Ggplot2 geom_line error - r

I have a daaset which consists of data points over a time series for the proportion of people living in urban/rural areas for a number of countries. Sadly, not all countries have data for the same years. I have been trying to produce a simple line plot to show the different proportions of people living in different locations by year, but as each country has a different number of data points I am running into trouble.
I think this is because some of the countries only have data for a single year and using geom_line from ggplot2 throws the following error:
geom_path: Each group consist of only one observation. Do you need to
adjust the group aesthetic?
I was hoping that there would be some way to override this, or perhaps just plot a single point where a COUNTRY only has data for a single year. Does anyone know if this is possible, or indeed, if this is actually what this error means?!!?
Any help greatly appreciated!!!
Thanks
Here is my data:
structure(list(COUNTRY = structure(c(1L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 1L,
2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L,
14L, 14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L,
9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L,
13L, 13L, 13L, 14L, 14L, 14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 1L, 2L,
2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 6L,
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 9L,
9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L,
13L, 13L, 14L, 14L, 14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L), class = "factor", .Label = c("Comoros",
"Eritrea", "Ethiopia", "Kenya", "Lesotho", "Madagascar", "Malawi",
"Namibia", "Rwanda", "South Africa", "Swaziland", "Tanzania",
"Zambia", "Zimbabwe")), Year = structure(c(5L, 12L, 4L, 25L,
16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L,
9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L,
24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L,
8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L,
22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L,
21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L,
20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L,
22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L,
13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L,
8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L,
5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L,
6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L,
9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L,
5L, 1L, 24L, 17L, 8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L,
7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L,
19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L,
1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L, 5L, 12L,
4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L,
24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L,
7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L,
24L, 17L, 8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L,
23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L,
1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L,
10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L), class = "factor", .Label = c("1992",
"1993", "1994", "1995", "1996", "1997", "1998", "1999", "2000",
"2000/1", "2001/2", "2002", "2003", "2003/4", "2004", "2005",
"2005/6", "2006", "2006/7", "2007", "2007/8", "2008/9", "2009",
"2010", "2011")), location = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("Urban",
"Rural", "Total", "Capital.City", "Other.Cities.towns", "Urban.Non.slum",
"Urban.Slum"), class = "factor"), percent = c(63.0434782608696,
93.8, 87, 79.5642604795185, 65.4240807416892, 63.0791092522326,
90.448386469558, 85.9419999774024, 92.7603614781794, 84.0437368780105,
89.9792286718626, 91.0916571421351, 87.1132950026762, 73.8624315865239,
60.8311005575454, 66.7, 96, 86.8, 90.6243926153181, 90.6911141749493,
90.7602286016099, 93.0377175475414, 86.073106379954, 84.253722056373,
77.8178199148702, 97.3, 91.8332260789258, 89.612164524266, 89.9070989918367,
94.9, 85.1351949905457, 94.8358752154967, 92.9, 89.656599879838,
90.2634019334124, 94.4, 91.6241263241579, 76.7337303943862, 68.4233513070184,
74.15601627144, 88.4802888646634, 85.4643913454376, 89.7457528950664,
81.3025210084024, 83.0579155525397, 71.5857386620092, 86.2324062094295,
87.687478493975, 63.5379061371841, 78.5, 40.7, 51.7763728811622,
32.2441768813334, 22.3138981723172, 83.3699691175754, 69.6742912391579,
76.0526239692028, 83.7290062290807, 77.4758329101792, 83.8081963934296,
67.5805226154664, 55.8951299980461, 41.9921451192584, 52.2, 92.5,
77.6, 82.0322170392223, 85.2850090044269, 70.8031150919282, 47.108593681531,
82.2215412952297, 78.3643348536815, 74.4253468485616, 94.8, 90.1711142192198,
85.0338348718722, 86.3134329333052, 90.4, 79.2813256726705, 90.7077549957666,
82.5, 77.7236217339155, 75.3278238729086, 77.7, 78.4592126267142,
67.1145693585691, 55.3459024734839, 57.8463881286199, 83.5604620304044,
83.9259722574938, 84.4589780509803, 73.3992444632325, 77.544833952707,
63.0503715222555, 75.6808008503601, 85.6943513045284, 63.4, 84.2,
51, 55.7151220012609, 34.9, 26.6, 85, 72.5, 79.2, 83.8, 80.3,
84.9, 69.6, 59, 46, 54, 93, 78.7, 83.2, 85.9, 76.7, 57.5, 83.8,
80.4, 75.6, 95, 90.4, 85.6, 86.9, 90.6, 82.2, 91.5, 84.5, 79.9,
78.1, 80.9, 81.2, 68.1, 56.8, 59.6, 84.9, 84.4, 86.5, 77, 79.1337842548663,
65.6, 79.1, 86.3, 68.421052631579, 96.1, 93.3, 93.461209969107,
82.2712525836501, 88.2708936990495, 87.6298001816506, 87.6386027991385,
93.1818181818183, 86.6666666666668, 88.1030398041979, 90.4761904761904,
83.4297434324662, 86.3744073211853, 83.6107223166148, 78.3, NA,
72.8, 80.952380952381, 87.5, 96.9073193030442, 99.1348508752745,
85.5297651573129, 86.4793919321843, 79.4520547945208, 98.2, 92.4613307718678,
85.4590408924955, 83.9378238341966, 92.1, 81.1594202898552, 96.0232554251852,
NA, 88.0377726639494, 83.690767555447, 93.4, 90.0349966633017,
71.2508707571865, 72, 79.4082828804656, 91.8032786885246, 84.5238095238095,
87.8787878787881, 75.6097560975609, 81.0643061692494, 68.4708412135189,
84.9056603773584, 89.5522388059702, 61.6438356164384, 91.7, 79.5,
77.0004220956012, 61.061381883032, 58.756042602018, 91.2594694272412,
85.20149612163, 92.4956062313464, 82.622382662868, 91.4036416540165,
91.6169313256523, 89.2957214499669, 67.6757501795213, 48.1479760952102,
NA, NA, 94.2, 94.3553068539161, 91.8799748693178, 89.3739230258784,
92.1418739343887, 86.4757947454868, 81.0102236379536, 77.0100025126874,
NA, 91.3720851411616, 92.2, 92.5003150086683, 97.8260869565219,
87.1461797069698, 93.5168077834096, NA, 90.1780793791367, 92.9758067301415,
94.9, 91.8829499602467, 81.749280834314, 65.1853441661798, 69.0503609949116,
87.2562445664681, 85.8298270239758, 90.6673511683335, 83.2861189801694,
84.9006282245266, 73.65452177457, 87.3075692692965, 85.5310215524833,
83.3333333333333, NA, NA, 98.5990187756088, 84.4640706359058,
NA, 93.9158337759274, 91.5744358611439, 100, NA, NA, NA, 88.7824144772468,
85.1972665683085, 89.54493171236, NA, NA, 89.8, NA, 100, 97.6261376125643,
96.3196943955923, 92.0952338262334, 87.9266080431752, 80.9429968520701,
NA, NA, 92.8, 95.2886158200472, 100, 86.4199793410402, NA, NA,
89.9001648604344, NA, NA, 91.5033109800214, 83.8918470610424,
73.9339911532972, 88.6921281548131, 94.309068022859, 85.3299585067346,
93.7362934447331, 86.5384615384618, 83.7424288707868, NA, 86.3836615391687,
88.1866796344726, 58.1081081081081, NA, NA, 75.7976468146464,
62.1289432084197, NA, 88.1488735873722, 84.2108238885019, 89.8335978405451,
NA, NA, NA, 86.9222656846515, 70.3584041024493, 70.9023609260137,
NA, NA, 85.9, NA, 89.8689917369566, 90.3864925686512, 92.628169473785,
80.9468895007753, 78.7885741638367, 75.4005791241575, NA, NA,
88.4, 87.7139456942162, 92.3809523809525, 83.7645232075473, NA,
NA, 89.567507133125, NA, NA, 91.6433898994358, 73.6225283043976,
65.9223049858496, 72.3148320483822, 86.2596215693035, 85.6224026570651,
87.4940330171337, 78.7499999999997, 81.9949404453665, NA, 84.5563115043796,
87.0190820047277)), .Names = c("COUNTRY", "Year", "location",
"percent"), row.names = c(NA, -336L), class = "data.frame")
I want to produce a simple plot with ggplot2 that is facetted by COUNTRY. I can do this fine using geom_point:
ggplot(meas_melt, aes(Year, percent, colour=location))+ geom_point() + facet_wrap(~COUNTRY)
However, if I try and produce a line plot with geom_line (ggplot(meas_melt, aes(Year, percent, colour=location))+ geom_line() + facet_wrap(~COUNTRY))
I get the following error:
geom_path: Each group consist of only one observation. Do you need to
adjust the group aesthetic?
I had thought that this could be because a couple of the countries have only one year's worth of data so I subsetted the date to remove these three countries like so:
ggplot(meas_melt, aes(Year, percent, colour=location))+ geom_line(data=meas_melt[!meas_melt$COUNTRY %in% c('Comoros','South Africa','Swaziland'),]) + facet_wrap(~COUNTRY)
However, I get the same error!

#Sven's answer is correct but fixes only part of the problem. Note how there's no plot for Comoros, South Africe, or Swaziland. This is because in your data, sometimes year is, e.g., 2006 or 2007, and sometimes it is "2006/7".
data[meas_melt$COUNTRY=="Swaziland",]
COUNTRY Year location percent
32 Swaziland 2006/7 Urban 94.83588
80 Swaziland 2006/7 Rural 90.70775
128 Swaziland 2006/7 Total 91.50000
176 Swaziland 2006/7 Capital.City 96.02326
224 Swaziland 2006/7 Other.Cities.towns 93.51681
272 Swaziland 2006/7 Urban.Non.slum NA
320 Swaziland 2006/7 Urban.Slum NA
Those countries really have only one "year" (hence, no line). More importantly, these odd year designations distort your x-axis. You can see that using the scales="free" argument to facet_wrap(...):
ggplot(meas_melt, aes(x=Year,y=percent, color=location)) +
geom_line(aes(group=location)) +facet_wrap(~COUNTRY, scales="free") +
theme(axis.text.x=element_text(angle=90, vjust=0.5, size=8),
legend.position="bottom")
Which produces this:

You have to specify aes(group = location) inside geom_line:
library(ggplot2)
ggplot(meas_melt, aes(Year, percent, colour=location)) +
geom_line(aes(group = location)) +
facet_wrap(~COUNTRY)

