What is the formula to calculate the gini with sample weight - r

I need your helps to explain how I can obtain the same result as this function does:
gini(x, weights=rep(1,length=length(x)))
http://cran.r-project.org/web/packages/reldist/reldist.pdf --> page 2. Gini
Let's say, we need to measure the inocme of the population N. To do that, we can divide the population N into K subgroups. And in each subgroup kth, we will take nk individual and ask for their income. As the result, we will get the "individual's income" and each individual will have particular "sample weight" to represent for their contribution to the population N. Here is example that I simply get from previous link and the dataset is from NLS
rm(list=ls())
cat("\014")
library(reldist)
data(nls);data
help(nls)
# Convert the wage growth from (log. dollar) to (dollar)
y <- exp(recent$chpermwage);y
# Compute the unweighted estimate
gini_y <- gini(y)
# Compute the weighted estimate
gini_yw <- gini(y,w=recent$wgt)
> --- Here is the result----
> gini_y = 0.3418394
> gini_yw = 0.3483615
I know how to compute the Gini without WEIGHTS by my own code. Therefore, I would like to keep the command gini(y) in my code, without any doubts. The only thing I concerned is that the way gini(y,w) operate to obtain the result 0.3483615. I tried to do another calculation as follow to see whether I can come up with the same result as gini_yw. Here is another code that I based on CDF, Section 9.5, from this book: ‘‘Relative
Distribution Methods in the Social Sciences’’ by Mark S. Handcock,
#-------------------------
# test how gini computes with the sample weights
z <- exp(recent$chpermwage) * recent$wgt
gini_z <- gini(z)
# Result gini_z = 0.3924161
As you see, my calculation gini_z is different from command gini(y, weights). If someone of you know how to build correct computation to obtain exactly
gini_yw = 0.3483615, please give me your advices.
Thanks a lot friends.

function (x, weights = rep(1, length = length(x)))
{
ox <- order(x)
x <- x[ox]
weights <- weights[ox]/sum(weights)
p <- cumsum(weights)
nu <- cumsum(weights * x)
n <- length(nu)
nu <- nu/nu[n]
sum(nu[-1] * p[-n]) - sum(nu[-n] * p[-1])
}
This is the source code for the function gini which can be seen by entering gini into the console. No parentheses or anything else.
EDIT:
This can be done for any function or object really.

This is bit late, but one may be interested in concentration/diversity measures contained in the [SciencesPo][1] package.

Related

Generalized Gini with Weights in R

I want to calculate weighted generalized gini coefficients.
CRAN distributes the "acid" package with a suitable function.
What am i missing here? When weights are constant, the estimates of weighted.gini and sgini are equal given the parameter nu = 2 (as to get the regular gini). When weights are nonconstant, they differ. Is there something fishy going on or am i missing something? They ought to be the same, right?
Checked back with STATA sgini function by van Kerm which is cited in the documentation of acid and its function returns the expected same estimates.
set.seed(123)
install.packages("acid")
library(acid)
x <- rnorm(100,10,1)
w <- rep(1, length(x))
acid::weighted.gini(x,w)$Gini
acid::sgini(x,w,nu=2)$Gini
w <- rnorm(100,10,1)
acid::weighted.gini(x,w)$Gini
acid::sgini(x,w,nu=2)$Gini
There is a mistake in "sgini".
In the formula that the command "sgini" has, at same point, mean(x) is calculated without taking into account the weights.
If we tried to calculate manually the weighted Gini given the formulas: https://core.ac.uk/download/pdf/41339501.pdf
set.seed(123)
x <- rnorm(100,10,1)
w <- rep(1, length(x))
acid::weighted.gini(x,w)$Gini
acid::sgini(x,w,nu=2)$Gini
w <- rnorm(100,10,1)
acid::weighted.gini(x,w)
acid::sgini(x,w,nu=2)
#calc manually
ox<-order(x)
x<-x[ox]
w<-w[ox]
#cov(x,cumsum(x)/cumsum(x)[length(x)])*2/mean(x) #gini without weights
w<-w/sum(w)
f<-w/2+cumsum(c(0,w[-length(w)]))
2/sum(x*w)*sum(w*(x-sum(x*w))*(f-sum(f*w))) #==weighted.gini(x,w)$Gini

