Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 9 years ago.
Improve this question
I wrote this clunky function that works but is not optimal. What is a good way to write a recursive function with memoization to compute factorials in F#? The function can return a dictionary type data structure with the results, or store them in a variable like this function.
open System.Collections.Generic
let factorials = Dictionary<int, int>()
factorials.Add(1, 1)
let rec factorial n =
if n <= 1 then 1
else
match factorials.TryGetValue(n) with
| true, _ -> n * factorial(n-1)
| false, _ ->
factorials.Add(n, n * factorial(n-1))
n * factorial(n-1)
let a = factorial 9
open System.Collections.Generic
let factorials = Dictionary<int, int>()
factorials.Add(1,1)
let factorial n =
let dictValue : int ref = ref 0
let rec factorialWithAcc n limit acc =
match n with
| x when n > limit -> ()
| _ ->
let acc = acc * n
if factorials.TryGetValue(n,dictValue)
then ()
else factorials.Add(n,acc)
factorialWithAcc (n+1) limit acc
factorialWithAcc 1 n 1
let printFact () =
let rec printFact n =
match n with
| 0 -> ()
| _ ->
printfn "n: %A, %A" n factorials.[n]
printFact (n-1)
printFact factorials.Count
let test () =
let result = factorial 9
printFact ()
test ()
Related
needing some help (if possible) in how to count the amount of times a recursive function executes itself.
I don't know how to make some sort of counter in OCaml.
Thanks!
Let's consider a very simple recursive function (not Schroder as I don't want to do homework for you) to calculate Fibonacci numbers.
let rec fib n =
match n with
| 0 | 1 -> 1
| _ when n > 0 -> fib (n - 2) + fib (n - 1)
| _ -> raise (Invalid_argument "Negative values not supported")
Now, if we want to know how many times it's been passed in, we can have it take a call number and return a tuple with that call number updated.
To get each updated call count and pass it along, we explicitly call fib in let bindings. Each time c shadows its previous binding, as we don't need that information.
let rec fib n c =
match n with
| 0 | 1 -> (1, c + 1)
| _ when n > 0 ->
let n', c = fib (n - 1) (c + 1) in
let n'', c = fib (n - 2) (c + 1) in
(n' + n'', c)
| _ -> raise (Invalid_argument "Negative values not supported")
And we can shadow that to not have to explicitly pass 0 on the first call.
let fib n = fib n 0
Now:
utop # fib 5;;
- : int * int = (8, 22)
The same pattern can be applied to the Schroder function you're trying to write.
You can create a reference in any higher scope like so
let counter = ref 0 in
let rec f ... =
counter := !counter + 1;
... (* Function body *)
If the higher scope happens to be the module scope (or file top-level scope) you should omit the in
You can return a tuple (x,y) where y you increment by one for each recursive call. It can be useful if your doing for example a Schroder sequence ;)
I am trying to implement a lazy fibonacci generator in Ocaml as shown below:
(* fib's helper *)
let rec fibhlpr n = if n == 0 then 0 else if n == 1 then 1 else fibhlpr (n-1) + fibhlpr (n-2);;
(* lazy fib? *)
let rec fib n = ((fibhlpr n), fun() -> fib (n+1));;
I am trying to return the result of fibhlpr (an int) and a function to retrieve the next value, but am not sure how. I think I have to create a new type in order to accommodate the two items I am returning, but I don't know what type fun() -> fib (n+1) returns. When messing around with the code, I received an error which informed me that
fun() -> fib (n+1) has type: int * (unit ->'a).
I am rather new to Ocaml and functional programming in general, so I don't know what this means. I tried creating a new type as follows:
type t = int * (unit -> 'a);;
However, I received the error: "Unbound type parameter 'a".
At this point I am truly stuck: how can I returns the two items that I want (the result of fibhlpr n and a function which returns the next value in the sequence) without causing an error? Thank you for any help.
If you want to define a lazy sequence, you can use the built-in sequence type
constructor Seq.t
let rec gen_fib a b () = Seq.Cons(a, gen_fib b (a+b))
let fib () = gen_fib 0 1 ()
This implementation also has the advantage that computing the n-th term of the sequence is O(n) rather than O(2^n).