Related

Panel regression with cross sectional averages

I am estimating a panel regression model, and I need to add the cross sectional average of the dependent variable and regressors to the model.
I am struggling to implement the cross sectional averages in R. Can anyone help me out.
So I have a panel regression code below - using plm package.
I need to add cross sectional average of variable A, B, C and D to the right hand side of the regression
library(plm)
panel_fe <- plm(A ~ B+ C + D, model = "fd", effect="individual", data = PanelS)
So my final regression model would be like this A = B+ C+D + A_bar + B_bar + C_bar + D_bar, where A_bar, B_bar , C_bar and D_bar are the cross sectional averages of A, B,C and D respectively.
My panel datasets is below, PanelS.
structure(list(Country = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L), .Label = c("CountryA", "CountryB",
"CountryC", "CountryD", "CountryE", "CountryF", "CountryG", "CountryH",
"CountryI", "CountryJ"), class = "factor"), Year = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L), .Label = c("2000", "2001",
"2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009",
"2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017",
"2018", "2019"), class = "factor"), A = c(0.051539, 0.064525,
0.014292, 0.018774, 0.035449, 0.021988, 0.02396, 0.011415, 0.010358,
-0.029607, -0.020427, -0.012734, 0.006683, 0.007373, -0.039712,
-0.005499, 0.008682, 0.015326, 0.020524, 0.015101, 0.035355,
0.031157, 0.023387, 0.024198, 0.035353, 0.053873, 0.038743, 0.042338,
0.034935, 0.015377, 0.010599, 0.015154, 0.002919, 0.024291, 0.043819,
0.015901, 0.01897, 0.027767, 0.015992, 0.041976, 0.011223, 0.006144,
0.000778, 0.005873, 0.007194, -0.022017, -0.023338, -0.037765,
-0.049356, 0.026135, 0.035633, 0.015691, -0.006196, -0.00025,
0.001181, -0.001472, -0.009324, -0.022664, -0.022623, -0.019586,
-0.012207, -0.004603, -0.013073, -0.010771, -0.009882, -0.014417,
-0.031812, -0.043885, -0.050883, -0.039834, -0.020299, -0.000684,
0.011216, 0.005419, 0.000939, -0.005508, 0.006266, -0.008077,
-0.016137, -0.012681, 0.031612, 0.043729, 0.009314, 0.002734,
-0.012284, 0.002403, 0.016807, 0.019995, 0.033096, 0.024383,
0.010588, 0.019833, 0.031837, 0.03127, 0.029059, 0.020708, 0.019296,
0.017787, 0.032074, 0.027125, 0.005673, 0.003698, -5.3e-05, 0.001794,
-0.011977, -0.008686, -0.031588, -0.039411, -0.073931, -0.076715,
-0.039171, -0.025797, -0.007637, 0.00345, 0.009101, 0.01674,
-0.006968, -0.019178, -0.02438, -0.039663, 0.078313, 0.06707,
0.062822, 0.050771, 0.041274, 0.043921, 0.046429, 0.039418, 0.034671,
0.017356, 0.001054, 0.00414, 0.00226, 0.00275, 0.00085, 0.00495,
0.001276, -0.001446, -0.005771, -0.007513, 0.053734, 0.038679,
0.017375, 0.01438, 0.018403, 0.032943, 0.025539, 0.032463, 0.032267,
0.034009, 0.018229, 0.008958, 0.010079, 0.00749, 0.000604, 0.001948,
0.011782, 0.013253, 0.007898, 0.007546, 0.018052, -0.001123,
-0.012597, -0.042292, -0.058516, -0.022736, -0.03841, -0.050843,
-0.073979, -0.097242, -0.024712, 0.038037, 0.048685, -0.00624,
0.075575, 0.044947, 0.097171, 0.086809, 0.079856, 0.068521, 0.008062,
-0.00911, -0.010527, -4.3e-05, 0.002428, 0.004422, 0.008752,
0.019602, 0.01724, 0.01965, -0.008816, 0.011466, 0.020956, 0.021873,
0.021772, 0.024495, 0.021354, 0.015267, 0.018769, 0.016904),
C = c(0.75345, 0.70657, 0.645051, 0.510055, 0.433786, 0.35728,
0.265817, 0.208721, 0.163261, 0.130248, 0.136607, 0.153873,
0.152275, 0.166592, 0.170559, 0.27089, 0.259813, 0.292847,
0.253142, 0.222618, 0.56764082, 0.523543, 0.485083, 0.49081,
0.461501, 0.44156, 0.374122, 0.315494, 0.27346, 0.333132,
0.401818, 0.425879, 0.460709, 0.448942, 0.440456, 0.442703,
0.397737, 0.372338, 0.359446, 0.340254, 0.064305, 0.05107,
0.047682, 0.056584, 0.055981, 0.051134, 0.047025, 0.046318,
0.037655, 0.045041, 0.071989, 0.066074, 0.061057, 0.097641,
0.101621, 0.105545, 0.09996, 0.099131, 0.091119, 0.082012,
0.120817, 0.120871, 0.138383, 0.13023, 0.141247, 0.146088,
0.119133, 0.100396, 0.084592, 0.185873, 0.368416, 0.479167,
0.4367, 0.421837, 0.400428, 0.416259, 0.37072, 0.40398, 0.390126,
0.371126, 0.079576, 0.074647, 0.076712, 0.074295, 0.074504,
0.079053, 0.080224, 0.082991, 0.082006, 0.15357, 0.161465,
0.201522, 0.190049, 0.219974, 0.236873, 0.227428, 0.219862,
0.200938, 0.223426, 0.209529, 0.217219, 0.224867, 0.258694,
0.248207, 0.221093, 0.189452, 0.159052, 0.124236, 0.119492,
0.123362, 0.217807, 0.296186, 0.339882, 0.371345, 0.376212,
0.391509, 0.378059, 0.373931, 0.351043, 0.347354, 0.440547,
0.424547, 0.409236, 0.401795, 0.427482, 0.426416, 0.399297,
0.381117, 0.339041, 0.325607, 0.415314, 0.469047, 0.482712,
0.536225, 0.562292, 0.598259, 0.636417, 0.631764, 0.612668,
0.596271, 0.605061, 0.503479, 0.518971, 0.498057, 0.492731,
0.484527, 0.486885, 0.43596, 0.388967, 0.374978, 0.407324,
0.381025, 0.371731, 0.375149, 0.402248, 0.449982, 0.437387,
0.422554, 0.407331, 0.389125, 0.989067, 1.049344, 1.070812,
1.048631, 1.014561, 1.028734, 1.073949, 1.036117, 1.03103,
1.094155, 1.267447, 1.474942, 1.752192, 1.619444, 1.784347,
1.802256, 1.770079, 1.807951, 1.792139, 1.862386, 0.601394,
0.590658, 0.579365, 0.597035, 0.633089, 0.649877, 0.673465,
0.667047, 0.639942, 0.655222, 0.729901, 0.823816, 0.79801,
0.811354, 0.787169, 0.756694, 0.72207, 0.692768, 0.651024,
0.617801), B = c(0.147502302, 0.043680673, -0.212478849,
-0.266834333, -0.228099071, -0.199890362, -0.968175801, 1.047500546,
1.273127656, 1.227657506, -0.286068921, -1.356896168, -1.442625298,
-0.291748363, 2.029875219, 1.099611751, -1.112127832, -0.894025857,
0.103213651, 0.286801553, 0.756833023, 0.591945192, 0.525259532,
0.466656359, 0.706692697, -2.361722697, -2.777257989, -4.097114222,
-4.564987155, 2.317853991, 3.44030537, 3.034469093, 5.845290721,
0.403542521, 0.128582254, 0.817094156, -0.886707561, -2.998573025,
-0.491794488, -0.856367773, 0.023343476, -0.209503364, -0.084839186,
-0.146285026, -0.256672799, -0.093852713, 0.145824486, 0.434606031,
0.966980327, 0.67904687, -0.292659443, -0.487763914, -0.084930583,
-0.32722087, -0.442172133, -0.168366978, -0.186469629, 0.046322287,
0.181126569, 0.303486593, 0.171541123, -0.348150815, -0.407466419,
-0.624622679, -0.354132366, -0.15050691, 0.700892294, 0.67692383,
1.014111655, 0.862019536, 0.395600738, -0.256706715, -0.542246369,
-0.539422399, -0.405088653, -0.247954994, -0.497333992, -0.010723655,
0.393516751, 0.169750037, -0.581903347, -0.730163914, 0.351894514,
0.629568917, 0.882078894, 0.760041333, -0.564317727, -0.57799292,
-0.433736512, 0.513350369, 0.55464973, -0.224497194, -0.074326596,
-0.123301819, -0.432013928, -0.25316664, -0.374406673, 0.116449941,
0.308969388, 0.252824183, 2.398228162, -0.033362631, -1.681378615,
-3.655293426, -2.793256764, -3.636310622, 0.149490332, 3.951131246,
7.177449077, 4.831325877, 2.050070679, 1.314471427, -1.687424783,
-3.796189127, -3.329685346, -1.695252718, -3.010416797, -2.414597902,
1.199960369, 4.661041564, 0.531518012, -1.384184059, -0.64216453,
-0.13206166, 0.249287935, -0.153010531, -0.987952985, -1.71711917,
-0.678751076, 0.890062065, 1.663691535, 1.883735194, 2.171029985,
2.383501603, 1.490313839, -0.732542129, -0.291797363, -1.655272704,
-1.613245217, -1.275038743, -0.789256935, -3.589249982, 0.502475039,
1.840081099, 1.141218417, 3.130100399, 3.94751837, 0.97811035,
0.013586974, -3.245960526, -2.068241886, -1.82476664, -1.481654499,
0.37039449, -1.516414277, -1.722381744, 0.683458083, 0.153189319,
3.410781995, 0.067011953, -3.09418792, -4.09753755, -4.682167411,
-1.333607727, 2.505605899, -4.332639317, -2.190945016, 4.048457741,
11.60535564, 13.61047901, 5.145259686, -0.712611552, -3.385649938,
7.214394614, -10.34401695, -1.841542179, -6.437949187, -4.545422837,
-0.012548047, 2.881273043, 3.227611639, 10.96399365, 16.38843255,
14.72001327, -13.84595255, -10.51570643, -13.59695535, -36.70577424,
-12.07070647, 12.51742535, 52.88207865, 9.143152612, -7.818895359,
-15.57456939, -21.31957866, -23.55720863, -5.574415019, 5.783084584,
12.02189272, 22.93207708), D = c(0.77780751, 0.793229898,
0.80623893, 0.821155065, 0.836880111, 0.854312944, 0.873660631,
0.890537317, 0.907536298, 0.912375095, 0.929637942, 0.946439284,