Maximum pseudo-likelihood estimator for soft-core point process

I am trying to fit a soft-core point process model on a set of point pattern using maximum pseudo-likelihood. I followed the instructions given in this paper by Baddeley and Turner
And here is the R-code I came up with
`library(deldir)
library(tidyverse)
library(fields)
#MPLE
# irregular parameter k
k <- 0.4
## Generate dummy points 50X50. "RA" and "DE" are x and y coordinates
dum.x <- seq(ramin, ramax, length = 50)
dum.y <- seq(demin, demax, length = 50)
dum <- expand.grid(dum.x, dum.y)
colnames(dum) <- c("RA", "DE")
## Combine with data and specify which is data point and which is dummy, X is the point pattern to be fitted
bind.x <- bind_rows(X, dum) %>%
mutate(Ind = c(rep(1, nrow(X)), rep(0, nrow(dum))))
## Calculate Quadrature weights using Voronoi cell area
w <- deldir(bind.x$RA, bind.x$DE)$summary$dir.area
## Response
y <- bind.x$Ind/w
# the sum of distances between all pairs of points (the sufficient statistics)
tmp <- cbind(bind.x$RA, bind.x$DE)
t1 <- rdist(tmp)^(-2/k)
t1[t1 == Inf] <- 0
t1 <- rowSums(t1)
t <- -t1
# fit the model using quasipoisson regression
fit <- glm(y ~ t, family = quasipoisson, weights = w)
`
However, the fitted parameter for t is negative which is obviously not a correct value for a softcore point process. Also, my point pattern is actually simulated from a softcore process so it does not make sense that the fitted parameter is negative. I tried my best to find any bugs in the code but I can't seem to find it. The only potential issue I see is that my sufficient statistics is extremely large (on the order of 10^14) which I fear may cause numerical issues. But the statistics are large because my observation window spans a very small unit and the average distance between a pair of points is around 0.006. So sufficient statistics based on this will certainly be very large and my intuition tells me that it should not cause a numerical problem and make the fitted parameter to be negative.
Can anybody help and check if my code is correct? Thanks very much!

