics on the screen.
I eventually went on to complete an honours degree in Pure Mathematics with a minor in Computer Science. Although I focused mainly on analysis, I also studied quite a bit of discrete maths, number theory, logic and computability theory. Apart from being able to apply a few ideas from statistics, probability theory, vector analysis and linear algebra to programming, there was little maths I studied that was directly applicable to my programming during my undergraduate degree and the commercial and research programming I did afterwards.
However, I strongly believe the formal methods of thinking that mathematics demands — careful reasoning, searching for counter-examples, building axiomatic foundations, spotting connections between concepts — has been a tremendous help when I have tackled large and complex programming projects.
Consider the way athletes train for their sport. For example, footballers no doubt spend much of their training time on basic football skills. However, to improve their general fitness they might also spend time at the gym on bicycle or rowing machines, doing weights, etc.
Studying mathematics can be likened to weight-training or cross-training to improve your mental strength and stamina for programming. It is absolutely essential that you practice your basic programming skills but studying mathematics is an incredible mental work-out that improves your core analytic ability.
While advanced mathematics may not be required for programming (unless you are programming advanced mathematics capability) the thought process of programming and mathematics are very similar. You begin with a base of known things (axioms, previously proven theories) and try to get to someplace new. You cannot skip steps. If you do skip steps, then you are required to fill in the blanks. It's a critical thought process that makes the two incredibly similar.
Also, mathematicians and programmers both think critically in the abstract. Real world things are represented by objects and variables. The ability to translate from concrete to abstract also links the two fields.
There's a very good chance that if you're good at one, you will probably be good at the other.
computer science != programming
OK, seriously, I know good and bad programmers who were English and Psychology majors and some that were Computer Science majors. Some very famous guys that I admire as developers didn't have a CS background. Larry Wall(Perl), for example, was a linguist.
On the other hand, it helps to know something about the domain you are working on because then you can at least see if your data makes sense and help your customer/users drill down to what they really want.
And yes, there's the issue of computational complexity and efficient data structures and program correctness. That's stuff you learn in Computer Science and that's useful to know in almost any domain, but it's neither necessary nor sufficient.
I guess I am going to be the first person to say you do need math. As others have said math is not all that important for certain aspects of development, but the fundamentals of critical thinking and structured analysis are very important.
More so, math is important in understanding a lot of the fundamentals that go into things like schedulers, optimizations, sorting, protocol management, and a number of other aspects of computers. Though the math involved from a calculation level is not complex (its mostly High school algebra) the theories and applications can be quite complex as a solid understanding of math through calculus will be of great benefit.
Can you get by without it, absolutely, and you shouldnt let a less then thorough knowledge of math hold you back, but if you had the chance, or the inclination I would study as much math as you could, calculus, numeric theory, linear algebra, combinatorics, practical applications, all of it has both practical and theoretical applications in a wide range of computer science.
I have known people who were highly successful on both sides of the fence (those without a strong focus on math, and those who went to school for physics or math), but in both groups they enjoyed numerical problems and learning about algorithms and math theory.
I have a maths degree, but I can't remember requiring that maths a single time in my career. It was useful in terms of training my mind for logical thinking, but I've not written any code using fluid dynamics, quantum theory or Markov Chains. (The last is the most likely to come up, I suspect.)
Most line-of-business developers won't need advanced maths most of the time. Sometimes knowing trigonometry can help, and certainly being able to understand enough maths to implement algorithms described mathematically can be important - but beyond that? Nah.
Don't forget that most programmers aren't advancing computer science - they're building applications. I don't need to know advanced engineering to drive a modern car, even though that car has almost certainly been improved through advanced engineering.
I would argue that having advanced logic (discrete) math can really help. That along with set theory. When dealing with common computer programs, these disciplines can help a lot. However, a lot of the other math I took in university was calculus, which as far as I can see, had very limited usage. Since 90% (or something like that) of programming is doing business apps with very simple math, I would say that for the most part, you can get by with very little math knowledge. However, a good understanding of boolean algebra, logic, discrete math, and set theory can really put you up to that next level.
I'll go against the grain here and say "Yes"
I switch from Civil Engineering to programming (Concrete Sucks!). My math background consists of the usual first year stuff, second and third year Calculus(Diff EQ, volume integrations, Series, Fourier and Laplace transforms) and a Numerical Analysis course.
