Difficulty solving this with recursive code - recursion

I need to find the length of the longest common subsequence.
s and t are Strings, and n and m are their lengths. I would like to write a recursive code.
This is what I did so far but I cant get any progress:
def lcs_len_v1(s, t):
n = len(s)
m = len(t)
return lcs_len_rec(s,n,t,m)
def lcs_len_rec(s,size_s,t,size_t):
cnt= 0
if size_s==0 or size_t==0:
return 0
elif s[0]==t[0]:
cnt= +1
return cnt, lcs_len_rec(s[1:], len(s[1:]), t[1:], len(t[1:]))

This works:
def lcs(xstr, ystr):
if not xstr or not ystr:
return ""
x, xs, y, ys = xstr[0], xstr[1:], ystr[0], ystr[1:]
if x == y:
return x + lcs(xs, ys)
else:
return max(lcs(xstr, ys), lcs(xs, ystr), key=len)
print(lcs("AAAABCC","AAAACCB"))
# AAAACC
You should know that a recursive approach will only work with relatively trivial string; the complexity increases very rapidly with longer strings.

this is my code, how can I use on it the memoization technique?
def lcs_len_v1(s, t):
n = len(s)
m = len(t)
return lcs_len_rec(s,n,t,m)
def lcs_len_rec(s,size_s,t,size_t):
if size_s==0 or size_t==0:
return 0
elif s[0]==t[0]:
cnt=0
cnt+= 1
return cnt+ lcs_len_rec(s[1:], size_s-1, t[1:], size_t-1)
else:
return max(lcs_len_rec(s[1:], size_s-1, t, size_t), lcs_len_rec(s, size_s, t[1:], size_t-1))

Using the memoization technique, you can run the algorithm also with a very long strings. Infact it is just O(n^2):
def recursiveLCS(table, s1, s2):
if(table[len(s1)][len(s2)] != False):
return table[len(s1)][len(s2)]
elif len(s1) == 0 or len(s2) == 0:
val = ""
elif s1[0] == s2[0]:
val = s1[0] + recursiveLCS(table, s1[1:], s2[1:])
else:
res1 = recursiveLCS(table, s1[1:], s2)
res2 = recursiveLCS(table, s1, s2[1:])
val = res2
if len(res1) > len(res2):
val = res1
table[len(s1)][len(s2)] = val
return val
def computeLCS(s1, s2):
table = [[False for col in range(len(s2) + 1)] for row in range(len(s1) + 1)]
return recursiveLCS(table, s1, s2)
print computeLCS("testistest", "this_is_a_long_testtest_for_testing_the_algorithm")
Output:
teststest

Related

(Godot Engine) Compute string as PEMDAS

I've been trying to create a function in GDScript to process and calculate a string using PEMDAS rules. Below is my try on the subject. It can so far only use the MDAS rules:
Is there a better way to achieve such a function?
func _ready() -> void:
### USE CASES ###
print(Compute_String("1+2*3+3=")) # Output = 10
print(Compute_String("1+2*3*3=")) # Output = 19
print(Compute_String("1*2*3+3=")) # Output = 9
print(Compute_String("1+2+3*3=")) # Output = 12
print(Compute_String("5*2+7-3/2=")) # Output = 15.5
print(Compute_String("9+5.5*2.25=")) # Output = 21.375
print(Compute_String("5*2+7-3/2")) # Output = 1.#QNAN (Missing equals)
print(Compute_String("5*2+7-/2=")) # Output = 1.#QNAN (Adjacent operators)
print(Compute_String("*2+7-3/2=")) # Output = 1.#QNAN (Begins with operator)
print(Compute_String("")) # Output = 1.#QNAN (Empty)
print(Compute_String("=")) # Output = 1.#QNAN (Considered as empty)
print(Compute_String("1 +2=")) # Output = 1.#QNAN (Contains space)
print(Compute_String("(1+2)*3=")) # Output = 1.#QNAN (Parentheses not supported)
func Compute_String(_string: String) -> float:
var _result: float = NAN
var _elements: Array = []
if not _string.empty() and _string[_string.length() - 1] == "=":
var _current_element: String = ""
for _count in _string.length():
if _string[_count].is_valid_float() or _string[_count] == ".": _current_element += _string[_count]
else:
if _string[_count - 1].is_valid_float() and (_string[_count + 1].is_valid_float() if _string[_count] != "=" else true):
_elements.append_array([_current_element,_string[_count]]) ; _current_element = ""
else: return NAN
if not _elements.empty():
_elements.resize(_elements.size() - 1)
while _get_operators_count(_elements) != 0:
var _id: Array = [0, 0.0, 0.0]
if "*" in _elements:
_id = _add_adjacent(_elements, "*") ; _remove_adjacent(_elements, _id[0]) ; _elements.insert(_id[0] - 1, _id[1] * _id[2])
elif "/" in _elements:
_id = _add_adjacent(_elements, "/") ; _remove_adjacent(_elements, _id[0]) ; _elements.insert(_id[0] - 1, _id[1] / _id[2])
elif "+" in _elements:
_id = _add_adjacent(_elements, "+") ; _remove_adjacent(_elements, _id[0]) ; _elements.insert(_id[0] - 1, _id[1] + _id[2])
elif "-" in _elements:
_id = _add_adjacent(_elements, "-") ; _remove_adjacent(_elements, _id[0]) ; _elements.insert(_id[0] - 1, _id[1] - _id[2])
else: return NAN
if _elements.size() == 1: _result = _elements[0]
return _result
func _get_operators_count(_elements: Array) -> int:
var _result: int = 0 ; for _element in _elements: if not str(_element).is_valid_float(): _result += 1 ; return _result
func _add_adjacent(_elements: Array, _operator) -> Array:
return [_elements.find(_operator), float(_elements[_elements.find(_operator) - 1]), float(_elements[_elements.find(_operator) + 1])]
func _remove_adjacent(_elements: Array, _operator_idx: int) -> void:
_elements.remove(_operator_idx + 1) ; _elements.remove(_operator_idx) ; _elements.remove(_operator_idx - 1)