0.965000087, 0.97726773, 0.986870808, 1, 1.019208507, 1.037842597,
1.054711181, 1.072171599, 0.534008473, 0.566583199, 0.58762954,
0.601043497, 0.63362178, 0.673913677, 0.719447102, 0.799187909,
0.864173776, 0.899162389, 0.909465125, 0.96350569, 0.978220642,
0.971679886, 0.976158221, 1, 1.025374896, 1.065804414, 1.108567186,
1.166769344, 0.588726028, 0.64526073, 0.733094431, 0.718268082,
0.746291144, 0.799900392, 0.846050389, 0.894179583, 1.015232882,
0.982856394, 1.012948099, 1.041332642, 1.032947106, 1.013566583,
0.980944689, 1, 1.020576612, 1.061740647, 1.117831183, 1.159906251,
0.750587042, 0.769670674, 0.790024355, 0.801712216, 0.817505148,
0.83991247, 0.856517319, 0.878345181, 0.914006005, 0.920044857,
0.949573071, 0.955207703, 0.978810398, 0.985618398, 0.996205139,
1, 1.004364708, 1.017159213, 1.021013703, 1.02682649, 0.825278825,
0.836048671, 0.847570474, 0.858769029, 0.86834942, 0.871868036,
0.875331803, 0.890827568, 0.898928134, 0.915485416, 0.921392822,
0.931246968, 0.945182975, 0.963702812, 0.981800571, 1, 1.013277522,
1.026999204, 1.044176589, 1.067069774, 0.490666665, 0.523850087,
0.54906662, 0.570457925, 0.597126217, 0.632406036, 0.689467717,
0.775073059, 0.828560075, 0.827109078, 0.842215091, 0.887572897,
0.923280339, 0.960610381, 0.988936452, 1, 1.022699304, 1.054533263,
1.098615084, 1.134067127, 0.757140805, 0.809228408, 0.851488047,
0.884918505, 0.889385715, 0.916751643, 0.948479832, 0.960072842,
0.956196673, 0.911566837, 0.884542463, 0.89644222, 0.917048164,
0.929279352, 0.929337342, 1, 1.010128912, 1.026719845, 1.029923385,
1.062349178, 0.786853444, 0.804351028, 0.831286834, 0.859995963,
0.886334727, 0.906191485, 0.937863282, 0.969963165, 1.012104032,
1.038112793, 1.036283847, 1.046222, 1.043339336, 1.02279939,
1.002888566, 1, 0.994233243, 0.998082845, 0.997049083, 0.998951287,
0.740171055, 0.770579402, 0.802054487, 0.833603662, 0.865965514,
0.90147914, 0.937354271, 0.969378485, 0.99123068, 0.992657113,
0.994179737, 0.993983379, 0.992844694, 0.99680058, 0.994574042,
1, 1.003228988, 1.016266499, 1.028341184, 1.04261954, 0.801617134,
0.817716283, 0.834621959, 0.850140657, 0.863935678, 0.880664424,
0.899645623, 0.9226463, 0.944486016, 0.945115307, 0.95522518,
0.964280334, 0.975483583, 0.983073825, 0.988745617, 1, 1.005225593,
1.010468623, 1.020086873, 1.032605559)), row.names = c("CountryA-2000",
"CountryA-2001", "CountryA-2002", "CountryA-2003", "CountryA-2004",
"CountryA-2005", "CountryA-2006", "CountryA-2007", "CountryA-2008",
"CountryA-2009", "CountryA-2010", "CountryA-2011", "CountryA-2012",
"CountryA-2013", "CountryA-2014", "CountryA-2015", "CountryA-2016",
"CountryA-2017", "CountryA-2018", "CountryA-2019", "CountryB-2000",
"CountryB-2001", "CountryB-2002", "CountryB-2003", "CountryB-2004",
"CountryB-2005", "CountryB-2006", "CountryB-2007", "CountryB-2008",
"CountryB-2009", "CountryB-2010", "CountryB-2011", "CountryB-2012",
"CountryB-2013", "CountryB-2014", "CountryB-2015", "CountryB-2016",
"CountryB-2017", "CountryB-2018", "CountryB-2019", "CountryC-2000",
"CountryC-2001", "CountryC-2002", "CountryC-2003", "CountryC-2004",
"CountryC-2005", "CountryC-2006", "CountryC-2007", "CountryC-2008",
"CountryC-2009", "CountryC-2010", "CountryC-2011", "CountryC-2012",
"CountryC-2013", "CountryC-2014", "CountryC-2015", "CountryC-2016",
"CountryC-2017", "CountryC-2018", "CountryC-2019", "CountryD-2000",
"CountryD-2001", "CountryD-2002", "CountryD-2003", "CountryD-2004",
"CountryD-2005", "CountryD-2006", "CountryD-2007", "CountryD-2008",
"CountryD-2009", "CountryD-2010", "CountryD-2011", "CountryD-2012",
"CountryD-2013", "CountryD-2014", "CountryD-2015", "CountryD-2016",
"CountryD-2017", "CountryD-2018", "CountryD-2019", "CountryE-2000",
"CountryE-2001", "CountryE-2002", "CountryE-2003", "CountryE-2004",
"CountryE-2005", "CountryE-2006", "CountryE-2007", "CountryE-2008",
"CountryE-2009", "CountryE-2010", "CountryE-2011", "CountryE-2012",
"CountryE-2013", "CountryE-2014", "CountryE-2015", "CountryE-2016",
"CountryE-2017", "CountryE-2018", "CountryE-2019", "CountryF-2000",
"CountryF-2001", "CountryF-2002", "CountryF-2003", "CountryF-2004",
"CountryF-2005", "CountryF-2006", "CountryF-2007", "CountryF-2008",
"CountryF-2009", "CountryF-2010", "CountryF-2011", "CountryF-2012",
"CountryF-2013", "CountryF-2014", "CountryF-2015", "CountryF-2016",
"CountryF-2017", "CountryF-2018", "CountryF-2019", "CountryG-2000",
"CountryG-2001", "CountryG-2002", "CountryG-2003", "CountryG-2004",
"CountryG-2005", "CountryG-2006", "CountryG-2007", "CountryG-2008",
"CountryG-2009", "CountryG-2010", "CountryG-2011", "CountryG-2012",
"CountryG-2013", "CountryG-2014", "CountryG-2015", "CountryG-2016",
"CountryG-2017", "CountryG-2018", "CountryG-2019", "CountryH-2000",
"CountryH-2001", "CountryH-2002", "CountryH-2003", "CountryH-2004",
"CountryH-2005", "CountryH-2006", "CountryH-2007", "CountryH-2008",
"CountryH-2009", "CountryH-2010", "CountryH-2011", "CountryH-2012",
"CountryH-2013", "CountryH-2014", "CountryH-2015", "CountryH-2016",
"CountryH-2017", "CountryH-2018", "CountryH-2019", "CountryI-2000",
"CountryI-2001", "CountryI-2002", "CountryI-2003", "CountryI-2004",
"CountryI-2005", "CountryI-2006", "CountryI-2007", "CountryI-2008",
"CountryI-2009", "CountryI-2010", "CountryI-2011", "CountryI-2012",
"CountryI-2013", "CountryI-2014", "CountryI-2015", "CountryI-2016",
"CountryI-2017", "CountryI-2018", "CountryI-2019", "CountryJ-2000",
"CountryJ-2001", "CountryJ-2002", "CountryJ-2003", "CountryJ-2004",
"CountryJ-2005", "CountryJ-2006", "CountryJ-2007", "CountryJ-2008",
"CountryJ-2009", "CountryJ-2010", "CountryJ-2011", "CountryJ-2012",
"CountryJ-2013", "CountryJ-2014", "CountryJ-2015", "CountryJ-2016",
"CountryJ-2017", "CountryJ-2018", "CountryJ-2019"), class = c("pdata.frame",
"data.frame"), index = structure(list(Country = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L), .Label = c("CountryA",
"CountryB", "CountryC", "CountryD", "CountryE", "CountryF", "CountryG",
"CountryH", "CountryI", "CountryJ"), class = "factor"), Year = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L), .Label = c("2000", "2001",
"2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009",
"2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017",
"2018", "2019"), class = "factor")), class = c("pindex", "data.frame"
), row.names = c(NA, 200L)))
You can use function Between from package plm to calculate the cross sectional averages and add them to your data:
library(plm)
# PanelS is a pdata.frame (otherwise use pdata.frame(your_data, index))
PanelS$A_bar <- Between(PanelS$A)
PanelS$B_bar <- Between(PanelS$B)
PanelS$C_bar <- Between(PanelS$C)
PanelS$D_bar <- Between(PanelS$D)
mod <- plm(A ~ B + C + D + A_bar + B_bar + C_bar + D_bar, model = "pooling", effect="individual", data = PanelS)
summary(mod)
# Pooling Model
#
# Call:
# plm(formula = A ~ B + C + D + A_bar + B_bar + C_bar + D_bar,
# data = PanelS, effect = "individual", model = "pooling")
#
# Balanced Panel: n = 10, T = 20, N = 200
#
# Residuals:
# Min. 1st Qu. Median 3rd Qu. Max.
# -0.06143690 -0.01311792 0.00070253 0.01186605 0.05107105
#
# Coefficients:
# Estimate Std. Error t-value Pr(>|t|)
# (Intercept) -0.00000000000001042 0.03313743211380626 0.0000 1.000000
# B -0.00076930351859426 0.00020566635571130 -3.7405 0.000242 ***
# C 0.10827039012266901 0.00949296134830719 11.4053 < 0.00000000000000022 ***
# D -0.04222788490989914 0.01136058813979121 -3.7171 0.000264 ***
# A_bar 0.99999999999911215 0.09632471140222754 10.3816 < 0.00000000000000022 ***
# C_bar -0.10827039012256123 0.01033406661607372 -10.4770 < 0.00000000000000022 ***
# D_bar 0.04222788490990802 0.03874710199411169 1.0898 0.277145
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Total Sum of Squares: 0.17549
# Residual Sum of Squares: 0.07128
# R-Squared: 0.59382
# Adj. R-Squared: 0.58119
# F-statistic: 47.0268 on 6 and 193 DF, p-value: < 0.000000000000000222
Note that it seems like you want to estimate a fixed effects model but your estimation has model = "fd" to estimate a first-differenced model. Also note that the cross sectional averages will drop out of the estimation of a fixed effects model.