If you want to keep using an infinite lazy type, it is also possible. However, you cannot use the recursive type expression
type t = int * (unit -> t)
without the -rectypes flag. And using -rectypes is generally ill-advised for beginners because it reduces the ability of type inference to identify programming errors.
It is thus better to simply use a recursive type definition as suggested by #G4143
type 'a infinite_sequence = { x:'a; next: unit -> 'a infinite_sequence }
let rec gen_fib a b () =
{ x = a; next = gen_fib b (a+b) }
let fib = gen_fib 0 1 ()
The correct type is
type t = int * (unit -> t)
You do not need a polymorphic 'a, because fibonacci only ever yields ints.
However, when you call the next function, you need to get the next value, but also a way to get the one after it, and so on and so on. You could call the function multiple times, but then it means that the function has mutable state, the above signature doesn't require that.
Try:
type 'a t = int * (unit -> 'a);
Your whole problems stems from this function:
let rec fib n = ((fibhlpr n), fun() -> fib (n+1))
I don't think the type system can define fib when it returns itself.. You need to create a new type which can construct a function to return.
I quickly tried this and it works:
type func = Func of (unit ->(int * func))
let rec fib n =
let c = ref 0 in
let rec f () =
if !c < n
then
(
c := !c + 1;
((fibhlpr !c), (Func f))
)
else
failwith "Done"
in
f
Following octachron's lead.. Here's a solution using Seq's unfold function.
let rec fibhlpr n =
if n == 0
then
0
else if n == 1
then
1
else
fibhlpr (n-1) + fibhlpr (n-2)
type func = Func of (unit -> (int * int * func))
let rec fib n =
(n, (fibhlpr n), Func(fun() -> fib (n+1)))
let seq =
fun x ->
Seq.unfold
(
fun e ->
let (c, d, Func f) = e in
if c > x
then
None
else
(
Some((c, d), f())
)
) (fib 0)
let () =
Seq.iter
(fun (c, d) -> Printf.printf "%d: %d\n" c d; (flush stdout)) (seq 30)
You started right saying your fib function returns an integer and a function:
type t = int * (unit -> 'a);;
But as the compiler says the 'a is not bound to anything. Your function also isn't polymorphic so that is has to return a type variable. The function you return is the fib function for the next number. Which also returns an integer and a function:
type t = int * (unit -> int * (unit -> 'a));;
But that second function again is the fib function for the next number.
type t = int * (unit -> int * (unit -> int * (unit -> 'a)))
And so on to infinity. Your type definition is actually recursive. The function you return as second half has the same type as the overall return type. You might try to write this as:
# type t = int * (unit -> t);;
Error: The type abbreviation t is cyclic
Recursive types are not allowed in ocaml unless the -rectypes option is used, which has some other side effects you should read about before using it.
A different way to break the cycle is to insert a Constructor into the cyclic type by making it a variant type:
# type t = Pair of int * (unit -> t)
let rec fibhlpr n = if n == 0 then 0 else if n == 1 then 1 else fibhlpr (n-1) + fibhlpr (n-2)
let rec fib n = Pair ((fibhlpr n), fun() -> fib (n+1));;
type t = Pair of int * (unit -> t)
val fibhlpr : int -> int = <fun>
val fib : int -> t = <fun>
Encapsulating the type recursion into a record type also works and might be the more common solution. Something like:
type t = { value : int; next : unit -> t; }
I also think you are missing the point of the exercise. Unless I'm mistaken the point of making it a generator is so that the function can compute the next fibonacci number from the two previous numbers, which you remember, instead of computing it recursively over and over.
As a tutoring exercise I implemented the Knights Tour algorithm in CS and worked fine, after trying to port it to F# I cannot go past the part where I aggregate the resulting sequences of the Knight's path to return to the caller.