Fit distribution to given frequency values in R

I have frequency values changing with the time (x axis units), as presented on the picture below. After some normalization these values may be seen as data points of a density function for some distribution.
Q: Assuming that these frequency points are from Weibull distribution T, how can I fit best Weibull density function to the points so as to infer the distribution T parameters from it?
sample <- c(7787,3056,2359,1759,1819,1189,1077,1080,985,622,648,518,
611,1037,727,489,432,371,1125,69,595,624)
plot(1:length(sample), sample, type = "l")
points(1:length(sample), sample)
Update.
To prevent from being misunderstood, I would like to add little more explanation. By saying I have frequency values changing with the time (x axis units) I mean I have data which says that I have:
7787 realizations of value 1
3056 realizations of value 2
2359 realizations of value 3 ... etc.
Some way towards my goal (incorrect one, as I think) would be to create a set of these realizations:
# Loop to simulate values
set.values <- c()
for(i in 1:length(sample)){
set.values <<- c(set.values, rep(i, times = sample[i]))
}
hist(set.values)
lines(1:length(sample), sample)
points(1:length(sample), sample)
and use fitdistr on the set.values:
f2 <- fitdistr(set.values, 'weibull')
f2
Why I think it is incorrect way and why I am looking for a better solution in R?
in the distribution fitting approach presented above it is assumed that set.values is a complete set of my realisations from the distribution T
in my original question I know the points from the first part of the density curve - I do not know its tail and I want to estimate the tail (and the whole density function)
Here is a better attempt, like before it uses optim to find the best value constrained to a set of values in a box (defined by the lower and upper vectors in the optim call). Notice it scales x and y as part of the optimization in addition to the Weibull distribution shape parameter, so we have 3 parameters to optimize over.
Unfortunately when using all the points it pretty much always finds something on the edges of the constraining box which indicates to me that maybe Weibull is maybe not a good fit for all of the data. The problem is the two points - they ares just too large. You see the attempted fit to all data in the first plot.
If I drop those first two points and just fit the rest, we get a much better fit. You see this in the second plot. I think this is a good fit, it is in any case a local minimum in the interior of the constraining box.
library(optimx)
sample <- c(60953,7787,3056,2359,1759,1819,1189,1077,1080,985,622,648,518,
611,1037,727,489,432,371,1125,69,595,624)
t.sample <- 0:22
s.fit <- sample[3:23]
t.fit <- t.sample[3:23]
wx <- function(param) {
res <- param[2]*dweibull(t.fit*param[3],shape=param[1])
return(res)
}
minwx <- function(param){
v <- s.fit-wx(param)
sqrt(sum(v*v))
}
p0 <- c(1,200,1/20)
paramopt <- optim(p0,minwx,gr=NULL,lower=c(0.1,100,0.01),upper=c(1.1,5000,1))
popt <- paramopt$par
popt
rms <- paramopt$value
tit <- sprintf("Weibull - Shape:%.3f xscale:%.1f yscale:%.5f rms:%.1f",popt[1],popt[2],popt[3],rms)
plot(t.sample[2:23], sample[2:23], type = "p",col="darkred")
lines(t.fit, wx(popt),col="blue")
title(main=tit)
You can directly calculate the maximum likelihood parameters, as described here.
# Defining the error of the implicit function
k.diff <- function(k, vec){
x2 <- seq(length(vec))
abs(k^-1+weighted.mean(log(x2), w = sample)-weighted.mean(log(x2),
w = x2^k*sample))
}
# Setting the error to "quite zero", fulfilling the equation
k <- optimize(k.diff, vec=sample, interval=c(0.1,5), tol=10^-7)$min
# Calculate lambda, given k
l <- weighted.mean(seq(length(sample))^k, w = sample)
# Plot
plot(density(rep(seq(length(sample)),sample)))
x <- 1:25
lines(x, dweibull(x, shape=k, scale= l))
Assuming the data are from a Weibull distribution, you can get an estimate of the shape and scale parameter like this:
sample <- c(7787,3056,2359,1759,1819,1189,1077,1080,985,622,648,518,
611,1037,727,489,432,371,1125,69,595,624)
f<-fitdistr(sample, 'weibull')
f
If you are not sure whether it is distributed Weibull, I would recommend using the ks.test. This tests whether your data is from a hypothesised distribution. Given your knowledge of the nature of the data, you could test for a few selected distributions and see which one works best.
For your example this would look like this:
ks = ks.test(sample, "pweibull", shape=f$estimate[1], scale=f$estimate[2])
ks
The p-value is insignificant, hence you do not reject the hypothesis that the data is from a Weibull distribution.
Update: The histograms of either the Weibull or exponential look like a good match to your data. I think the exponential distribution gives you a better fit. Pareto distribution is another option.
f<-fitdistr(sample, 'weibull')
z<-rweibull(10000, shape= f$estimate[1],scale= f$estimate[2])
hist(z)
f<-fitdistr(sample, 'exponential')
z = rexp(10000, f$estimate[1])
hist(z)

Does cattell's profile similarity coefficient (Rp) exist as a function in R?