R - Easy significant test on 2 dataframes

I am stucking a simple statistical comparism of 2 dataframes. Both dataframes consist of different kind of observations (columns) and the observation days (rows). I counted the number of occurrences for each day and each case. I dont have the same number of observation days, the observations took place under different conditions and I want to find out if there is a significant difference between those two dataframes. So basically I want to compare Case1 of df1 with Case1 of df2. For that I calculated the number of occurrences per day of each dataframe and compared them (in%).
In reality I have thousands of these dataframes and all have different number of rows.
My problem is now, how can I get an idea of which of the results are significant? How can I see if only 9 day of observation is too less to be significant?
I tried to perform a Chi-Square test, is that the right thing to do?
Here is Dataframe 1:
structure(list(Case1 = c(17L, 9L, 4L, 3L, 5L, 4L, 5L, 4L, 6L, 13L,
7L, 17L, 9L, 11L, 10L, 8L, 7L, 22L, 7L, 14L, 15L, 13L, 17L, 7L,
13L, 12L, 10L, 16L, 7L, 6L, 13L, 10L, 12L, 12L, 11L, 13L, 12L,
9L, 11L, 12L, 14L, 10L, 11L, 14L, 15L, 9L, 12L, 13L, 19L, 14L,
10L, 10L, 4L, 10L, 9L, 11L, 10L, 4L, 6L, 3L, 11L, 10L, 7L, 8L,
12L, 8L, 7L, 3L, 5L, 5L, 6L, 5L, 8L, 10L, 9L, 3L, 5L, 9L, 9L,
4L, 9L, 7L, 8L, 6L, 4L, 7L, 6L, 9L, 4L, 17L, 16L, 9L, 16L, 12L,
9L, 10L, 14L, 6L, 17L, 14L, 14L, 11L, 10L, 11L, 15L, 12L, 11L,
15L, 10L, 12L, 12L, 5L, 7L, 7L, 15L, 9L, 8L, 14L, 15L, 20L, 8L,
12L, 12L, 19L, 10L, 18L, 6L, 14L, 17L, 17L, 17L, 13L, 12L, 10L,
15L, 11L, 17L, 12L, 8L, 15L, 9L, 9L, 13L, 14L, 9L, 6L, 18L, 5L,
8L, 8L, 5L, 7L, 4L, 6L, 4L, 6L, 4L, 7L, 7L, 8L, 4L, 6L, 9L, 4L,
4L, 5L, 9L, 2L, 4L, 4L, 7L, 10L, 7L, 8L, 4L), Case2 = c(17L, 9L,
4L, 3L, 5L, 4L, 4L, 3L, 6L, 11L, 6L, 10L, 9L, 7L, 9L, 6L, 7L,
20L, 7L, 11L, 12L, 12L, 15L, 6L, 10L, 10L, 9L, 14L, 6L, 6L, 12L,
9L, 10L, 10L, 9L, 10L, 11L, 7L, 10L, 12L, 14L, 8L, 9L, 10L, 15L,
9L, 11L, 10L, 14L, 13L, 10L, 8L, 4L, 9L, 8L, 11L, 6L, 4L, 6L,
2L, 8L, 6L, 7L, 8L, 12L, 6L, 7L, 2L, 4L, 4L, 5L, 4L, 8L, 8L,
8L, 3L, 4L, 8L, 8L, 4L, 9L, 5L, 7L, 6L, 3L, 6L, 6L, 9L, 4L, 15L,
12L, 8L, 15L, 11L, 7L, 9L, 13L, 6L, 12L, 12L, 14L, 10L, 10L,
9L, 14L, 11L, 10L, 11L, 9L, 11L, 9L, 4L, 7L, 7L, 14L, 8L, 8L,
13L, 13L, 16L, 7L, 10L, 10L, 13L, 10L, 16L, 6L, 14L, 16L, 16L,
17L, 10L, 10L, 7L, 15L, 10L, 17L, 12L, 8L, 12L, 8L, 9L, 13L,
12L, 9L, 6L, 13L, 5L, 7L, 8L, 5L, 3L, 2L, 6L, 4L, 5L, 4L, 7L,
6L, 6L, 4L, 6L, 7L, 3L, 3L, 4L, 5L, 1L, 4L, 3L, 6L, 8L, 7L, 7L,
3L), Case3 = c(0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 2L, 1L, 7L, 0L,
4L, 1L, 2L, 0L, 2L, 0L, 3L, 3L, 1L, 2L, 1L, 3L, 2L, 1L, 2L, 1L,
0L, 1L, 1L, 2L, 2L, 2L, 3L, 1L, 2L, 1L, 0L, 0L, 2L, 2L, 4L, 0L,
0L, 1L, 3L, 5L, 1L, 0L, 2L, 0L, 1L, 1L, 0L, 4L, 0L, 0L, 1L, 3L,
4L, 0L, 0L, 0L, 2L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 2L, 1L, 0L, 1L,
1L, 1L, 0L, 0L, 2L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 2L, 4L, 1L, 1L,
1L, 2L, 1L, 1L, 0L, 5L, 2L, 0L, 1L, 0L, 2L, 1L, 1L, 1L, 4L, 1L,
1L, 3L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 2L, 4L, 1L, 2L, 2L, 6L, 0L,
2L, 0L, 0L, 1L, 1L, 0L, 3L, 2L, 3L, 0L, 1L, 0L, 0L, 0L, 3L, 1L,
0L, 0L, 2L, 0L, 0L, 5L, 0L, 1L, 0L, 0L, 4L, 2L, 0L, 0L, 1L, 0L,
0L, 1L, 2L, 0L, 0L, 2L, 1L, 1L, 1L, 4L, 1L, 0L, 1L, 1L, 2L, 0L,
1L, 1L)), .Names = c("Case1", "Case2", "Case3"), class = "data.frame", row.names = c(NA,
-175L))
Here is Dataframe 2:
structure(list(Case1 = c(9L, 11L, 10L, 4L, 9L, 6L, 4L, 7L, 13L),
Case2 = c(7L, 10L, 8L, 4L, 8L, 4L, 3L, 6L, 8L), Case3 = c(2L, 1L,
2L, 0L, 1L, 2L, 1L, 1L, 5L)), .Names = c("Case1", "Case2", "Case3"), class = "data.frame", row.names = c(NA,
-9L))

Calculating cumulative return for each quarter by investor

I m looking to calculate cumulative returns based on column values for each quarter grouped by investors. I tried using Return.cumulative but didn't get any success.
I appreciate if someone can help me with some easy way to calculate cumulative return in R?
structure(list(Quarter = structure(c(1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L), .Label = c("2012Q1", "2012Q2", "2012Q3",
"2012Q4", "2013Q1", "2013Q2", "2013Q3", "2013Q4", "2014Q1", "2014Q2",
"2014Q3", "2014Q4", "2015Q1", "2015Q2", "2015Q3", "2015Q4", "2016Q1",
"2016Q2", "2016Q3", "2016Q4"), class = "factor"), Total_Return = c(0.040561972,
0.012692509, 0.053079761, 0.048656856, 0.037110412, 0.041422455,
0.052373109, 0.049826591, 0.053255331, 0.050956964, 0.038683073,
0.018446161, 0.039546641, 0.057108385, 0.020790648, 0.020743042,
0.015486459, 0.001202289, 0.066082963, 0.036178889, 0.037096464,
0.003068485, 0.026307213, 0.052918456, 0.019292362, 0.058390755,
0.040255949, 0.020420614, 0.024955646, 0.051180526, 0.04598829,
0.012425778, 0.036190369, 0.079480322, 0.00574259, 0.026401296,
0.018309495, 0.004887553, 0.05935355, 0.051702238, 0.080892981,
0.07076032, 0.088251171, 0.045903253, 0.029692483, 0.058297815,
0.065338687, 0.071947108, 0.074878083, 0.03989637, -0.031255434,
0.029883299, 0.008148657, 0.078836907, 0.030064965, 0.048887451,
0.034827005, -0.065304898, 0.136766281, 0.019039148, 0.075818622,
0.037509338, 0.060238115, 0.03877549, 0.027433037, 0.033627931,
0.053488836, 0.024999278, 0.016037836, 0.011863841, -0.02610323,
0.046568702, 0.021033516, 0.052322078, 0.038724408, 0.023703685,
0.013482776, 0.018159864, 0.01098064, 0.014761168, 0.010590211,
0.001237805, 0.097323777, 0.088712748, 0.034759189, 0.022507656,
0.036512294, 0.048105471, 0.030822456, 0.07172102, 0.029038233,
0.032163273, 0.015176988, 0.041039802, -0.006245358, 0.049354849,
0.00318641, 0.012988646, 0.053365281, 0.03352103, 0.030454118,
-0.011862117, 0.015271336, 0.036371973, 0.045939313, 0.047864175,
0.053764664, 0.055199293, 0.072631781, 0.063949369, 0.09113885,
0.012533175, 0.049910727, 0.055676551, 0.008841404, 0.01962578,
0.015040302, 0.020496695, 0.054345313, 0.052533934), Investor = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Active", "Total", "America",
"Africa", "China", "Europe"), class = "factor"), Date = structure(c(6L,
11L, 16L, 1L, 7L, 12L, 17L, 2L, 8L, 13L, 18L, 3L, 9L, 14L, 19L,
4L, 10L, 15L, 20L, 5L, 6L, 11L, 16L, 1L, 7L, 12L, 17L, 2L, 8L,
13L, 18L, 3L, 9L, 14L, 19L, 4L, 10L, 15L, 20L, 5L, 6L, 11L, 16L,
1L, 7L, 12L, 17L, 2L, 8L, 13L, 18L, 3L, 9L, 14L, 19L, 4L, 10L,
15L, 20L, 5L, 6L, 11L, 16L, 1L, 7L, 12L, 17L, 2L, 8L, 13L, 18L,
3L, 9L, 14L, 19L, 4L, 10L, 15L, 20L, 5L, 6L, 11L, 16L, 1L, 7L,
12L, 17L, 2L, 8L, 13L, 18L, 3L, 9L, 14L, 19L, 4L, 10L, 15L, 20L,
5L, 6L, 11L, 16L, 1L, 7L, 12L, 17L, 2L, 8L, 13L, 18L, 3L, 9L,
14L, 19L, 4L, 10L, 15L, 20L, 5L), .Label = c("12/1/2012", "12/1/2013",
"12/1/2014", "12/1/2015", "12/1/2016", "3/1/2012", "3/1/2013",
"3/1/2014", "3/1/2015", "3/1/2016", "6/1/2012", "6/1/2013", "6/1/2014",
"6/1/2015", "6/1/2016", "9/1/2012", "9/1/2013", "9/1/2014", "9/1/2015",
"9/1/2016"), class = "factor")), class = "data.frame", row.names = c(NA,
-120L))
library(tidyverse)
df %>%
arrange(Investor, Date) %>%
group_by(Investor) %>%
mutate(return_coef = 1 + Total_Return,
return_coef_cuml = cumprod(return_coef),
return_cuml = return_coef_cuml - 1) %>%
ungroup()
# A tibble: 120 x 7
# Groups: Investor [6]
Quarter Total_Return Investor Date return_coef return_coef_cuml return_cuml
<fct> <dbl> <fct> <fct> <dbl> <dbl> <dbl>
1 2012Q4 0.0487 Active 12/1/2012 1.05 1.05 0.0487
2 2013Q4 0.0498 Active 12/1/2013 1.05 1.10 0.101
3 2014Q4 0.0184 Active 12/1/2014 1.02 1.12 0.121
4 2015Q4 0.0207 Active 12/1/2015 1.02 1.14 0.144
5 2016Q4 0.0362 Active 12/1/2016 1.04 1.19 0.186
6 2012Q1 0.0406 Active 3/1/2012 1.04 1.23 0.234
7 2013Q1 0.0371 Active 3/1/2013 1.04 1.28 0.280
8 2014Q1 0.0533 Active 3/1/2014 1.05 1.35 0.348
9 2015Q1 0.0395 Active 3/1/2015 1.04 1.40 0.401
10 2016Q1 0.0155 Active 3/1/2016 1.02 1.42 0.423