How to create Pascal?

I am very difficult to display all the output results.
this code.
DEF VAR INPUTAN AS INTEGER.
DEF VAR i AS INTEGER.
DEF VAR j AS INTEGER.
DEF VAR a AS INTEGER.
DEF VAR rows AS INT.
DEF VAR pascal AS CHAR FORMAT "x(25)".
SET INPUTAN.
a = 1.
REPEAT i = 0 TO INPUTAN:
rows = i.
DISPLAY rows.
REPEAT j = 0 TO i :
IF j = 0 OR j = i THEN DO:
a = 1.
END.
ELSE
a = a * (i + 1 - j) / j.
pascal = STRING(a).
display a.
END.
END.
DEF VAR INPUTAN AS INTEGER.
DEF VAR i AS INTEGER.
DEF VAR j AS INTEGER.
DEF VAR a AS INTEGER.
DEF VAR rows AS INT.
DEF VAR pascal AS CHAR.
SET INPUTAN.
a = 1.
REPEAT i = 0 TO INPUTAN:
rows = i.
/*DISPLAY rows. */
REPEAT j = 0 TO i :
IF j = 0 OR j = i THEN DO:
a = 1.
END.
ELSE
a = a * (i + 1 - j) / j.
IF j = 0 THEN
pascal = pascal + FILL(" ", INPUTAN - i).
pascal = pascal + STRING(a) + " ".
IF j = i THEN
pascal = pascal + CHR(13).
/* display a.*/
END.
END.
MESSAGE pascal
VIEW-AS ALERT-BOX INFO BUTTONS OK.

Python RSA Encryption Decryption

Im currently working on a project about the multiple encryption method! I am having a lot of trouble with RSA. I have a code that encrypt, give the public and the private key. Now I need to let someone write the private key and the encrypted text, and make the program decrypt it. I tried many times, ando got so many different erros that I deleted the decrypt function to do it over from start. Could anyone shine some ligth upon me? How to do, what should I do... Any help, really.
This is the code:
import random
def totient(number):
if(prime(number)):
return number-1
else:
return False
def prime(n):
if (n <= 1):
return False
if (n <= 3):
return True
if (n%2 == 0 or n%3 == 0):
return False
i = 5
while(i * i <= n):
if (n%i == 0 or n%(i+2) == 0):
return False
i+=6
return True
def generate_E(num):
def mdc(n1,n2):
rest = 1
while(n2 != 0):
rest = n1%n2
n1 = n2
n2 = rest
return n1
while True:
e = random.randrange(2,num)
if(mdc(num,e) == 1):
return e
def generate_prime():
while True:
x=random.randrange(1,100)
if(prime(x)==True):
return x
def mod(a,b):
if(a<b):
return a
else:
c=a%b
return c
def cipher(words,e,n):
tam = len(words)
i = 0
lista = []
while(i < tam):
letter = words[i]
k = ord(letter)
k = k**e
d = mod(k,n)
lista.append(d)
i += 1
return lista
def calculate_private_key(toti,e):
d = 0
while(mod(d*e,toti)!=1):
d += 1
return d
## MAIN
if __name__=='__main__':
text = input("Insert message: ")
p = generate_prime() # generates random P
q = generate_prime() # generates random Q
n = p*q # compute N
y = totient(p) # compute the totient of P
x = totient(q) # compute the totient of Q
totient_de_N = x*y # compute the totient of N
e = generate_E(totient_de_N) # generate E
public_key = (n, e)
print('Your public key:', public_key)
text_cipher = cipher(text,e,n)
print('Your encrypted message:', text_cipher)
d = calculate_private_key(totient_de_N,e)
print('Your private key is:', d)