i'm comparing different measures of distance and similarity for vector profiles (Subtest results) in R, most of them are easy to compute and/or exist in dist().
Unfortunately, one that might be interesting and is to difficult for me to calculate myself is Cattel's Rp. I can not find it in R.
Does anybody know if this exists already?
Or can you help me to write a function?
The formula (Cattell 1994) of Rp is this:
(2k-d^2)/(2k + d^2)
where:
k is the median for chi square on a sample of size n;
d is the sum of the (weighted=m) difference between the two profiles,
sth like: sum(m(x(i)-y(i)));
one thing i don't know is, how to get the chi square median in there
Thank you
What i get without defining the k is:
Rp.Cattell <- function(x,y){z <- (2k-(sum(x-y))^2)/(2k+(sum(x-y))^2);return(z)}
Vector examples are:
x <- c(-1.2357,-1.1999,-1.4727,-0.3915,-0.2547,-0.4758)
y <- c(0.7785,0.9357,0.7165,-0.6067,-0.4668,-0.5925)
They are measures by the same device, but related to different bodyparts. They don't need to be standartised or weighted, i would say.
This page gives a general formula for k, and then gives a more thorough method using SAS/IML which pretty much gives the same results. So I used the general formula, added calculation of degrees of freedom, which leads to this:
Rp.Cattell <- function(x,y) {
dof <- (2-1) * (length(y)-1)
k <- (1-2/(9*dof))^3
z <- (2*k-sum(sum(x-y))^2)/(2*k+sum(sum(x-y))^2)
return(z)
}
x <- c(-1.2357,-1.1999,-1.4727,-0.3915,-0.2547,-0.4758)
y <- c(0.7785,0.9357,0.7165,-0.6067,-0.4668,-0.5925)
Rp.Cattell(x, y)
# [1] -0.9012083
Does this figure appear to make sense?
Trying to verify the function, I found out now that the median of chisquare is the chisquare value for 50% probability - relating to random. So the function should be:
Rp.Cattell <- function(x,y){
dof <- (2-1) * (length(y)-1)
k <- qchisq(.50, df=dof)
z <- (2k-(sum(x-y))^2)/(2k+(sum(x-y))^2);
return(z)}
It is necessary though to standardize the Values before, so the results are distributed correctly.
So:
library ("stringr")
# they are centered already
x <- as.vector(scale(c(-1.2357,-1.1999,-1.4727,-0.3915,-0.2547,-0.4758),center=F, scale=T))
y <- as.vector(scale(c(0.7785,0.9357,0.7165,-0.6067,-0.4668,-0.5925),center=F, scale=T))
Rp.Cattell(x, y) -0.584423
This sounds reasonable now - or not?
I consider calculation of z is incorrect.
You need to calculate the sum of the squared differences. Not the square of the sum of differences. Besides product operator is missing in 2k.
It should be
z <- (2*k-sum((x-y)^2))/(2*k+sum((x-y)^2))
Do you agree?