R: Shiny - How to subset and then make a bargraph based on daterangeInput

i've this data frame:
date sessions Fuentes
1 2014-12-01 197 Directo
2 2014-12-01 1 Referencias
3 2014-12-01 7 Social Media
4 2014-12-01 13 SEO
5 2014-12-01 1 Email
6 2014-12-01 1 Referencias
This is the data after using dput():
structure(list(date = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L), .Label = c("2014-12-01",
"2014-12-02", "2014-12-03", "2014-12-04", "2014-12-05", "2014-12-06",
"2014-12-07", "2014-12-08", "2014-12-09", "2014-12-10", "2014-12-11",
"2014-12-12", "2014-12-13", "2014-12-14", "2014-12-15", "2014-12-16",
"2014-12-17", "2014-12-18", "2014-12-19", "2014-12-20", "2014-12-21",
"2014-12-22", "2014-12-23", "2014-12-24", "2014-12-25", "2014-12-26",
"2014-12-27", "2014-12-28", "2014-12-29", "2014-12-30", "2014-12-31"
), class = "factor"), sessions = c(197L, 1L, 7L, 13L, 1L, 1L,
10L, 1L, 3L, 3L, 5L, 3L, 566L, 1L, 27L, 159L, 7L, 1L, 6L, 1L,
1L, 4L, 1L, 6L, 10L, 129L, 1L, 7L, 2L, 1L, 10L, 1L, 5L, 6L, 9L,
1L, 28L, 1L, 7L, 386L, 1L, 146L, 1L, 89L, 41L, 9L, 1L, 1L, 1L,
6L, 3L, 4L, 182L, 1L, 5L, 8L, 2L, 1L, 1L, 4L, 1L, 1L, 2L, 3L,
2L, 524L, 4L, 26L, 1L, 152L, 4L, 2L, 3L, 1L, 2L, 2L, 1L, 5L,
10L, 142L, 1L, 1L, 8L, 1L, 3L, 1L, 1L, 1L, 1L, 7L, 4L, 13L, 3L,
375L, 3L, 2L, 147L, 1L, 101L, 29L, 4L, 1L, 1L, 2L, 3L, 1L, 1L,
2L, 1L, 7L, 5L, 5L, 224L, 3L, 12L, 1L, 7L, 2L, 1L, 4L, 141L,
4L, 632L, 2L, 2L, 32L, 1L, 138L, 1L, 1L, 9L, 5L, 1L, 1L, 1L,
2L, 1L, 6L, 3L, 139L, 4L, 1L, 9L, 1L, 1L, 5L, 9L, 8L, 36L, 1L,
537L, 1L, 2L, 5L, 3L, 174L, 1L, 106L, 39L, 9L, 2L, 2L, 2L, 3L,
1L, 6L, 3L, 2L, 689L, 1L, 14L, 2L, 2L, 35L, 1L, 15L, 1L, 1L,
1L, 3L, 20L, 465L, 1L, 3269L, 1L, 2L, 1L, 9L, 1L, 32L, 6L, 2L,
293L, 1L, 3L, 1L, 11L, 2L, 1L, 9L, 10L, 1L, 1L, 1L, 1L, 1L, 2L,
7L, 2L, 433L, 1L, 4L, 1L, 1L, 3L, 19L, 1L, 2L, 1L, 1L, 12L, 1L,
4L, 1L, 1L, 3L, 37L, 10L, 88L, 6L, 1808L, 5L, 4L, 451L, 5L, 219L,
112L, 4L, 3L, 1L, 6L, 1L, 2L, 3L, 5L, 10L, 2L, 264L, 8L, 1L,
1L, 1L, 17L, 1L, 1L, 7L, 1L, 1L, 4L, 6L, 516L, 1L, 948L, 2L,
1L, 2L, 1L, 33L, 1L, 1L, 133L, 1L, 2L, 1L, 5L, 11L, 1L, 4L, 1L,
1L, 1L, 6L, 10L, 5L, 168L, 1L, 1L, 5L, 1L, 10L, 1L, 1L, 3L, 9L,
1L, 2L, 1L, 8L, 3L, 98L, 1L, 548L, 1L, 1L, 177L, 97L, 17L, 4L,
1L, 6L, 2L, 1L, 2L, 1L, 1L, 5L, 4L, 5L, 235L, 1L, 2L, 9L, 2L,
19L, 1L, 2L, 2L, 1L, 1L, 3L, 6L, 5L, 396L, 1209L, 1L, 2L, 1L,
41L, 1L, 125L, 3L, 5L, 1L, 4L, 1L, 1L, 4L, 1L, 3L, 1L, 1L, 5L,
2L, 121L, 2L, 1L, 1L, 10L, 1L, 1L, 4L, 1L, 2L, 10L, 3L, 75L,
5L, 632L, 1L, 2L, 2L, 178L, 1L, 67L, 33L, 6L, 1L, 1L, 1L, 2L,
1L, 12L, 3L, 194L, 1L, 1L, 1L, 1L, 1L, 20L, 1L, 1L, 6L, 1L, 1L,
1L, 1L, 1L, 3L, 2L, 296L, 1L, 1L, 979L, 6L, 4L, 1L, 33L, 1L,
109L, 5L, 2L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 3L, 118L,
1L, 1L, 15L, 1L, 1L, 1L, 1L, 1L, 4L, 2L, 1L, 18L, 6L, 53L, 3L,
584L, 2L, 1L, 2L, 172L, 2L, 100L, 27L, 9L, 2L, 1L, 2L, 1L, 1L,
1L, 11L, 3L, 202L, 6L, 20L, 2L, 1L, 1L, 4L, 1L, 8L, 2L, 292L,
719L, 2L, 1L, 2L, 29L, 106L, 7L, 3L, 8L, 2L, 2L, 1L, 1L, 1L,
7L, 3L, 139L, 4L, 1L, 2L, 17L, 1L, 2L, 3L, 2L, 20L, 53L, 3L,
530L, 2L, 1L, 1L, 172L, 113L, 23L, 2L, 1L, 4L, 2L, 2L, 1L, 7L,
891L, 10L, 1L, 1L, 12L, 1L, 1L, 1L, 1L, 1L, 4L, 5L, 6L, 1312L,
1L, 1L, 1168L, 1L, 4L, 2L, 39L, 133L, 3L, 13L, 5L, 2L, 6L, 1L,
1L, 1L, 13L, 3L, 297L, 4L, 1L, 1L, 9L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 25L, 182L, 1L, 776L, 2L, 1L, 1L, 260L, 2L, 115L, 52L,
14L, 2L, 4L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 14L,
2L, 731L, 7L, 2L, 1L, 16L, 1L, 1L, 3L, 2L, 1L, 1L, 11L, 6L, 294L,
1L, 1135L, 1L, 3L, 1L, 6L, 1L, 36L, 1L, 1L, 126L, 4L, 1L, 1L,
4L, 11L, 1L, 2L, 1L, 2L, 2L, 1L, 6L, 355L, 3L, 9L, 1L, 4L, 1L,
13L, 2L, 1L, 1L, 7L, 1L, 1L, 22L, 5L, 67L, 1L, 2L, 926L, 1L,
1L, 1L, 1L, 2L, 1L, 208L, 1L, 1L, 136L, 44L, 12L, 1L, 1L, 2L,
2L, 4L, 2L, 1L, 1L, 1L, 1L, 8L, 9L, 1L, 198L, 1L, 8L, 13L, 2L,
4L, 1L, 4L, 2L, 205L, 568L, 1L, 1L, 19L, 94L, 2L, 3L, 8L, 1L,
1L, 1L, 1L, 1L, 1L, 8L, 157L, 4L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 12L, 28L, 3L, 444L, 3L, 1L, 2L, 118L, 2L, 75L, 27L,
1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 6L, 7L, 166L, 1L, 1L, 11L, 1L,
1L, 3L, 1L, 1L, 1L, 3L, 203L, 644L, 2L, 1L, 1L, 2L, 26L, 1L,
4L, 75L, 1L, 4L, 2L, 5L, 1L, 1L, 1L, 1L, 1L, 4L, 155L, 1L, 1L,
1L, 3L, 4L, 1L, 2L, 6L, 1L, 36L, 1L, 2L, 446L, 3L, 1L, 99L, 86L,
27L, 1L, 2L, 1L, 1L, 3L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 7L,
1L, 7L, 159L, 1L, 3L, 12L, 1L, 3L, 1L, 1L, 8L, 174L, 733L, 1L,
1L, 1L, 1L, 22L, 2L, 84L, 1L, 1L, 6L, 3L, 1L, 1L, 1L, 3L, 1L,
100L, 6L, 2L, 3L, 1L, 8L, 3L, 38L, 7L, 502L, 2L, 1L, 86L, 6L,
83L, 24L, 6L, 1L, 1L, 1L, 2L, 2L, 321L, 8L, 11L, 1L, 4L, 1L,
2L, 2L, 13L, 191L, 1L, 5L, 1417L, 1L, 6L, 1L, 1L, 28L, 2L, 1L,
150L, 1L, 1L, 7L, 1L, 3L, 2L, 1L, 1L, 3L, 1L, 2L, 1L, 1L, 1L,
4L, 1L, 218L, 3L, 1L, 1L, 8L, 1L, 2L, 1L, 1L, 16L, 4L, 45L, 1L,
3L, 879L, 3L, 1L, 1L, 2L, 207L, 2L, 115L, 44L, 1L, 3L, 1L, 1L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 171L, 4L, 1L, 1L, 7L, 1L, 5L,
4L, 178L, 614L, 3L, 1L, 3L, 1L, 5L, 20L, 1L, 94L, 3L, 4L, 8L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 121L, 1L, 1L, 6L, 1L, 1L, 3L,
2L, 1L, 7L, 3L, 31L, 1L, 1L, 433L, 1L, 3L, 23L, 94L, 79L, 25L,
1L, 2L, 2L, 6L, 2L, 160L, 3L, 6L, 1L, 3L, 2L, 2L, 3L, 1L, 568L,
1L, 2L, 5L, 15L, 5L, 86L, 1L, 2L, 4L, 8L, 3L, 4L, 1L, 1L, 2L,
1L, 118L, 9L, 7L, 1L, 2L, 2L, 11L, 3L, 10L, 1L, 530L, 2L, 3L,
2L, 121L, 1L, 1L, 72L, 34L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 7L, 4L,
326L, 13L, 1L, 1L, 18L, 1L, 2L, 8L, 4L, 2L, 2L, 1L, 1271L, 1L,
1L, 1L, 2L, 3L, 17L, 2L, 161L, 3L, 1L, 14L, 1L, 1L, 2L, 1L, 1L,
4L, 1L, 1L, 10L, 1L, 195L, 1L, 6L, 1L, 1L, 1L, 1L, 23L, 1L, 1L,
2L, 1L, 1L, 2L, 20L, 4L, 10L, 1L, 1050L, 1L, 1L, 3L, 1L, 1L,
1L, 19L, 1L, 196L, 134L, 52L, 4L, 1L, 1L, 1L, 1L, 2L, 3L, 3L,
1L, 1L, 5L, 6L, 1L, 120L, 1L, 3L, 6L, 1L, 1L, 2L, 1L, 2L, 371L,
1L, 1L, 7L, 74L, 2L, 11L, 1L, 3L, 84L, 1L, 1L, 3L, 4L, 14L, 2L,
1L, 5L, 1L, 6L, 1L, 382L, 3L, 1L, 2L, 6L, 2L, 69L, 1L, 54L, 17L,
2L, 1L, 1L, 3L, 7L, 1L, 168L, 2L, 1L, 7L, 1L, 1L, 1L, 1L, 2L,
1L, 5L, 374L, 2L, 5L, 7L, 2L, 69L, 1L, 10L, 6L, 85L, 1L, 1L,
16L, 1L, 1L, 1L, 5L, 2L, 2L, 393L, 3L, 17L, 53L, 75L, 22L, 2L,
2L, 1L, 1L, 1L, 7L, 3L, 1L, 136L, 1L, 7L, 3L, 3L, 2L, 1L, 2L,
488L, 1L, 4L, 25L, 1L, 71L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 2L, 126L,
5L, 1L, 8L, 2L, 1L, 1L, 1L, 1L, 1L, 10L, 1L, 4L, 1L, 1L, 445L,
1L, 1L, 90L, 1L, 77L, 20L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
248L, 8L, 1L, 1L, 19L, 1L, 2L, 1L, 1L, 1L, 4L, 1L, 3L, 981L,
2L, 2L, 1L, 3L, 1L, 14L, 1L, 2L, 134L, 3L, 2L, 1L, 1L, 3L, 1L,
1L, 2L, 5L, 194L, 5L, 1L, 16L, 1L, 1L, 2L, 2L, 1L, 9L, 3L, 8L,
850L, 1L, 1L, 155L, 1L, 117L, 43L, 4L, 4L, 4L, 3L, 5L, 124L,
1L, 1L, 4L, 6L, 1L, 1L, 2L, 3L, 1L, 2L, 373L, 4L, 1L, 2L, 8L,
1L, 63L, 1L, 2L, 12L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 125L, 7L, 2L,
1L, 1L, 7L, 2L, 5L, 1L, 2L, 287L, 2L, 3L, 1L, 54L, 1L, 49L, 19L,
2L, 2L, 3L, 5L, 8L, 1L, 91L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 2L,
289L, 1L, 1L, 1L, 12L, 61L, 1L, 1L, 14L, 2L, 1L, 91L, 1L, 1L,
1L, 7L, 2L, 1L, 4L, 1L, 241L, 1L, 5L, 42L, 1L, 51L, 9L, 4L, 1L,
1L, 4L, 98L, 2L, 4L, 2L, 2L, 251L, 1L, 12L, 1L, 47L, 3L, 1L,
2L, 1L, 1L, 1L, 3L, 2L, 73L, 2L, 3L, 1L, 1L, 11L, 2L, 3L, 1L,
214L, 2L, 1L, 40L, 41L, 17L, 3L, 2L, 103L, 1L, 8L, 5L, 1L, 2L,
1L, 270L, 1L, 1L, 3L, 21L, 60L, 2L, 1L, 2L, 2L, 73L, 4L, 2L,
2L, 1L, 1L, 4L, 1L, 2L, 1L, 219L, 1L, 55L, 60L, 13L, 1L, 2L,
1L, 1L, 168L, 3L, 7L, 1L, 7L, 1L, 1L, 1L, 404L, 8L, 8L, 1L, 99L,
3L, 3L, 11L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 1L, 115L,
1L, 2L, 3L, 2L, 2L, 1L, 1L, 1L, 1L, 5L, 3L, 6L, 362L, 1L, 2L,
64L, 2L, 88L, 15L, 1L, 4L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 104L, 2L, 1L, 9L, 1L, 5L, 1L, 2L, 1L, 1L, 343L, 1L, 1L, 1L,
3L, 10L, 64L, 2L, 10L, 1L, 1L, 1L, 1L, 1L, 4L, 106L, 3L, 1L,
1L, 1L, 2L, 6L, 286L, 1L, 2L, 43L, 2L, 56L, 24L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 140L, 1L, 4L, 2L, 1L, 2L, 2L, 479L, 1L,
1L, 4L, 20L, 87L, 1L, 2L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 118L, 5L,
1L, 9L, 4L, 1L, 14L, 4L, 1L, 1L, 389L, 1L, 1L, 66L, 1L, 75L,
13L, 1L, 1L, 2L, 1L, 1L, 1L, 98L, 3L, 1L, 8L, 2L, 2L, 1L, 1L,
341L, 3L, 1L, 21L, 101L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 85L,
1L, 1L, 1L, 2L, 2L, 4L, 1L, 1L, 4L, 278L, 10L, 67L, 2L, 54L,
15L, 1L, 1L, 1L, 1L, 1L, 98L, 1L, 6L, 3L, 2L, 1L, 315L, 1L, 1L,
6L, 13L, 1L, 59L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 4L, 2L, 90L, 1L,
4L, 1L, 1L, 1L, 1L, 2L, 7L, 1L, 235L, 1L, 1L, 1L, 2L, 53L, 72L,
18L, 3L, 2L, 1L, 1L, 68L, 1L, 1L, 4L, 2L, 1L, 2L, 1L, 1L, 241L,
1L, 1L, 4L, 9L, 37L, 1L, 1L, 66L, 1L, 1L, 7L, 5L, 4L, 2L, 1L,
2L, 197L, 47L, 39L, 19L, 1L), Fuentes = structure(c(3L, 5L, 6L,
6L, 4L, 5L, 5L, 5L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 6L, 6L, 5L, 6L, 5L, 5L, 5L, 5L,
7L, 7L, 6L, 1L, 6L, 5L, 5L, 4L, 5L, 5L, 4L, 6L, 5L, 5L, 5L, 5L,
7L, 3L, 5L, 6L, 6L, 4L, 6L, 5L, 5L, 4L, 4L, 5L, 7L, 7L, 6L, 7L,
5L, 4L, 5L, 4L, 2L, 2L, 6L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L,
4L, 5L, 5L, 5L, 5L, 4L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L,
5L, 4L, 2L, 2L, 5L, 5L, 5L, 4L, 5L, 4L, 5L, 6L, 7L, 3L, 6L, 6L,
5L, 5L, 5L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 7L, 5L, 4L, 2L, 2L,
5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L, 4L, 4L, 5L, 5L,
7L, 7L, 1L, 6L, 5L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 2L, 5L, 5L,
5L, 4L, 5L, 6L, 7L, 3L, 5L, 6L, 6L, 5L, 6L, 5L, 5L, 5L, 5L, 5L,
5L, 7L, 7L, 1L, 6L, 5L, 5L, 5L, 7L, 5L, 5L, 7L, 4L, 5L, 5L, 4L,
2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L,
6L, 4L, 4L, 4L, 6L, 4L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L,
7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 7L, 3L, 6L, 6L, 4L, 4L, 6L, 4L, 4L, 5L, 4L, 5L, 5L,
7L, 7L, 5L, 6L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 6L, 4L, 5L, 2L,
2L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 5L, 6L, 4L, 6L, 4L,
4L, 4L, 5L, 4L, 5L, 4L, 5L, 7L, 7L, 6L, 6L, 7L, 5L, 5L, 5L, 5L,
4L, 2L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 6L, 7L, 3L, 5L, 5L, 6L, 6L,
6L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 7L, 7L, 6L, 5L, 5L, 7L, 5L, 4L,
5L, 4L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L,
6L, 6L, 6L, 4L, 4L, 5L, 5L, 4L, 5L, 7L, 7L, 1L, 6L, 5L, 7L, 5L,
5L, 4L, 5L, 5L, 4L, 6L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 6L, 6L,
6L, 4L, 6L, 5L, 4L, 5L, 4L, 5L, 7L, 7L, 4L, 5L, 7L, 7L, 5L, 1L,
6L, 5L, 7L, 5L, 5L, 4L, 5L, 4L, 2L, 2L, 6L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L, 4L, 4L, 5L, 5L, 4L, 4L, 5L, 4L,
5L, 7L, 7L, 1L, 6L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 6L, 5L, 5L,
5L, 5L, 5L, 6L, 7L, 3L, 6L, 6L, 5L, 5L, 4L, 5L, 4L, 5L, 7L, 7L,
6L, 5L, 5L, 7L, 5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 6L, 7L,