I find that my math is incredibly lacking for computer programming. There are entire areas of Discrete math and logic that I am missing, and I only survive due to an extensive library of textbooks, Wikipedia and Wolfram. Most advanced algorithms are based on advanced math, and I am unable to develop advanced algorithms without doing extensive research (Essentially the equivalent to a half-course worth of work.) I am certainly unable to come up with NEW algorithms, as I just don't have the mathematical foundations as the shoulders of giants upon which to stand.
It depends on what you are doing. If you do a lot of 3D programming, knowledge of 3D geometry is certainly necessary, don't you agree? ;-) If you want to create a new image format like JPG or a new audio format like MP3, you are also pretty lost if you can't understand a cosine or fourier transformation, as these are the basics most lossy compression are based on. Many other problems can be resolved better if you know your math rather well.
There are also many other programming tasks you will find do not need much math.
If you find the subject fascinating enough to post this, just go ahead and start learning. The rest will come naturally.
Yeah, there is no need for advanced mathematics - if you are programming commercial - off the shelf software.
However when dealing with hardcore stuff such as:
Calculating trajectories to control
a robot
Creating AI-like applications to
support uncertainty and automatic
reasoning
Playing with 3-D motion and graphics
Some advanced mathematics knowledge might come in handy. And it's not like they are "out-of-this world" problems.
I had to create a software to try to "predict" the necessary amount of paper for an office (and it was hell just to find out the best way to approximate values).
You have to be careful, though, because it is easy to get lost when using advanced things - there is a friend of mine who resorted to using Turing to store the state of a dynamic menu just to display it correctly - humm... perhaps he wnet too far in his imagination.
What type of programming?
In my commercial experience, I have needed no advanced mathematics, but this is heavily dependent on the field you are in.
Computer graphics require a large amount of advanced mathematics. A lot of academic computer programming requires advanced mathematics.
So saying there tends to be a correlation between people who are good at mathematics and people who are good at programming.
I hope this wishy-washy answer helps.
Mathematics are needed for developers in some fields but are almost useless in others.
If you are a game developer and have to work with physics a lot - understanding of math is crucial. If you are working with advanced visual controls - you could not do much without geometry. If you're planning to do some financial calculations - it would REALLY help to have solid knowledge of statistics.
On the other hand over last 5 years I had only 2 or 3 projects where ANY amount of math was required at all. Of these there was only 1 occurrence when a Google search did not help.
At the end of the day even financial calculations are very often something your clients do for you and give you formulas to implement.
So if you're in 'applied software' business you are likely to never use your math degree. If you're in academic software maths are crucial.
I agree with Chris. I would say "Yes", also. But this depends on your market as stated above. If you are simply creating some basic "off-the-shelf" applications or writing tools to help your everyday work...then math isn't nearly as important.
Engineering custom software solutions requires lots of problem solving and critical thinking. Skills that are most definitely enhanced when a mathematics background is present. I minored in Math with my Computer Engineering degree and I give credit to all of my math-oriented background as to why I'm where I am today.
That's my 2 cents, I can tell from reading above that many would not agree. I encourage all to consider that I'm not saying you can't have those skills without a math background, I'm simply stating that the skills are side-effects of having such a background and can impact software positively.
In my experience math is required in programming, you can't get away from it. The whole of programming is based on math.
The issue is not black and white, but more colorful. The question is not whether or not you need math, but how much. The higher levels of math will give you more tools and open up your mind to different paths of though.
For example, you can program if you only known addition and subtraction. When multiplication is required, you will have to perform a lot of additions. Multiplication simplifies repetitive additions. Algebra allows one to simplify math before implementing it into programs. Linear Algebra provides tools for transforming images. Boolean Algebra provides mechanics for reducing all those if statements.
And don't forget the sibling to mathematics, Logic and Philosophy. Logic will help you make efficient use of case or switch statements. Philosophy will help you understand the thinking of the guy who wrote that code you are modifying.
Yes, you don't need much math to write programs. Some programs may require more math than others. More math knowledge will give you an advantage over those who have lesser understanding. In these times, people need every advantage they can get to obtain those jobs.
I've been programming for 8 years professionally, and since I was 12 as a hobby.
Math is not necessary, logic is. Math is horribly helpful though, to say it's not necessary is like saying that to kill a man, a gun isn't necessary, you can use a knife. Well, it is true, but that gun makes it a lot easier.
There are a couple bare minimums, which you should already meet. You need to know basic algebraic expressions and notation, and the common computer equivalents. For example, you need to know what an exponential is (3 to the 3rd is 27), and the common computer expression is 3^3. The common notations for algebra does change between languages, but many of them use a somewhat unified methodology. Others (looking at you LISP) don't. You also need to know order of operations.