Errors running Maximum Likelihood Estimation on a three parameter Weibull cdf

I am working with the cumulative emergence of flies over time (taken at irregular intervals) over many summers (though first I am just trying to make one year work). The cumulative emergence follows a sigmoid pattern and I want to create a maximum likelihood estimation of a 3-parameter Weibull cumulative distribution function. The three-parameter models I've been trying to use in the fitdistrplus package keep giving me an error. I think this must have something to do with how my data is structured, but I cannot figure it out. Obviously I want it to read each point as an x (degree days) and a y (emergence) value, but it seems to be unable to read two columns. The main error I'm getting says "Non-numeric argument to mathematical function" or (with slightly different code) "data must be a numeric vector of length greater than 1". Below is my code including added columns in the df_dd_em dataframe for cumulative emergence and percent emergence in case that is useful.
degree_days <- c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94)
emergence <- c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0)
cum_em <- cumsum(emergence)
df_dd_em <- data.frame (degree_days, emergence, cum_em)
df_dd_em$percent <- ave(df_dd_em$emergence, FUN = function(df_dd_em) 100*(df_dd_em)/46)
df_dd_em$cum_per <- ave(df_dd_em$cum_em, FUN = function(df_dd_em) 100*(df_dd_em)/46)
x <- pweibull(df_dd_em[c(1,3)],shape=5)
dframe2.mle <- fitdist(x, "weibull",method='mle')
Here's my best guess at what you're after:
Set up data:
dd <- data.frame(degree_days=c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94),
emergence=c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0))
dd <- transform(dd,cum_em=cumsum(emergence))
We're actually going to fit to an "interval-censored" distribution (i.e. probability of emergence between successive degree day observations: this version assumes that the first observation refers to observations before the first degree-day observation, you could change it to refer to observations after the last observation).
library(bbmle)
## y*log(p) allowing for 0/0 occurrences:
y_log_p <- function(y,p) ifelse(y==0 & p==0,0,y*log(p))
NLLfun <- function(scale,shape,x=dd$degree_days,y=dd$emergence) {
prob <- pmax(diff(pweibull(c(-Inf,x), ## or (c(x,Inf))
shape=shape,scale=scale)),1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
library(bbmle)
I should probably have used something more systematic like the method of moments (i.e. matching the mean and variance of a Weibull distribution with the mean and variance of the data), but I just hacked around a bit to find plausible starting values:
## preliminary look (method of moments would be better)
scvec <- 10^(seq(0,4,length=101))
plot(scvec,sapply(scvec,NLLfun,shape=1))
It's important to use parscale to let R know that the parameters are on very different scales:
startvals <- list(scale=1000,shape=1)
m1 <- mle2(NLLfun,start=startvals,
control=list(parscale=unlist(startvals)))
Now try with a three-parameter Weibull (as originally requested) -- requires only a slight modification of what we already have:
library(FAdist)
NLLfun2 <- function(scale,shape,thres,
x=dd$degree_days,y=dd$emergence) {
prob <- pmax(diff(pweibull3(c(-Inf,x),shape=shape,scale=scale,thres)),
1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
startvals2 <- list(scale=1000,shape=1,thres=100)
m2 <- mle2(NLLfun2,start=startvals2,
control=list(parscale=unlist(startvals2)))
Looks like the three-parameter fit is much better:
library(emdbook)
AICtab(m1,m2)
## dAIC df
## m2 0.0 3
## m1 21.7 2
And here's the graphical summary:
with(dd,plot(cum_em~degree_days,cex=3))
with(as.list(coef(m1)),curve(sum(dd$emergence)*
pweibull(x,shape=shape,scale=scale),col=2,
add=TRUE))
with(as.list(coef(m2)),curve(sum(dd$emergence)*
pweibull3(x,shape=shape,
scale=scale,thres=thres),col=4,
add=TRUE))
(could also do this more elegantly with ggplot2 ...)
These don't seem like spectacularly good fits, but they're sane. (You could in principle do a chi-squared goodness-of-fit test based on the expected number of emergences per interval, and accounting for the fact that you've fitted a three-parameter model, although the values might be a bit low ...)
Confidence intervals on the fit are a bit of a nuisance; your choices are (1) bootstrapping; (2) parametric bootstrapping (resample parameters assuming a multivariate normal distribution of the data); (3) delta method.
Using bbmle::mle2 makes it easy to do things like get profile confidence intervals:
confint(m1)
## 2.5 % 97.5 %
## scale 1576.685652 1777.437283
## shape 4.223867 6.318481
dd <- data.frame(degree_days=c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94),
emergence=c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0))
dd$cum_em <- cumsum(dd$emergence)
dd$percent <- ave(dd$emergence, FUN = function(dd) 100*(dd)/46)
dd$cum_per <- ave(dd$cum_em, FUN = function(dd) 100*(dd)/46)
dd <- transform(dd)
#start 3 parameter model
library(FAdist)
## y*log(p) allowing for 0/0 occurrences:
y_log_p <- function(y,p) ifelse(y==0 & p==0,0,y*log(p))
NLLfun2 <- function(scale,shape,thres,
x=dd$degree_days,y=dd$percent) {
prob <- pmax(diff(pweibull3(c(-Inf,x),shape=shape,scale=scale,thres)),
1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
startvals2 <- list(scale=1000,shape=1,thres=100)
m2 <- mle2(NLLfun2,start=startvals2,
control=list(parscale=unlist(startvals2)))
summary(m2)
#graphical summary
windows(5,5)
with(dd,plot(cum_per~degree_days,cex=3))
with(as.list(coef(m2)),curve(sum(dd$percent)*
pweibull3(x,shape=shape,
scale=scale,thres=thres),col=4,
add=TRUE))

Resources