3L, 6L, 6L, 4L, 6L, 4L, 4L, 5L, 5L, 5L, 7L, 1L, 6L, 5L, 5L, 5L,
5L, 5L, 5L, 4L, 6L, 5L, 5L, 4L, 5L, 6L, 3L, 6L, 6L, 4L, 6L, 5L,
4L, 4L, 5L, 4L, 5L, 5L, 7L, 7L, 6L, 1L, 6L, 5L, 5L, 7L, 5L, 5L,
4L, 2L, 5L, 5L, 5L, 5L, 5L, 4L, 6L, 7L, 3L, 6L, 4L, 4L, 6L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 7L, 1L, 6L, 5L, 7L, 5L, 5L, 4L,
5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L,
6L, 7L, 3L, 6L, 6L, 4L, 6L, 4L, 4L, 5L, 5L, 7L, 4L, 5L, 7L, 7L,
1L, 6L, 5L, 5L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 5L, 2L, 2L,
6L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 5L, 6L, 4L, 4L, 4L, 6L, 4L, 4L,
4L, 5L, 5L, 4L, 5L, 7L, 7L, 5L, 1L, 6L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 4L, 5L, 5L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L,
5L, 6L, 7L, 3L, 5L, 6L, 6L, 4L, 5L, 4L, 5L, 7L, 7L, 6L, 5L, 7L,
5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 6L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 7L, 1L, 6L, 5L, 5L, 5L, 5L,
4L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 6L, 3L, 5L, 5L,
6L, 5L, 5L, 5L, 4L, 5L, 5L, 7L, 7L, 6L, 5L, 5L, 7L, 5L, 5L, 7L,
5L, 5L, 6L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 4L,
6L, 5L, 4L, 5L, 5L, 7L, 7L, 5L, 1L, 6L, 5L, 5L, 5L, 5L, 5L, 4L,
4L, 5L, 2L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 2L, 4L, 5L, 4L, 6L, 3L,
5L, 6L, 6L, 5L, 5L, 5L, 5L, 7L, 7L, 6L, 5L, 7L, 5L, 7L, 5L, 5L,
5L, 2L, 5L, 2L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 5L, 5L, 4L, 5L,
7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 2L, 2L, 5L, 6L, 7L,
3L, 6L, 6L, 5L, 5L, 5L, 7L, 5L, 7L, 7L, 5L, 5L, 6L, 5L, 5L, 5L,
5L, 5L, 4L, 5L, 5L, 4L, 5L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 5L, 3L, 6L, 6L, 4L, 6L, 5L, 5L, 5L, 5L, 5L, 7L,
7L, 5L, 1L, 6L, 5L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 6L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 4L, 6L, 5L, 5L, 7L,
7L, 6L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L, 5L, 4L, 5L, 5L, 4L, 5L, 7L,
7L, 5L, 1L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 6L, 3L,
6L, 6L, 4L, 5L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 5L, 5L, 5L, 5L,
4L, 2L, 2L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 6L, 5L, 5L, 5L, 5L,
7L, 7L, 5L, 6L, 7L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L,
5L, 5L, 4L, 5L, 6L, 3L, 6L, 6L, 4L, 6L, 4L, 5L, 5L, 5L, 5L, 7L,
6L, 6L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 6L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 6L, 4L, 4L, 4L, 5L, 6L, 4L,
4L, 5L, 4L, 5L, 4L, 5L, 7L, 7L, 1L, 6L, 5L, 5L, 5L, 5L, 7L, 5L,
5L, 5L, 5L, 5L, 5L, 4L, 4L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 7L, 3L, 5L, 6L, 6L, 5L, 4L, 5L, 5L, 7L, 6L, 5L, 5L, 5L, 5L,
2L, 2L, 5L, 6L, 3L, 5L, 5L, 6L, 4L, 6L, 5L, 4L, 5L, 7L, 7L, 1L,
6L, 5L, 7L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L,
3L, 6L, 6L, 6L, 4L, 5L, 5L, 5L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 5L,
5L, 2L, 2L, 6L, 3L, 6L, 4L, 6L, 4L, 5L, 4L, 5L, 7L, 1L, 6L, 5L,
5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 2L, 5L, 6L, 7L, 3L, 6L, 6L, 5L,
5L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 2L, 2L, 5L, 5L,
5L, 6L, 3L, 6L, 4L, 6L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 7L, 7L, 5L,
1L, 6L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 6L, 5L, 5L, 6L,
7L, 3L, 6L, 4L, 5L, 6L, 5L, 5L, 5L, 5L, 4L, 5L, 7L, 7L, 6L, 5L,
5L, 7L, 5L, 5L, 5L, 4L, 5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 4L,
6L, 3L, 6L, 6L, 6L, 4L, 5L, 5L, 5L, 4L, 5L, 7L, 7L, 6L, 5L, 5L,
5L, 4L, 5L, 5L, 4L, 5L, 5L, 5L, 6L, 3L, 5L, 5L, 6L, 6L, 5L, 4L,
5L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 5L, 4L, 5L, 4L, 2L, 2L, 5L, 5L,
5L, 5L, 5L, 6L, 5L, 3L, 6L, 4L, 5L, 5L, 5L, 7L, 7L, 5L, 1L, 6L,
5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 6L, 7L, 3L, 5L, 6L,
6L, 5L, 5L, 5L, 5L, 7L, 6L, 7L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 5L,
7L, 3L, 6L, 4L, 5L, 6L, 5L, 5L, 5L, 7L, 6L, 5L, 5L, 5L, 4L, 5L,
5L, 4L, 5L, 5L, 6L, 3L, 6L, 6L, 5L, 1L, 6L, 5L, 5L, 4L, 5L, 4L,
2L, 2L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 5L, 5L, 5L, 7L, 7L, 5L,
6L, 5L, 5L, 5L, 5L, 5L, 4L, 6L, 3L, 6L, 6L, 5L, 5L, 7L, 7L, 6L,
5L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 6L, 3L, 6L, 5L, 6L, 4L, 4L, 5L,
7L, 7L, 1L, 6L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 3L, 6L, 6L, 5L,
5L, 5L, 5L, 7L, 6L, 5L, 5L, 4L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 4L, 6L, 7L, 3L, 5L, 6L, 6L, 4L, 5L, 5L, 5L, 4L,
4L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 2L, 5L, 5L,
5L, 4L, 4L, 5L, 5L, 4L, 6L, 3L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 7L,
5L, 6L, 5L, 5L, 7L, 5L, 5L, 5L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 6L,
3L, 6L, 4L, 4L, 5L, 4L, 5L, 6L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L,
4L, 2L, 5L, 5L, 4L, 4L, 6L, 3L, 6L, 6L, 5L, 5L, 5L, 7L, 6L, 5L,
5L, 5L, 5L, 5L, 4L, 2L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L,
6L, 5L, 5L, 5L, 7L, 5L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 5L,
5L, 5L, 6L, 7L, 3L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 6L, 5L, 5L, 5L,
5L, 4L, 5L, 2L, 5L, 5L, 5L, 5L, 6L, 3L, 5L, 4L, 4L, 6L, 4L, 5L,
5L, 5L, 7L, 6L, 5L, 5L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 3L, 6L,
6L, 5L, 5L, 7L, 6L, 5L, 5L, 5L, 5L, 7L, 5L, 4L, 2L, 5L, 5L, 5L,
5L, 5L, 6L, 7L, 3L, 4L, 6L, 5L, 5L, 4L, 5L, 5L, 7L, 1L, 6L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 6L, 3L, 6L, 6L, 6L, 5L, 5L,
5L, 5L, 7L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 4L, 6L, 5L,
5L, 7L, 7L, 5L, 6L, 5L, 5L, 5L, 5L), .Label = c("Adwords", "Campañas",
"Directo", "Email", "Referencias", "SEO", "Social Media"), class = "factor")), .Names = c("date",
"sessions", "Fuentes"), class = "data.frame", row.names = c(NA,
-1724L))
In a Shiny App, want to plot bars for Fuentes, acording to a data range specified by the user. I use daterangeInput in my ui.R, but cannot get it to plot what I need.
My ui.R
library(shiny)
# Define the overall UI
shinyUI(
# Use a fluid Bootstrap layout
fluidPage(
# Give the page a title
br(),
br(),
titlePanel("Visitas por fuente"),
# Generate a row with a sidebar
sidebarLayout(
# Define the sidebar with one input
sidebarPanel(
dateRangeInput("dates", label = h3("Date range"),
start = "2014-12-01", end = "2014-12-31")
),
# Create a spot for the barplot
mainPanel(
plotOutput("VisitasFuente")
)
)
)
)
My server.R ### Edited - Now can plot, but labels appeare as a blur from botton to top.
library(ggplot2)
library(dplyr)
require(scales)
Visitas_Por_Fuente <- read.csv("D:\\RCoursera\\Movistar- App-2\\Visitas_Por_Fuente_Dic.csv")
labels = c("Directo", "Email", "Referencias", "SEO", "Social Media")
Visitas_Por_Fuente$date <- as.Date(Visitas_Por_Fuente$date)
shinyServer(
function(input, output) {
output$VisitasFuente <- renderPlot({
# Filter the data based on user selection month
date_seq <- seq(input$dates[1], input$dates[2], by = "day")
#VisitasData <- filter(Visitas_Por_Fuente, date >= input$dates[1],
# date <= input$dates[2])
VisitasData <- filter(Visitas_Por_Fuente, date %in% date_seq & Fuentes %in% labels)
# Bar graph using ggplot2 library
ggplot(VisitasData, aes(factor(Fuentes), sessions, fill = Fuentes)) +
geom_bar(stat="identity", position = "dodge") +
geom_text(aes(label = comma(sessions)), position=position_dodge(width=0.9), vjust=-0.25) +
scale_fill_manual(breaks = c("0", "1", "3", "6", "9"),
labels = c("Directo", "Email", "References",
"SEO", "Social Media"),
values = c("#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2"))
})
})
This was fixied by loading the corresponded packages
Thanks to #goodtimeslim, i've made the recomendations you gave me. But now i get:
Error in match(x, table, nomatch = 0L) :
'match' requires vector arguments
What could it be? Thanks again.
#
Okay, first thing, you need to tell R that Visitas_Por_Fuente$date is a date, with Visitas_Por_Fuente$date <- as.Date(Visitas_Por_Fuente$date) .
You can do this right after you import your data at the beginning.
Now you want to create a range of dates, in your server file, using the date inputs, like so:
date_seq <- seq(input$dates[1], input$dates[2], by = "day")
Now you just need to change your filter, so that the date is in that sequence, like so:
VisitasData <- filter(Visitas_Por_Fuente, date %in% date_seq)
Now I admit that doesn't solve everything, I was getting some weird errors with your ggplot code, but this will solve the subsetting issue.
This issue with your ggplot is that your data has 7 variables, but you're only giving it information for 5. If you just want those 5 variables, then at the top (right after you import your data), write this:
labels = c("Directo", "Email", "References", "SEO", "Social Media")
and then, for your plot, get rid of the scale_manual line and replace it with:
scale_x_discrete(limit = labels)
That'll force those 5 on there, and at the moment, it'll do it in whatever color R wants. I'll let you figure out the rest if you want to change it.
Let me know if this is clear enough or if you just want the whole server.r code.
edit: Okay, I fixed it. You had an error in your code, you have "References", but in your data, it's "Referencias". So now, assuming you still want those five variables only, and not all 7, do this: change labels (at the top) like so:
labels = c("Directo", "Email", "Referencias", "SEO", "Social Media")
Change your filter like so:
VisitasData <- filter(Visitas_Por_Fuente, date %in% date_seq & Fuentes %in% labels)
Then you can get rid of that scale_x_discrete line I had, and put your line back in. It should all work now. (Except edit your labels in the manual_scale part to reflect the proper "Referencias".
edit 2: Here's the full server.r that runs just fine on my computer. I've made some slight changes for consistency/clarity, but otherwise it's mostly the same.
library(ggplot2)
Visitas_Por_Fuente <- read.csv("visitas.csv") ## put your path here
labelsF = c("Directo", "Email", "Referencias", "SEO", "Social Media")
Visitas_Por_Fuente$date <- as.Date(Visitas_Por_Fuente$date)
shinyServer(
function(input, output) {
output$VisitasFuente <- renderPlot({
# Filter the data based on user selection month
date_seq <- seq(input$dates[1], input$dates[2], by = "day")
#VisitasData <- filter(Visitas_Por_Fuente, date >= input$dates[1],
# date <= input$dates[2])
VisitasData <- filter(Visitas_Por_Fuente, date %in% date_seq & Fuentes %in% labelsF)
# Bar graph using ggplot2 library
ggplot(VisitasData, aes(factor(Fuentes), sessions, fill = Fuentes)) +
geom_bar(stat="identity", position = "dodge") +
scale_fill_manual(breaks = c("0", "1", "3", "6", "9"),
labels = labelsF,
values = c("#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2"))
})
})