You need to understand algorithmic thought. First this, then this, produces this which is used in this calculation. Chances are you understand this or you don't, and it's a fairly hard hurdle to jump if you don't understand it; I've found that this is something you 'get', and not really something you can learn. Conversely, some people don't 'get' art. They should not become painters. Also, there have been students in CS curriculum who cannot figure out why this does not work:
x = z + w;
z = 3;
y = 5;
It's not that they don't understand addition, it's that they aren't grasping the requirement of unambiguous express. If they understand it, the computer should too, right? If you can't see what's wrong with the above three lines, then don't become a programmer.
Lastly, you need to know whatever math is under your domain of programming. Accounting software could stop at basic algebra. If you are programming physics, you'll need to know physics (loosely) and math in 3-dimensional geometry (Euclidean). If you're programming architecture software, you'll need to know trigonometry.
This goes farther then math though; whatever domain you are programming for, you need to soundly understand the basics. If you are programming language analysis software, you'll need to know probability, statistics, grammar theory (multiple languages), etc.
Often times, certain domains need, or can benefit from, knowledge you'd think is unrelated. For example, if you were programming audio software, you actually need to know trigonometry to deal with waveforms.
Magnitude changes things also. If you are sorting a financial data set of 1000 items, it's no big thing. If it was 10 million records, however, you would benefit greatly from knowing vector math actually, and having a deep understanding of sorting at the binary level (how does a system sort alphabetically? How does it know 'a' is less than 'b'?)
You are going to find that as a programmer, your general knowledge base is going to explode, because each project will necessitate more learning outside of the direct sphere of programming. If you are squeamish or lazy about self-learning, and do not like the idea of spending 10+ hours a week doing essentially 'homework', do not become a programmer.
If you like thought exercises, if you like learning, if you can think about abstract things like math without a calculator or design without a sketchpad, if you have broad tastes in life and hobbies, if you are self-critical and can throw away 'favorited' ideas, if you like perfecting things, then become a programmer. Do not base this decision on math, but rather, the ability to think logically and learn. Those are what is important; math is just the by-product.
Of course it depends on what kind of programmer you want to be, or better what kind of programmer your employers want you to be. I think calculus and algebra are essentials, statistic and linear programming is indeed a good tool to have in your briefcase, maybe analysis (derivative, integrals, functions...) could be done without. But if you want to know how things work skin-deep (electronics, for example, or some non trivial algorhytms) "advanced" math is something you'd better not go without anywhere.
Most of the programming I have done involved physics simulations for research including things like electromagnetism, quantum mechanics and structural mechanics. Since the problem domains have advanced mathematics associated with them I would be hard pressed to solve them without using advanced mathematics.
So the answer to your question is - it depends on what you are trying to do.
Advanced maths knowledge is vital if you're going to be writing a new programming language. Or you need write your own algorithms.
However, for most day-to-day programming - from websites to insurance processing applications - only basic maths are necessary.
Someone with a solid mathematical (which is not merely arithmetic) or logic background will cope well with algorithms, variable use, conditional reasoning and data structures.
Not everyone can design a UI.
Not everyone can make efficient code.
Not everyone can comment and document clearly.
Not everyone can do a good algorithm
Mathematics will help you to a point, but only to a point.
I dont think advanced mathemetics knowledge is a requirement for a good programmer, but based on personal experience I think that programmers who have a better grasp at advanced maths also make better programmers. This may simply be due to a more logical mind, or a more logical outlook due to their experiences of solving mathematical problems.
The fundamental concept of maths is the following, devising, understanding, implementation, and use of algorithms. If you cannot do maths then it is because you cannot do these things, and if you cannot do these things then you cannot be an effective programmer.
Common programming tasks might not need any specific mathematical knowledge (e.g. you probably won't need vector algebra and calculus unless you're doing tasks like 3D graphics or physics simulations, for example), but the underlying skillsets are identical, and lack of ability in one domain will be matched by a corresponding lack of ability in the other domain.
Math is a toolbox for creating programs. I recommend Cormen's Introduction to Algorithms. It touches on the more "mathy" stuff.
- Greatest lowest limit (managing resources)
- Random variables (game programming)
- Topological sort (adjusting spreadsheets)
- Matrix operations (3d graphics)
- Number theory (encryption)
- Fast fourier transforms (networks)
I don't think that higher math is a requirement for being a good programmer - as always it depends on what you are coding.
Of course if you are in 3D graphics programming, you'll need matrices and stuff. As author of business software, you'll probably need statistics math.
