I cannot find a straightforward way to make a nice image plot in R, but in polar coordinates. I'm basically attempting to find a R equivalent for the 'polarplot3d' function in MATLAB. I've been playing around with ggplot2 package but without much luck. Am I missing a package that contains functionality for what I'm attempting? thanks in advance for any pointers.
Ok, I'm trying to be more clear about what I'm trying to do. Lets say I want to define a polar coordinate grid, increments in the radial direction are 50m and 2.5 degrees in theta. This should look like a dartboard.
My data (r and angle in below code) are correspond to a radial distance measure and an angle. My desired z-value is the counts of a bivariate histogram between r and angle within the increments described above defining the grid.
My data is like the following:
# synthetic data for angle and distance #
angle <- rnorm(500,mean=90,sd=15)
r <- rnorm(500,mean=700,sd=200)
# bivariate histogram #
observations <- table(cut(angle,breaks=c(seq(0,360,by=2.5))),cut(r,breaks=c(seq(0,1400,by=50))))
# the 'z' data are in observations for each bin of bivariate histogram #
# hot to plot a polar coord image? #
It's very slow to render on my system, but
library(reshape2)
library(ggplot2)
mm <- melt(counts)
ggplot(mm,aes(Var1,Var2,fill=value))+geom_tile()+coord_polar()
ggsave("polar1.png")
appears to work.
I think the following could work. Use mapproject() from the maproj library to transform my xy coordinates acording to a polar projection (or another), Then use as.image() (from fields package) function to build a image object from my new coordiantes and my Z values. Eventually use image.plot().
library("mapproj")
xyProj <- mapproject(x, y, projection="conic", parameters=-90)
library("fields")
im <- as.image(z, x=xyProj)
image.plot(im)
Related
I'm trying to plot 3-dimensional vectors (x, y, z coordinates) onto a 3D coordinate system in R like in the picture below. Ideally, I would then like to construct 3d kernel density plots, also like in the image below.
Ideal result of vector plot and 3d kernel density plot
I have a matrix containing ~100 rows and one column for each coordinate (x, y , z). Initially, I tried arrow3D() from the plot3D package but I find the perspective to be sub-par, it's rather difficult to discern directions of the arrows from one perspective in the final plot. Next I tried the rgl package which gives me interactivity - great. Minimal working example:
library(rgl)
library(matlib)
data2 <- data.frame(replicate(6,rnorm(100))) #sample data set for minimum working example
colnames(data2) <- c("x_target", "y_target", "z_target", "x_start", "y_start", "z_start")
x1 <- data2$x_target - data2$x_start
y1 <- data2$y_target - data2$y_start
z1 <- data2$z_target - data2$z_start
vec <- (diag(6,3)) # coordinates for x, y and z axis
rownames(vec) <- c("X", "Y", "Z") # labels for x, y and z axis
z <- as.matrix((data.frame(x=x1, y=y1, z=z1)))
open3d()
vectors3d(vec, color=c(rep("black",3)), lwd=2, radius=1/25)
vectors3d(X=z, headlength=1/25)
(due to the random numbers generator the strange looking rods appear at different coordinates, not exactly like in the image i link to below)
The result of the code above is a version of the image link below. One set of coordinates produces a very strange looking more like rod object which is far longer then the coordinates would produce. If I plot the vectors individually, no such object is created. Anyone have any ideas why this happens? Also, if anyone has a tool (doesn't have to be R), that can create a 3D vector plot like in the first image, I'd be grateful. I find it to be very complicated in R, but I'm definitely a beginner.
Strange object to the right (long red rod that doesn't look like an arrow at all)
Thank you!
This is due to a bug in the matlib package, fixed in verson 0.9.2 of that package. I think you need to install it from Github instead of CRAN to get the bug fix:
devtools::install_github("friendly/matlib")
BTW, if you are using random numbers in a reproducible example, you can make it perfectly reproducible by something like
set.seed(123)
at the start (or some number other than 123). I saw reproducible problems with your example for set.seed(4).
I've been working with a spatial model which contains 21,000 grid cells of unequal size (i by j, where i is [1:175] and j is[1:120]). I have the latitude and longitude values in two seperate arrays (lat_array,lon_array) of i and j dimensions.
Plotting the coordinates:
> plot(lon_array, lat_array, main='Grid Coordinates')
Result:
My question: Is it possible to plot these spatial coordinates as a grid rather than as points? Does anyone know of a package or function that might be able to do this? I haven't been able to find anything online to this nature.
Thanks.
First of all it is always a bit dangerous to plot inherently spherical coordinates (lat,long) directly in the plane. Usually you should project them in some way, but I will leave it for you to explore the sp package and the function spTransform or something like that.
I guess in principle you could simply use the deldir package to calculate the Dirichlet tessellation of you points which would give you a nice grid. However, you need a bounding region for this to avoid large cells radiating out from the border of your region. I personally use spatstat to call deldir so I can't give you the direct commands in deldir, but in spatstat I would do something like:
library(spatstat)
plot(lon_array, lat_array, main='Grid Coordinates')
W <- clickpoly(add = TRUE) # Now click the region that contains your grid
i_na <- is.na(lon_array) | is.na(lat_array) # Index of NAs
X <- ppp(lon_array[!i_na], lat_array[!i_na], window = W)
grid <- dirichlet(X)
plot(grid)
I have not tested this yet and I will update this answer once I get the chance to test it with some artificial data. A major problem is the size of your dataset which may take a long time to calculate the Dirichlet tessellation of. I have only tried to call dirichlet on dataset of size up to 3000 points...