R: Shiny and Ggplot2 show different plot with same code

Have data for everyday of dicember 2014. want to plot a barchart according to the selection of dates:
Original data:
structure(list(date = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L), .Label = c("2014-12-01",
"2014-12-02", "2014-12-03", "2014-12-04", "2014-12-05", "2014-12-06",
"2014-12-07", "2014-12-08", "2014-12-09", "2014-12-10", "2014-12-11",
"2014-12-12", "2014-12-13", "2014-12-14", "2014-12-15", "2014-12-16",
"2014-12-17", "2014-12-18", "2014-12-19", "2014-12-20", "2014-12-21",
"2014-12-22", "2014-12-23", "2014-12-24", "2014-12-25", "2014-12-26",
"2014-12-27", "2014-12-28", "2014-12-29", "2014-12-30", "2014-12-31"
), class = "factor"), sessions = c(197L, 1L, 7L, 13L, 1L, 1L,
10L, 1L, 3L, 3L, 5L, 3L, 566L, 1L, 27L, 159L, 7L, 1L, 6L, 1L,
1L, 4L, 1L, 6L, 10L, 129L, 1L, 7L, 2L, 1L, 10L, 1L, 5L, 6L, 9L,
1L, 28L, 1L, 7L, 386L, 1L, 146L, 1L, 89L, 41L, 9L, 1L, 1L, 1L,
6L, 3L, 4L, 182L, 1L, 5L, 8L, 2L, 1L, 1L, 4L, 1L, 1L, 2L, 3L,
2L, 524L, 4L, 26L, 1L, 152L, 4L, 2L, 3L, 1L, 2L, 2L, 1L, 5L,
10L, 142L, 1L, 1L, 8L, 1L, 3L, 1L, 1L, 1L, 1L, 7L, 4L, 13L, 3L,
375L, 3L, 2L, 147L, 1L, 101L, 29L, 4L, 1L, 1L, 2L, 3L, 1L, 1L,
2L, 1L, 7L, 5L, 5L, 224L, 3L, 12L, 1L, 7L, 2L, 1L, 4L, 141L,
4L, 632L, 2L, 2L, 32L, 1L, 138L, 1L, 1L, 9L, 5L, 1L, 1L, 1L,
2L, 1L, 6L, 3L, 139L, 4L, 1L, 9L, 1L, 1L, 5L, 9L, 8L, 36L, 1L,
537L, 1L, 2L, 5L, 3L, 174L, 1L, 106L, 39L, 9L, 2L, 2L, 2L, 3L,
1L, 6L, 3L, 2L, 689L, 1L, 14L, 2L, 2L, 35L, 1L, 15L, 1L, 1L,
1L, 3L, 20L, 465L, 1L, 3269L, 1L, 2L, 1L, 9L, 1L, 32L, 6L, 2L,
293L, 1L, 3L, 1L, 11L, 2L, 1L, 9L, 10L, 1L, 1L, 1L, 1L, 1L, 2L,
7L, 2L, 433L, 1L, 4L, 1L, 1L, 3L, 19L, 1L, 2L, 1L, 1L, 12L, 1L,
4L, 1L, 1L, 3L, 37L, 10L, 88L, 6L, 1808L, 5L, 4L, 451L, 5L, 219L,
112L, 4L, 3L, 1L, 6L, 1L, 2L, 3L, 5L, 10L, 2L, 264L, 8L, 1L,
1L, 1L, 17L, 1L, 1L, 7L, 1L, 1L, 4L, 6L, 516L, 1L, 948L, 2L,
1L, 2L, 1L, 33L, 1L, 1L, 133L, 1L, 2L, 1L, 5L, 11L, 1L, 4L, 1L,
1L, 1L, 6L, 10L, 5L, 168L, 1L, 1L, 5L, 1L, 10L, 1L, 1L, 3L, 9L,
1L, 2L, 1L, 8L, 3L, 98L, 1L, 548L, 1L, 1L, 177L, 97L, 17L, 4L,
1L, 6L, 2L, 1L, 2L, 1L, 1L, 5L, 4L, 5L, 235L, 1L, 2L, 9L, 2L,
19L, 1L, 2L, 2L, 1L, 1L, 3L, 6L, 5L, 396L, 1209L, 1L, 2L, 1L,
41L, 1L, 125L, 3L, 5L, 1L, 4L, 1L, 1L, 4L, 1L, 3L, 1L, 1L, 5L,
2L, 121L, 2L, 1L, 1L, 10L, 1L, 1L, 4L, 1L, 2L, 10L, 3L, 75L,
5L, 632L, 1L, 2L, 2L, 178L, 1L, 67L, 33L, 6L, 1L, 1L, 1L, 2L,
1L, 12L, 3L, 194L, 1L, 1L, 1L, 1L, 1L, 20L, 1L, 1L, 6L, 1L, 1L,
1L, 1L, 1L, 3L, 2L, 296L, 1L, 1L, 979L, 6L, 4L, 1L, 33L, 1L,
109L, 5L, 2L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 3L, 118L,
1L, 1L, 15L, 1L, 1L, 1L, 1L, 1L, 4L, 2L, 1L, 18L, 6L, 53L, 3L,
584L, 2L, 1L, 2L, 172L, 2L, 100L, 27L, 9L, 2L, 1L, 2L, 1L, 1L,
1L, 11L, 3L, 202L, 6L, 20L, 2L, 1L, 1L, 4L, 1L, 8L, 2L, 292L,
719L, 2L, 1L, 2L, 29L, 106L, 7L, 3L, 8L, 2L, 2L, 1L, 1L, 1L,
7L, 3L, 139L, 4L, 1L, 2L, 17L, 1L, 2L, 3L, 2L, 20L, 53L, 3L,
530L, 2L, 1L, 1L, 172L, 113L, 23L, 2L, 1L, 4L, 2L, 2L, 1L, 7L,
891L, 10L, 1L, 1L, 12L, 1L, 1L, 1L, 1L, 1L, 4L, 5L, 6L, 1312L,
1L, 1L, 1168L, 1L, 4L, 2L, 39L, 133L, 3L, 13L, 5L, 2L, 6L, 1L,
1L, 1L, 13L, 3L, 297L, 4L, 1L, 1L, 9L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 25L, 182L, 1L, 776L, 2L, 1L, 1L, 260L, 2L, 115L, 52L,
14L, 2L, 4L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 14L,
2L, 731L, 7L, 2L, 1L, 16L, 1L, 1L, 3L, 2L, 1L, 1L, 11L, 6L, 294L,
1L, 1135L, 1L, 3L, 1L, 6L, 1L, 36L, 1L, 1L, 126L, 4L, 1L, 1L,
4L, 11L, 1L, 2L, 1L, 2L, 2L, 1L, 6L, 355L, 3L, 9L, 1L, 4L, 1L,
13L, 2L, 1L, 1L, 7L, 1L, 1L, 22L, 5L, 67L, 1L, 2L, 926L, 1L,
1L, 1L, 1L, 2L, 1L, 208L, 1L, 1L, 136L, 44L, 12L, 1L, 1L, 2L,
2L, 4L, 2L, 1L, 1L, 1L, 1L, 8L, 9L, 1L, 198L, 1L, 8L, 13L, 2L,
4L, 1L, 4L, 2L, 205L, 568L, 1L, 1L, 19L, 94L, 2L, 3L, 8L, 1L,
1L, 1L, 1L, 1L, 1L, 8L, 157L, 4L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 12L, 28L, 3L, 444L, 3L, 1L, 2L, 118L, 2L, 75L, 27L,
1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 6L, 7L, 166L, 1L, 1L, 11L, 1L,
1L, 3L, 1L, 1L, 1L, 3L, 203L, 644L, 2L, 1L, 1L, 2L, 26L, 1L,
4L, 75L, 1L, 4L, 2L, 5L, 1L, 1L, 1L, 1L, 1L, 4L, 155L, 1L, 1L,
1L, 3L, 4L, 1L, 2L, 6L, 1L, 36L, 1L, 2L, 446L, 3L, 1L, 99L, 86L,
27L, 1L, 2L, 1L, 1L, 3L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 7L,
1L, 7L, 159L, 1L, 3L, 12L, 1L, 3L, 1L, 1L, 8L, 174L, 733L, 1L,
1L, 1L, 1L, 22L, 2L, 84L, 1L, 1L, 6L, 3L, 1L, 1L, 1L, 3L, 1L,
100L, 6L, 2L, 3L, 1L, 8L, 3L, 38L, 7L, 502L, 2L, 1L, 86L, 6L,
83L, 24L, 6L, 1L, 1L, 1L, 2L, 2L, 321L, 8L, 11L, 1L, 4L, 1L,
2L, 2L, 13L, 191L, 1L, 5L, 1417L, 1L, 6L, 1L, 1L, 28L, 2L, 1L,
150L, 1L, 1L, 7L, 1L, 3L, 2L, 1L, 1L, 3L, 1L, 2L, 1L, 1L, 1L,
4L, 1L, 218L, 3L, 1L, 1L, 8L, 1L, 2L, 1L, 1L, 16L, 4L, 45L, 1L,
3L, 879L, 3L, 1L, 1L, 2L, 207L, 2L, 115L, 44L, 1L, 3L, 1L, 1L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 171L, 4L, 1L, 1L, 7L, 1L, 5L,
4L, 178L, 614L, 3L, 1L, 3L, 1L, 5L, 20L, 1L, 94L, 3L, 4L, 8L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 121L, 1L, 1L, 6L, 1L, 1L, 3L,
2L, 1L, 7L, 3L, 31L, 1L, 1L, 433L, 1L, 3L, 23L, 94L, 79L, 25L,
1L, 2L, 2L, 6L, 2L, 160L, 3L, 6L, 1L, 3L, 2L, 2L, 3L, 1L, 568L,
1L, 2L, 5L, 15L, 5L, 86L, 1L, 2L, 4L, 8L, 3L, 4L, 1L, 1L, 2L,
1L, 118L, 9L, 7L, 1L, 2L, 2L, 11L, 3L, 10L, 1L, 530L, 2L, 3L,
2L, 121L, 1L, 1L, 72L, 34L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 7L, 4L,
326L, 13L, 1L, 1L, 18L, 1L, 2L, 8L, 4L, 2L, 2L, 1L, 1271L, 1L,
1L, 1L, 2L, 3L, 17L, 2L, 161L, 3L, 1L, 14L, 1L, 1L, 2L, 1L, 1L,
4L, 1L, 1L, 10L, 1L, 195L, 1L, 6L, 1L, 1L, 1L, 1L, 23L, 1L, 1L,
2L, 1L, 1L, 2L, 20L, 4L, 10L, 1L, 1050L, 1L, 1L, 3L, 1L, 1L,
1L, 19L, 1L, 196L, 134L, 52L, 4L, 1L, 1L, 1L, 1L, 2L, 3L, 3L,
1L, 1L, 5L, 6L, 1L, 120L, 1L, 3L, 6L, 1L, 1L, 2L, 1L, 2L, 371L,
1L, 1L, 7L, 74L, 2L, 11L, 1L, 3L, 84L, 1L, 1L, 3L, 4L, 14L, 2L,
1L, 5L, 1L, 6L, 1L, 382L, 3L, 1L, 2L, 6L, 2L, 69L, 1L, 54L, 17L,
2L, 1L, 1L, 3L, 7L, 1L, 168L, 2L, 1L, 7L, 1L, 1L, 1L, 1L, 2L,
1L, 5L, 374L, 2L, 5L, 7L, 2L, 69L, 1L, 10L, 6L, 85L, 1L, 1L,
16L, 1L, 1L, 1L, 5L, 2L, 2L, 393L, 3L, 17L, 53L, 75L, 22L, 2L,
2L, 1L, 1L, 1L, 7L, 3L, 1L, 136L, 1L, 7L, 3L, 3L, 2L, 1L, 2L,
488L, 1L, 4L, 25L, 1L, 71L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 2L, 126L,
5L, 1L, 8L, 2L, 1L, 1L, 1L, 1L, 1L, 10L, 1L, 4L, 1L, 1L, 445L,
1L, 1L, 90L, 1L, 77L, 20L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
248L, 8L, 1L, 1L, 19L, 1L, 2L, 1L, 1L, 1L, 4L, 1L, 3L, 981L,
2L, 2L, 1L, 3L, 1L, 14L, 1L, 2L, 134L, 3L, 2L, 1L, 1L, 3L, 1L,
1L, 2L, 5L, 194L, 5L, 1L, 16L, 1L, 1L, 2L, 2L, 1L, 9L, 3L, 8L,
850L, 1L, 1L, 155L, 1L, 117L, 43L, 4L, 4L, 4L, 3L, 5L, 124L,
1L, 1L, 4L, 6L, 1L, 1L, 2L, 3L, 1L, 2L, 373L, 4L, 1L, 2L, 8L,
1L, 63L, 1L, 2L, 12L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 125L, 7L, 2L,
1L, 1L, 7L, 2L, 5L, 1L, 2L, 287L, 2L, 3L, 1L, 54L, 1L, 49L, 19L,
2L, 2L, 3L, 5L, 8L, 1L, 91L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 2L,
289L, 1L, 1L, 1L, 12L, 61L, 1L, 1L, 14L, 2L, 1L, 91L, 1L, 1L,
1L, 7L, 2L, 1L, 4L, 1L, 241L, 1L, 5L, 42L, 1L, 51L, 9L, 4L, 1L,
1L, 4L, 98L, 2L, 4L, 2L, 2L, 251L, 1L, 12L, 1L, 47L, 3L, 1L,
2L, 1L, 1L, 1L, 3L, 2L, 73L, 2L, 3L, 1L, 1L, 11L, 2L, 3L, 1L,
214L, 2L, 1L, 40L, 41L, 17L, 3L, 2L, 103L, 1L, 8L, 5L, 1L, 2L,
1L, 270L, 1L, 1L, 3L, 21L, 60L, 2L, 1L, 2L, 2L, 73L, 4L, 2L,
2L, 1L, 1L, 4L, 1L, 2L, 1L, 219L, 1L, 55L, 60L, 13L, 1L, 2L,
1L, 1L, 168L, 3L, 7L, 1L, 7L, 1L, 1L, 1L, 404L, 8L, 8L, 1L, 99L,
3L, 3L, 11L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 1L, 115L,
1L, 2L, 3L, 2L, 2L, 1L, 1L, 1L, 1L, 5L, 3L, 6L, 362L, 1L, 2L,
64L, 2L, 88L, 15L, 1L, 4L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 104L, 2L, 1L, 9L, 1L, 5L, 1L, 2L, 1L, 1L, 343L, 1L, 1L, 1L,
3L, 10L, 64L, 2L, 10L, 1L, 1L, 1L, 1L, 1L, 4L, 106L, 3L, 1L,
1L, 1L, 2L, 6L, 286L, 1L, 2L, 43L, 2L, 56L, 24L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 140L, 1L, 4L, 2L, 1L, 2L, 2L, 479L, 1L,
1L, 4L, 20L, 87L, 1L, 2L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 118L, 5L,
1L, 9L, 4L, 1L, 14L, 4L, 1L, 1L, 389L, 1L, 1L, 66L, 1L, 75L,
13L, 1L, 1L, 2L, 1L, 1L, 1L, 98L, 3L, 1L, 8L, 2L, 2L, 1L, 1L,
341L, 3L, 1L, 21L, 101L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 85L,
1L, 1L, 1L, 2L, 2L, 4L, 1L, 1L, 4L, 278L, 10L, 67L, 2L, 54L,
15L, 1L, 1L, 1L, 1L, 1L, 98L, 1L, 6L, 3L, 2L, 1L, 315L, 1L, 1L,
6L, 13L, 1L, 59L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 4L, 2L, 90L, 1L,
4L, 1L, 1L, 1L, 1L, 2L, 7L, 1L, 235L, 1L, 1L, 1L, 2L, 53L, 72L,
18L, 3L, 2L, 1L, 1L, 68L, 1L, 1L, 4L, 2L, 1L, 2L, 1L, 1L, 241L,
1L, 1L, 4L, 9L, 37L, 1L, 1L, 66L, 1L, 1L, 7L, 5L, 4L, 2L, 1L,
2L, 197L, 47L, 39L, 19L, 1L), Fuentes = structure(c(3L, 5L, 6L,
6L, 4L, 5L, 5L, 5L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 6L, 6L, 5L, 6L, 5L, 5L, 5L, 5L,
7L, 7L, 6L, 1L, 6L, 5L, 5L, 4L, 5L, 5L, 4L, 6L, 5L, 5L, 5L, 5L,
7L, 3L, 5L, 6L, 6L, 4L, 6L, 5L, 5L, 4L, 4L, 5L, 7L, 7L, 6L, 7L,
5L, 4L, 5L, 4L, 2L, 2L, 6L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L,
4L, 5L, 5L, 5L, 5L, 4L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L,
5L, 4L, 2L, 2L, 5L, 5L, 5L, 4L, 5L, 4L, 5L, 6L, 7L, 3L, 6L, 6L,
5L, 5L, 5L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 7L, 5L, 4L, 2L, 2L,
5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L, 4L, 4L, 5L, 5L,
7L, 7L, 1L, 6L, 5L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 2L, 5L, 5L,
5L, 4L, 5L, 6L, 7L, 3L, 5L, 6L, 6L, 5L, 6L, 5L, 5L, 5L, 5L, 5L,
5L, 7L, 7L, 1L, 6L, 5L, 5L, 5L, 7L, 5L, 5L, 7L, 4L, 5L, 5L, 4L,
2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L,
6L, 4L, 4L, 4L, 6L, 4L, 4L, 4L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L,
7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 7L, 3L, 6L, 6L, 4L, 4L, 6L, 4L, 4L, 5L, 4L, 5L, 5L,
7L, 7L, 5L, 6L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 6L, 4L, 5L, 2L,
2L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 5L, 6L, 4L, 6L, 4L,
4L, 4L, 5L, 4L, 5L, 4L, 5L, 7L, 7L, 6L, 6L, 7L, 5L, 5L, 5L, 5L,
4L, 2L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 6L, 7L, 3L, 5L, 5L, 6L, 6L,
6L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 7L, 7L, 6L, 5L, 5L, 7L, 5L, 4L,
5L, 4L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L,
6L, 6L, 6L, 4L, 4L, 5L, 5L, 4L, 5L, 7L, 7L, 1L, 6L, 5L, 7L, 5L,
5L, 4L, 5L, 5L, 4L, 6L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 6L, 6L,
6L, 4L, 6L, 5L, 4L, 5L, 4L, 5L, 7L, 7L, 4L, 5L, 7L, 7L, 5L, 1L,
6L, 5L, 7L, 5L, 5L, 4L, 5L, 4L, 2L, 2L, 6L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L, 4L, 4L, 5L, 5L, 4L, 4L, 5L, 4L,
5L, 7L, 7L, 1L, 6L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 6L, 5L, 5L,
5L, 5L, 5L, 6L, 7L, 3L, 6L, 6L, 5L, 5L, 4L, 5L, 4L, 5L, 7L, 7L,