But being a professional programmer for almost 10 years (and another 10 years amateur) "higher math" is not something that I needed regularily. In about 99.8% of all cases it's just plus, minus, division and multiplication in some intelligent combinations - in most cases it's about algorithms, not math.
Learning higher math, for most programmers, is important simply because it bends your brain to think logically, in a step-by-step manner to get from one thing to another.
Very few programming jobs, though, require anything above high school math. I've used linear algebra once. I've never used calculus. I use algebra every day.
Mathematical knowledge is often useful to a programmer, as are graphic design skill, puzzle-solving ability, work ethic and a host of other skills and traits. Very few programmers are good at everything that a programmer can possibly be good at. I wouldn't agree with any statement of the form "you're not a real programmer unless you can {insert favorite programming ability here}".
But I would be wary of a programmer who couldn't do Math. More so than of one who couldn't draw.
I think it really depends on what you're trying to do, but IMHO, the CS and OS theory are more important than math here, and you really need only the math that they involve.
For example, there's a lot of CS background of scheduling theory and optimization that stands behind many schedulers in modern OSs. That is an example of something that would require some math, though not something super complicated.
But honestly, for most stuff, you don't need math. What you need is to learn the ability to think in base 2 and 16, such as the ability to mentally OR/AND. For example, if you have a byte and within that byte there are two 3-bit fields and 2 wasted bits, knowing which bits are in which fields are active when the byte value is something like 11 will make things slightly faster than having to use pen and paper.
I began programming about the same time I entered my pre-algebra class.. So I wouldn't say math is all that important, though it can help in certain types of programming, especially functional.
I haven't taken Discrete Math yet, but I see a lot of theory stuff with programming written in a math-notation that is taught in this class.
Also, make sure you know how to calculate anything in any base, especially base 2, 8, and 16.
Also, one class that really brought home some concepts for me was this pre-programming class. We got taught unions, intersections, and all that happy stuff and It almost exactly parallels bitwise math. And we covered boolean logic very heavily. What I considered the most useful was when we learned how to reduce complex boolean statements. This was very handy:
(x|y) & (x|z) & (x|foo)
can be simplified to
x | (y & z & foo)
Which I previously did not quite grasp.
Well you generated a number of responses, and no I did not read them all. I am in the middle on this, no you certainly do not need math in order to be a programmer. Assembler vs device drivers in linux are no more or less complicated than the other and neither require math.
In no way shape or form do you need to take or pass a math class for any of this.
I will agree that the problem solving mindset for programming is quite similar to that of math solutions, and as a result math probably comes easily. or the contrary if math is hard then programming may be hard. A class or a degree or any pieces of paper or trophies are not required, going off and learning stuff, sure.
Now if you cannot convert from hex to binary to decimal quickly either in your head, on paper, or using a calculator you are going to struggle. If you want to get into networking and other things that involve timing, which kernel drivers often do but dont have to. You are going to struggle. I know of a very long list of people with math degrees and/or computer science, and/or engineering degrees that struggle with the rate calculations, bits per second, bytes per second, how much memory you need to do something, etc. To some extent it may be considered some sort of knack that some have and others have to work toward.
My bottom line is I believe in will power, if you want to learn this stuff you can and will, it is as simple as that. You dont need to take a class or spend a lot of money, linux and qemu for example can keep you busy for quite some time, different asm langauges, etc. crashable environments for kernel development, embedded, etc. You are not limited to that, but I dont believe that you have to run off and take any classes if you dont want to. If you want to then sure take some ee classes, some cs classes and some math classes..
You need math. Programming is nothing more than math. Any findings of theoretical physics does not become a practical(applicable) implication, unless they are explained in terms of mathematical solutions. None of those can be solved computationally if they cannot be interpreted on computers, and more specifically on programming languages. Different languages are thus designed to solve specific problems. But for the general purpose and wide spread programming languages like java, c, c++ much of our programming tasks involve repetitive(continuous) solution to same problems like extracting values from database, text files, putting them on windows(desktop, web), manipulating same values, sometimes accessing some data from similar devices(but given different brand names, different port and a headache) etc which does not involve more than unitary method, and algebra(counter, some logic), geometry(graphics) etc. So it depends what you are trying to solve.
IMO, you probably need an aptitude for mathematics, without necessarily having much knowledge in the field. So the things you require to be good at maths are similar to the things you require to be good at programming.
But in general, I can't remember the last time I used any sort of advanced maths in day-to-day programming, so no.

Resources