I have been using rgl to plot spheres, but now I need to plot ellipsoids.
The package includes ellipse3d; however, this seems to be for fitting ellipsoids to data, using matrices and stuff I'm not very good at.
What I want is a simple way to plot ellipsoids, in a similar way to spheres, using the centre coordinates and the scales in each direction. Can anyone help me out?
If you don't need the ellipse rotated around the axes, then you can just use a diagonal matrix for x (this plots a sphere, and defines the virtual "axes" along the x, y, z axes) and use the centre and scale parameters to shift the location and change the proportions.
plot3d(ellipse3d(diag(3),centre=c(1,2,4),scale=c(1,2,5)))
There's one in my cda package,
library(cda)
library(rgl)
## single ellipsoid
plot3d(rgl.ellipsoid(a=2,b=1,c=5))
## multiple ellipsoids, translated and rotated
cl <- helix(0.5, 1, 36, delta=pi/6, n.smooth=1e3)
sizes <- equal_sizes(0.04,0.02,0.02,NROW(cl$positions))
rgl.ellipsoids(cl$positions, sizes, cl$angles, col="gold")
I'm trying to estimate the area of the 95% contour of a kde object from the ks package in R.
If I use the example data set from the ks package, I would create the kernel object as follow:
library(ks)
data(unicef)
H.scv <- Hscv(x=unicef)
fhat <- kde(x=unicef, H=H.scv)
I can easily plot the 25, 50, 75% contour using the plot function:
plot(fhat)
But I want to estimate the area within the contour.
I saw a similar question here, but the answer proposed does not solve the problem.
In my real application, my dataset is a time series of coordinates of an animal and I want to measure the home range size of this animal using a bivariate normal kernel. I'm using ks package because it allows to estimate the bandwith of a kernel distribution with methods such as plug-in and smoothed cross-validation.
Any help would be really appreciated!
Here are two ways to do it. They are both fairly complex conceptually, but actually very simple in code.
fhat <- kde(x=unicef, H=H.scv,compute.cont=TRUE)
contour.95 <- with(fhat,contourLines(x=eval.points[[1]],y=eval.points[[2]],
z=estimate,levels=cont["95%"])[[1]])
library(pracma)
with(contour.95,polyarea(x,y))
# [1] -113.677
library(sp)
library(rgeos)
poly <- with(contour.95,data.frame(x,y))
poly <- rbind(poly,poly[1,]) # polygon needs to be closed...
spPoly <- SpatialPolygons(list(Polygons(list(Polygon(poly)),ID=1)))
gArea(spPoly)
# [1] 113.677
Explanation
First, the kde(...) function returns a kde object, which is a list with 9 elements. You can read about this in the documentation, or you can type str(fhat) at the command line, or, if you're using RStudio (highly recommended), you can see this by expanding the fhat object in the Environment tab.
One of the elements is $eval.points, the points at which the kernel density estimates are evaluated. The default is to evaluate at 151 equally spaced points. $eval.points is itself a list of, in your case 2 vectors. So, fhat$eval.points[[1]] represents the points along "Under-5" and fhat$eval.points[[2]] represents the points along "Ave life exp".
Another element is $estimate, which has the z-values for the kernel density, evaluated at every combination of x and y. So $estimate is a 151 X 151 matrix.
If you call kde(...) with compute.cont=TRUE, you get an additional element in the result: $cont, which contains the z-value in $estimate corresponding to every percentile from 1% to 99%.
So, you need to extract the x- and y-values corresponding to the 95% contour, and use that to calculate the area. You would do that as follows:
fhat <- kde(x=unicef, H=H.scv,compute.cont=TRUE)
contour.95 <- with(fhat,contourLines(x=eval.points[[1]],y=eval.points[[2]],
z=estimate,levels=cont["95%"])[[1]])
Now, contour.95 has the x- and y-values corresponding to the 95% contour of fhat. There are (at least) two ways to get the area. One uses the pracma package and calculates
it directly.
library(pracma)
with(contour.95,polyarea(x,y))
# [1] -113.677
The reason for the negative value has to do with the ordering of x and y: polyarea(...) is interpreting the polygon as a "hole", so it has negative area.