The code is this:
let offsets = [|(-2,-1);(-2,1);(-1,-2);(-1,2);(1,-2);(1,2);(2,-1);(2,1)|];
let squareToPair sqr =
(sqr % 8, sqr / 8)
let pairToSquare (col, row) =
row * 8 + col
// Memoizing function taken from Don Syme (http://blogs.msdn.com/b/dsyme/archive/2007/05/31/a-sample-of-the-memoization-pattern-in-f.aspx)
let memoize f =
let cache = ref Map.empty
fun x ->
match (!cache).TryFind(x) with
| Some res -> res
| None ->
let res = f x
cache := (!cache).Add(x,res)
res
let getNextMoves square =
let (col, row) = squareToPair square
offsets
|> Seq.map (fun (colOff, rowOff) -> (col + colOff, row + rowOff))
|> Seq.filter (fun (c, r) -> c >= 0 && c < 8 && r >= 0 && r < 8) // make sure we don't include squares out of the board
|> Seq.map (fun (c, r) -> pairToSquare (c, r))
let getNextMovesMemoized = memoize getNextMoves
let squareToBoard square =
1L <<< square
let squareToBoardMemoized = memoize squareToBoard
let getValidMoves square board =
getNextMovesMemoized square
|> Seq.filter (fun sqr -> ((squareToBoardMemoized sqr) &&& board) = 0L)
// gets all valid moves from a particular square and board state sorted by moves which have less next possible moves
let getValidMovesSorted square board =
getValidMoves square board
|> Seq.sortBy (fun sqr -> (getValidMoves sqr board) |> Seq.length )
let nextMoves = getValidMovesSorted
let sqrToBoard = squareToBoardMemoized
let findPath square =
let board = sqrToBoard square
let rec findPathRec brd sqr sequence = seq {
match brd with
| -1L -> yield sequence
| _ -> for m in nextMoves sqr do yield! findPathRec (brd ||| (sqrToBoard m)) m m::sequence
}
findPathRec board square [square]
let solution = findPath ((4,4) |> pairToSquare) |> Seq.take 1
I am getting the following error:
The type '(int64 -> seq<int>)' is not a type whose values can be enumerated with this syntax, i.e. is not compatible with either seq<_>, IEnumerable<_> or IEnumerable and does not have a GetEnumerator method (using external F# compiler)
I could probably be misunderstanding how this work, but I would expect the results of nextMoves to be seq<_>. Is there a better way of doing this? Am I missing something? Any recommended patterns?
Thanks in advance!
So the problem is that nextMoves has type
val nextMoves : (int -> int64 -> seq<int>)
because it is identical to getValidMovesSorted. You need to supply the board argument
nextMoves is just getValidMovesSorted which takes two arguments (square and board) - now in findPath you only provided one and I guess you wanted to write this
nextMoves sqr board
but then there are more issues in the rest of the code and it's really hard to figure out what you are trying to do
I think you wanted to do something like this:
let findPath square =
let board = sqrToBoard square
let rec findPathRec brd sqr (sequence : int list) =
match brd with
| -1L -> sequence
| _ ->
[
for m in nextMoves sqr board do
yield! findPathRec (brd ||| (sqrToBoard m)) m (m::sequence)
]
this will compile (but will result in an stack-overflow exception)
I'm trying to write a function that accepts an int n and returns a list that runs down from n to 0.
This is what I have
let rec downFrom n =
let m = n+1 in
if m = 0 then
[]
else
(m-1) :: downFrom (m - 1);;
The function compiles ok but when I test it with any int it gives me the error
Stack overflow during evaluation (looping recursion?).
I know it's the local varible that gets in the way but I don't know another way to declare it. Thank you!!!
First, the real thing wrong with your program is that you have an infinite loop. Why, because your inductive base case is 0, but you always stay at n! This is because you recurse on m - 1 which is really n + 1 - 1
I'm surprised as to why this compiles, because it doesn't include the rec keyword, which is necessary on recursive functions. To avoid stack overflows in OCaml, you generally switch to a tail recursive style, such as follows:
let downFrom n =
let rec h n acc =
if n = 0 then List.rev acc else h (n-1) (n::acc)
in
h n []
Someone suggested the following edit:
let downFrom n =
let rec h m acc =
if m > n then acc else h (m + 1) (m::acc)
in
h 0 [];
This saves a call to List.rev, I agree.