Wrong result in a PARI-implementation

I tried to implement an algorithm to calculate power towers
modulo m. Below the procedure tower should calculate
2^3^...^14^15 (mod m) and tower2 should calculate
15^14^...^3^2 (mod m). But for m = 163 , tower2
produces a wrong answer. I found out that a immediate
result is 0 and the procedure does not get this.
Can anyone fix the error ?
The procedure powmod is implemented and works perfectly :
powmod(basis,exponent,modul)={if(exponent==0,hilf=1);if(exponent>0,bin=binary(exponent);hilf=basis;hilf=hilf-truncate(hilf/modul)*modul;for(stelle=2,length(bin),hilf=hilf^2;if(bin[stelle]==1,hilf=hilf*basis);hilf=hilf-truncate(hilf/modul)*modul));hilf}
? tower
%19 = (p,q,r)->if(q==0,hilf=1);if(q==1,hilf=p);if(q==2,hilf=powmod(p,p,r));if(q>
2,x=[];for(j=1,q,x=concat(x,r);r=eulerphi(r));hilf=14^15;forstep(j=13,2,-1,r=x[j
-1];if(r>=2,hilf=powmod(j,hilf,r);w=factorint(r);w=component(w,2);while(hilf<vec
max(w),hilf=hilf+r))));component(Mod(hilf,r),2)
? tower2
%20 = (p,q,r)->if(q==0,hilf=1);if(q==1,hilf=p);if(q==2,hilf=powmod(p,p,r));if(q>
2,x=[];for(j=1,q,x=concat(x,r);r=eulerphi(r));hilf=3^2;forstep(j=13,2,-1,r=x[j-1
];if(r>=2,hilf=powmod(17-j,hilf,r);w=factorint(r);w=component(w,2);while(hilf<ve
cmax(w),hilf=hilf+r))));component(Mod(hilf,r),2)
?
The reason your code doesn't work is that you (recursively) compute x^n (mod r) as x^(n mod phi(r)) and this isn't true unless gcd(x,r) = 1.
Also, you don't need powmod since Mod(basis,modul)^expo is built-in.
Here's a general possibility :
\\ x[1]^(x[2]^( ...^ x[#x])) mod m, assuming x[i] > 1 for all i
tower(x, m) =
{ my(f = factor(m), P = f[,1], E = f[,2]);
chinese(vector(#P, i, towerp(x, P[i], E[i])));
}
towerp(x, p, e) =
{ my(q = p^e, i, t, v);
if (#x == 0, return (Mod(1, q)));
if (#x == 1, return (Mod(x[1], q)));
if (v = valuation(x[1], p),
t = x[#x]; i = #x;
while (i > 1,
if (t >= e, return (Mod(0, q)));
t = x[i]^t; i--);
if (t * v >= e, return (Mod(0, q)));
return (Mod(x[1], q)^t);
);
Mod(x[1], q)^lift(tower(x[2..#x], (p-1)*p^e));
}
? tower([2..15], 163)
%1 = Mod(162, 163)
? tower(Vecrev([2..15]), 163)
%2 = Mod(16, 163)

Is there an algorithm known for power towers modulo a number managing all cases?

I would like to have an implementation in PARI/GP
for the calculation of
a_1 ^ a_2 ^ ... ^ a_n (mod m)
which manages all cases, especially the cases where high powers appear in the phi-chain.
Does anyone know such an implementation ?
Here's a possibility using Chinese remainders to make sure the modulus is a prime power. This simplifies the computation of x^n mod m in the painful case where gcd(x,m) is not 1. The code assumes the a_i are > 1; most of the code checks whether p^a_1^a_2^...^a_n is 0 mod (p^e) for a prime number p, while avoiding overflow.
\\ x[1]^x[2]^ ...^ x[#x] mod m, assuming x[i] > 1 for all i
tower(x, m) =
{ my(f = factor(m), P = f[,1], E = f[,2]);
chinese(vector(#P, i, towerp(x, P[i], E[i])));
}
towerp(x, p, e) =
{ my(q = p^e, i, t, v);
if (#x == 0, return (Mod(1, q)));
if (#x == 1, return (Mod(x[1], q)));
if (v = valuation(x[1], p),
t = x[#x]; i = #x;
while (i > 1,
if (t >= e, return (Mod(0, q)));
t = x[i]^t; i--);
if (t * v >= e, return (Mod(0, q)));
return (Mod(x[1], q)^t);
);
Mod(x[1], q)^lift(tower(x[^1], (p-1)*p^e));
}
For instance
? 5^(4^(3^2)) % 163 \\ direct computation, wouldn't scale
%1 = 158
? tower([5,4,3,2], 163)
%2 = Mod(158, 163)

Resources