An alternative uses the area calculation routines in rgeos (a GIS package). Unfortunately, this requires you to first turn your coordinates into a "SpatialPolygon" object, which is a bit of a bear. Nevertheless, it is also straightforward.
library(sp)
library(rgeos)
poly <- with(contour.95,data.frame(x,y))
poly <- rbind(poly,poly[1,]) # polygon needs to be closed...
spPoly <- SpatialPolygons(list(Polygons(list(Polygon(poly)),ID=1)))
gArea(spPoly)
# [1] 113.677
Another method would be to use the contourSizes() function within the kde package. I've also been interested in using this package to compare both 2D and 3D space use in ecology, but I wasn't sure how to extract the 2D density estimates. I tested this method by estimating the area of an "animal" which was limited to the area of a circle with a known radius. Below is the code:
set.seed(123)
require(GEOmap)
require(kde)
# need this library for the inpoly function
# Create a data frame centered at coordinates 0,0
data = data.frame(x=0,y=0)
# Create a vector of radians from 0 to 2*pi for making a circle to
# test the area
circle = seq(0,2*pi,length=100)
# Select a radius for your circle
radius = 10
# Create a buffer for when you simulate points (this will be more clear below)
buffer = radius+2
# Simulate x and y coordinates from uniform distribution and combine
# values into a dataframe
createPointsX = runif(1000,min = data$x-buffer, max = data$x+buffer)
createPointsY = runif(1000,min = data$y-buffer, max = data$y+buffer)
data1 = data.frame(x=createPointsX,y=createPointsY)
# Plot the raw data
plot(data1$x,data1$y)
# Calculate the coordinates used to create a cirle with center 0,0 and
# with radius specified above
coords = as.data.frame(t(rbind(data$x+sin(circle)*radius,
data$y+cos(circle)*radius)))
names(coords) = c("x","y")
# Add circle to plot with red line
lines(coords$x,coords$y,col=2,lwd=2)
# Use the inpoly function to calculate whether points lie within
# the circle or not.
inp = inpoly(data1$x, data1$y, coords)
data1 = data1[inp == 1,]
# Finally add points that lie with the circle as blue filled dots
points(data1$x,data1$y,pch=19,col="blue")
# Radius of the circle (known area)
pi * radius^2
#[1] 314.1593
# Sub in your own data here to calculate 95% homerange or 50% core area usage
H.pi = Hpi(data1,binned=T)
fhat = kde(data1,H=H.pi)
ct1 = contourSizes(fhat, cont = 95, approx=TRUE)
# Compare the known area of the circle to the 95% contour size
ct1
# 5%
# 291.466
I've also tried creating 2 un-connected circles and testing the contourSizes() function and it seems to work really well on disjointed distributions.
I have a set of 3D coordinates (below - just for a single point, in 3D space):
x <- c(-521.531433, -521.511658, -521.515259, -521.518127, -521.563416, -521.558044, -521.571228, -521.607178, -521.631165, -521.659973)
y <- c(154.499557, 154.479568, 154.438705, 154.398682, 154.580688, 154.365189, 154.3564, 154.559189, 154.341309, 154.344223)
z <- c(864.379272, 864.354675, 864.365479, 864.363831, 864.495667, 864.35498, 864.358582, 864.50415, 864.35553, 864.359863)
xyz <- data.frame(x,y,z)
I need to make a time-series plot of this point with a 3D rendering (so I can rotate the plot, etc.). The plot will visualize a trajectory of the point above in time (for example in the form of solid line). I used 'rgl' package with plot3d method, but I can't make it to plot time-series (below, just plot a single point from first frame in time-series):
require(rgl)
plot3d(xyz[1,1],xyz[1,2],xyz[1,3],axes=F,xlab="",ylab="",zlab="")
I found this post, but it doesn't really deal with a real-time rendered 3D plots. I would appreciate any suggestions. Thank you.
If you read help(plot3d) you can see how to draw lines:
require(rgl)
plot3d(xyz$x,xyz$y,xyz$z,type="l")
Is that what you want?
How about this? It uses rgl.pop() to remove a point and a line and draw them as a trail - change the sleep argument to control the speed:
ts <- function(xyz,sleep=0.3){
plot3d(xyz,type="n")
n = nrow(xyz)
p = points3d(xyz[1,])
l = lines3d(xyz[1,])
for(i in 2:n){
Sys.sleep(sleep)
rgl.pop("shapes",p)
rgl.pop("shapes",l)
p=points3d(xyz[i,])
l=lines3d(xyz[1:i,])
}
}
The solution was simpler than I thought and the problem was that I didn't use as.matrix on my data. I was getting error (list) object cannot be coerced to type 'double' when I was simply trying to plot my entire dataset using plot3d (found a solution for this here). So, if you need to plot time-series of set of coordinates (in my case motion capture data of two actors) here is my complete solution (only works with the data set below!):
download example data set
read the above data into a table:
data <- read.table("Bob12.txt",sep="\t")
extract XYZ coordinates into a separate matrixes:
x <- as.matrix(subset(data,select=seq(1,88,3)))
y <- as.matrix(subset(data,select=seq(2,89,3)))
z <- as.matrix(subset(data,select=seq(3,90,3)))
plot the coordinates on a nice, 3D rendered plot using 'rgl' package:
require(rgl)
plot3d(x[1:nrow(x),],y[1:nrow(y),],z[1:nrow(z),],axes=F,xlab="",ylab="",zlab="")
You should get something like on the image below (but you can rotate it etc.) - hope you can recognise there are joint centers for people there. I still need to tweak it to make it visually better - to have first frame as a points (to clearly see actor's joints), then a visible break, and then the rest of frames as a lines.