The key with recursion is that the recursive call has to be a smaller version of the problem. Your recursive call doesn't create a smaller version of the problem. It just repeats the same problem.
You can try with a filtering parameter
syntax:
let f = function
p1 -> expr1
| p2 -> expr2
| p3 -> ...;;
let rec n_to_one =function
0->[]
|n->n::n_to_one (n-1);;
# n_to_one 3;;
- : int list = [3; 2; 1]
As I was writing this function I knew that I wouldn't get tail call optimization. I still haven't come up with a good way of handling this and was hoping someone else might offer suggestions.
I've got a tree:
type Heap<'a> =
| E
| T of int * 'a * Heap<'a> * Heap<'a>
And I want to count how many nodes are in it:
let count h =
let rec count' h acc =
match h with
| E -> 0 + acc
| T(_, value, leftChild, rightChild) ->
let acc = 1 + acc
(count' leftChild acc) + (count' rightChild acc)
count' h 0
This isn't isn't optimized because of the addition of the counts for the child nodes. Any idea of how to make something like this work if the tree has 1 million nodes?
Thanks, Derek
Here is the implementation of count using CPS. It still blew the stack though.
let count h =
let rec count' h acc cont =
match h with
| E -> cont (1 + acc)
| T(_,_,left,right) ->
let f = (fun lc -> count' right lc cont)
count' left acc f
count' h 0 (fun (x: int) -> x)
Maybe I can come up with some way to partition the tree into enough pieces that I can count without blowing the stack?
Someone asked about the code which generates the tree. It is below.
member this.ParallelHeaps threads =
let rand = new Random()
let maxVal = 1000000
let rec heaper i h =
if i < 1 then
h
else
let heap = LeftistHeap.insert (rand.Next(100,2 * maxVal)) h
heaper (i - 1) heap
let heaps = Array.create threads E
printfn "Creating heap of %d elements, with %d threads" maxVal threads
let startTime = DateTime.Now
seq { for i in 0 .. (threads - 1) ->
async { Array.set heaps i (heaper (maxVal / threads) E) }}
|> Async.Parallel
|> Async.RunSynchronously
|> ignore
printfn "Creating %d sub-heaps took %f milliseconds" threads (DateTime.Now - startTime).TotalMilliseconds
let startTime = DateTime.Now
Array.length heaps |> should_ equal threads <| "The size of the heaps array should match the number of threads to process the heaps"
let rec reMerge i h =
match i with
| -1 -> h
| _ ->
printfn "heap[%d].count = %d" i (LeftistHeap.count heaps.[i])
LeftistHeap.merge heaps.[i] (reMerge (i-1) h)
let heap = reMerge (threads-1) E
printfn "Merging %d heaps took %f milliseconds" threads (DateTime.Now - startTime).TotalMilliseconds
printfn "heap min: %d" (LeftistHeap.findMin heap)
LeftistHeap.count heap |> should_ equal maxVal <| "The count of the reMerged heap should equal maxVal"
You can use continuation-passing style (CPS) to solve that problem. See Recursing on Recursion - Continuation Passing by Matthew Podwysocki.
let tree_size_cont tree =
let rec size_acc tree acc cont =
match tree with
| Leaf _ -> cont (1 + acc)
| Node(_, left, right) ->
size_acc left acc (fun left_size ->
size_acc right left_size cont)
size_acc tree 0 (fun x -> x)
Note also that in Debug builds, tail call optimization is disabled. If you don't want to run in Release mode, you can enable the optimization in the project's properties in Visual Studio.
CPS is a good general solution but you might also like to consider explicit use of a stack because it will be faster and is arguably simpler:
let count heap =
let stack = System.Collections.Generic.Stack[heap]
let mutable n = 0
while stack.Count > 0 do
match stack.Pop() with
| E -> ()
| T(_, _, heap1, heap2) ->
n <- n + 1
stack.Push heap1
stack.Push heap2
n