6L, 5L, 5L, 7L, 5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 6L, 7L,
3L, 6L, 6L, 4L, 6L, 4L, 4L, 5L, 5L, 5L, 7L, 1L, 6L, 5L, 5L, 5L,
5L, 5L, 5L, 4L, 6L, 5L, 5L, 4L, 5L, 6L, 3L, 6L, 6L, 4L, 6L, 5L,
4L, 4L, 5L, 4L, 5L, 5L, 7L, 7L, 6L, 1L, 6L, 5L, 5L, 7L, 5L, 5L,
4L, 2L, 5L, 5L, 5L, 5L, 5L, 4L, 6L, 7L, 3L, 6L, 4L, 4L, 6L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 7L, 1L, 6L, 5L, 7L, 5L, 5L, 4L,
5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L,
6L, 7L, 3L, 6L, 6L, 4L, 6L, 4L, 4L, 5L, 5L, 7L, 4L, 5L, 7L, 7L,
1L, 6L, 5L, 5L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 5L, 5L, 2L, 2L,
6L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 5L, 6L, 4L, 4L, 4L, 6L, 4L, 4L,
4L, 5L, 5L, 4L, 5L, 7L, 7L, 5L, 1L, 6L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 4L, 5L, 5L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 5L,
5L, 6L, 7L, 3L, 5L, 6L, 6L, 4L, 5L, 4L, 5L, 7L, 7L, 6L, 5L, 7L,
5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 6L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 7L, 1L, 6L, 5L, 5L, 5L, 5L,
4L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 6L, 3L, 5L, 5L,
6L, 5L, 5L, 5L, 4L, 5L, 5L, 7L, 7L, 6L, 5L, 5L, 7L, 5L, 5L, 7L,
5L, 5L, 6L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 4L,
6L, 5L, 4L, 5L, 5L, 7L, 7L, 5L, 1L, 6L, 5L, 5L, 5L, 5L, 5L, 4L,
4L, 5L, 2L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 2L, 4L, 5L, 4L, 6L, 3L,
5L, 6L, 6L, 5L, 5L, 5L, 5L, 7L, 7L, 6L, 5L, 7L, 5L, 7L, 5L, 5L,
5L, 2L, 5L, 2L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 5L, 5L, 4L, 5L,
7L, 7L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 2L, 2L, 5L, 6L, 7L,
3L, 6L, 6L, 5L, 5L, 5L, 7L, 5L, 7L, 7L, 5L, 5L, 6L, 5L, 5L, 5L,
5L, 5L, 4L, 5L, 5L, 4L, 5L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 5L, 3L, 6L, 6L, 4L, 6L, 5L, 5L, 5L, 5L, 5L, 7L,
7L, 5L, 1L, 6L, 5L, 5L, 7L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 6L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 4L, 6L, 5L, 5L, 7L,
7L, 6L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L, 6L, 5L, 4L, 5L, 5L, 4L, 5L, 7L,
7L, 5L, 1L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 6L, 3L,
6L, 6L, 4L, 5L, 5L, 7L, 7L, 1L, 6L, 7L, 5L, 5L, 5L, 5L, 5L, 5L,
4L, 2L, 2L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 6L, 5L, 5L, 5L, 5L,
7L, 7L, 5L, 6L, 7L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 4L, 5L,
5L, 5L, 4L, 5L, 6L, 3L, 6L, 6L, 4L, 6L, 4L, 5L, 5L, 5L, 5L, 7L,
6L, 6L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 6L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 5L, 6L, 4L, 4L, 4L, 5L, 6L, 4L,
4L, 5L, 4L, 5L, 4L, 5L, 7L, 7L, 1L, 6L, 5L, 5L, 5L, 5L, 7L, 5L,
5L, 5L, 5L, 5L, 5L, 4L, 4L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 7L, 3L, 5L, 6L, 6L, 5L, 4L, 5L, 5L, 7L, 6L, 5L, 5L, 5L, 5L,
2L, 2L, 5L, 6L, 3L, 5L, 5L, 6L, 4L, 6L, 5L, 4L, 5L, 7L, 7L, 1L,
6L, 5L, 7L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 7L,
3L, 6L, 6L, 6L, 4L, 5L, 5L, 5L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 5L,
5L, 2L, 2L, 6L, 3L, 6L, 4L, 6L, 4L, 5L, 4L, 5L, 7L, 1L, 6L, 5L,
5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 2L, 5L, 6L, 7L, 3L, 6L, 6L, 5L,
5L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 2L, 2L, 5L, 5L,
5L, 6L, 3L, 6L, 4L, 6L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 7L, 7L, 5L,
1L, 6L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 6L, 5L, 5L, 6L,
7L, 3L, 6L, 4L, 5L, 6L, 5L, 5L, 5L, 5L, 4L, 5L, 7L, 7L, 6L, 5L,
5L, 7L, 5L, 5L, 5L, 4L, 5L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L, 4L,
6L, 3L, 6L, 6L, 6L, 4L, 5L, 5L, 5L, 4L, 5L, 7L, 7L, 6L, 5L, 5L,
5L, 4L, 5L, 5L, 4L, 5L, 5L, 5L, 6L, 3L, 5L, 5L, 6L, 6L, 5L, 4L,
5L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 5L, 4L, 5L, 4L, 2L, 2L, 5L, 5L,
5L, 5L, 5L, 6L, 5L, 3L, 6L, 4L, 5L, 5L, 5L, 7L, 7L, 5L, 1L, 6L,
5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 6L, 7L, 3L, 5L, 6L,
6L, 5L, 5L, 5L, 5L, 7L, 6L, 7L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 5L,
7L, 3L, 6L, 4L, 5L, 6L, 5L, 5L, 5L, 7L, 6L, 5L, 5L, 5L, 4L, 5L,
5L, 4L, 5L, 5L, 6L, 3L, 6L, 6L, 5L, 1L, 6L, 5L, 5L, 4L, 5L, 4L,
2L, 2L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 6L, 5L, 5L, 5L, 7L, 7L, 5L,
6L, 5L, 5L, 5L, 5L, 5L, 4L, 6L, 3L, 6L, 6L, 5L, 5L, 7L, 7L, 6L,
5L, 5L, 5L, 5L, 5L, 4L, 2L, 2L, 6L, 3L, 6L, 5L, 6L, 4L, 4L, 5L,
7L, 7L, 1L, 6L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 3L, 6L, 6L, 5L,
5L, 5L, 5L, 7L, 6L, 5L, 5L, 4L, 5L, 4L, 2L, 2L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 4L, 6L, 7L, 3L, 5L, 6L, 6L, 4L, 5L, 5L, 5L, 4L,
4L, 5L, 7L, 7L, 6L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 2L, 5L, 5L,
5L, 4L, 4L, 5L, 5L, 4L, 6L, 3L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 7L,
5L, 6L, 5L, 5L, 7L, 5L, 5L, 5L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 6L,
3L, 6L, 4L, 4L, 5L, 4L, 5L, 6L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L,
4L, 2L, 5L, 5L, 4L, 4L, 6L, 3L, 6L, 6L, 5L, 5L, 5L, 7L, 6L, 5L,
5L, 5L, 5L, 5L, 4L, 2L, 5L, 5L, 5L, 5L, 5L, 6L, 7L, 3L, 6L, 4L,
6L, 5L, 5L, 5L, 7L, 5L, 1L, 6L, 7L, 5L, 5L, 4L, 5L, 5L, 4L, 5L,
5L, 5L, 6L, 7L, 3L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 6L, 5L, 5L, 5L,
5L, 4L, 5L, 2L, 5L, 5L, 5L, 5L, 6L, 3L, 5L, 4L, 4L, 6L, 4L, 5L,
5L, 5L, 7L, 6L, 5L, 5L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 3L, 6L,
6L, 5L, 5L, 7L, 6L, 5L, 5L, 5L, 5L, 7L, 5L, 4L, 2L, 5L, 5L, 5L,
5L, 5L, 6L, 7L, 3L, 4L, 6L, 5L, 5L, 4L, 5L, 5L, 7L, 1L, 6L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 5L, 6L, 3L, 6L, 6L, 6L, 5L, 5L,
5L, 5L, 7L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 3L, 6L, 4L, 6L, 5L,
5L, 7L, 7L, 5L, 6L, 5L, 5L, 5L, 5L), .Label = c("Adwords", "Campañas",
"Directo", "Email", "Referencias", "SEO", "Social Media"), class = "factor")), .Names = c("date",
"sessions", "Fuentes"), class = "data.frame", row.names = c(NA,
-1724L))
My data after the summarise function:
Fuentes sessions
1 Adwords 71
2 Campa�as 280
3 Directo 11610
4 Email 437
5 Referencias 13143
6 SEO 39837
7 Social Media 5981
Howcome my shiny code does not print right my plot?
1) when used within Shiny, the label appears like blured:
do a summarise before plotting (see code below):
server.R file:
library(ggplot2)
library(dplyr)
require(scales)
Visitas_Por_Fuente <- read.csv("D:\\RCoursera\\Movistar-App-2\\Visitas_Por_Fuente_Dic.csv")
labelsF = c("Directo", "Email", "Referencias", "SEO", "Social Media", "Campañas", "Adwords")
Visitas_Por_Fuente$date <- as.Date(Visitas_Por_Fuente$date)
shinyServer(
function(input, output) {
output$VisitasFuente <- renderPlot({
# Filter the data based on user selection month
date_seq <- seq(input$dates[1], input$dates[2], by = "day")
VisitasData <- filter(Visitas_Por_Fuente, date %in% date_seq & Fuentes %in% labelsF)
VisitasData %>% group_by(Fuentes) %>%
summarise(sessions = sum(sessions))
ggplot(VisitasData, aes(factor(Fuentes), sessions, fill = Fuentes)) +
geom_bar(stat="identity", position = "dodge") +
geom_text(aes(label = comma(sessions)), position=position_dodge(width=0.9), vjust=-0.25) +
scale_fill_manual(breaks = c("0", "1", "3", "6", "9", "12", "15"),
labels = labelsF,
values = c("#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#A082F8", "#F072A2"))
})
})
2) Then i use the same code, but not within shiny, just ggplot2 code:
ggplot(VisitasData, aes(factor(Fuentes), sessions, fill = Fuentes)) +
geom_bar(stat="identity", position = "dodge") +
geom_text(aes(label = comma(sessions)), position=position_dodge(width=0.9), vjust=-0.25) +
scale_fill_manual(breaks = c("0", "1", "3", "6", "9", "12", "15"),
labels = labelsF,
values = c("#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#A082F8", "#F072A2"))
And get what i need:
I also tried, using a reactive function (as recommended in comments), but got:
Error : ggplot2 doesn't know how to deal with data of class reactive
Googled that and found:
http://stackoverflow.com/questions/27771691/many-error-signs-when-running-ggplot-in-render-plot-shiny-in-general
But now,prints a blank sheet:
This is my code with the reactive function:
function(input, output) {
dataSeq <- reactive({
date_seq <- seq(input$dates[1], input$dates[2], by = "day")
})
VisitasData <- reactive({
VisitasData <- filter(Visitas_Por_Fuente, date %in% dataSeq & Fuentes %in% labelsF)
VisitasData %>% group_by(Fuentes) %>%
summarise(sessions = sum(sessions))
})
output$VisitasFuente <- renderPlot({
# Bar graph using ggplot2 library
ggplot(ggplot(selectedData(VisitasData), aes(factor(VisitasData$Fuentes), VisitasData$sessions,
fill = Fuentes)) +
geom_bar(stat="identity", position = "dodge") +
geom_text(aes(label = comma(sessions)), position=position_dodge(width=0.9), vjust=-0.25) +
scale_fill_manual(breaks = c("0", "1", "3", "6", "9", "12", "15"),
labels = labelsF,
values = c("#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#A082F8", "#F072A2"))
})
})
Assuming you want those numbers that showed up in your first call
Fuentes sessions
1 Adwords 71
2 Campa�as 280
3 Directo 11610
4 Email 437
5 Referencias 13143
6 SEO 39837
7 Social Media 5981
You just made a little mistake here:
VisitasData %>% group_by(Fuentes) %>%
summarise(sessions = sum(sessions))
You made a new dataframe, but you didn't assign it to anything. What you want is:
VisitasData <- VisitasData %>% group_by(Fuentes) %>%
summarise(sessions = sum(sessions))
Then you don't need to do a reactive thing, just used the code you did when you first posted it above.
library(ggplot2)
library(dplyr)
require(scales)
Visitas_Por_Fuente <- read.csv("D:\\RCoursera\\Movistar-App-2\\Visitas_Por_Fuente_Dic.csv")
labelsF = c("Directo", "Email", "Referencias", "SEO", "Social Media", "Campañas", "Adwords")
Visitas_Por_Fuente$date <- as.Date(Visitas_Por_Fuente$date)
shinyServer(
function(input, output) {
output$VisitasFuente <- renderPlot({
# Filter the data based on user selection month
date_seq <- seq(input$dates[1], input$dates[2], by = "day")
VisitasData <- filter(Visitas_Por_Fuente, date %in% date_seq & Fuentes %in% labelsF)
VisitasData <- VisitasData %>% group_by(Fuentes) %>%
summarise(sessions = sum(sessions))
# Bar graph using ggplot2 library
ggplot(VisitasData, aes(factor(Fuentes), sessions, fill = Fuentes)) +
geom_bar(stat="identity", position = "dodge") +
geom_text(aes(label = comma(sessions)), position=position_dodge(width=0.9), vjust=-0.25) +
scale_fill_manual(breaks = c("0", "1", "3", "6", "9", "12", "15"),
labels = labelsF,
values = c("#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#A082F8", "#F072A2"))
})
})
Is this what you intended?

Resources