I am running a panel data regression using the plm package in R and want to control for multicollinearity between the explanatory variables.
I know there is the vif() function in the car-package, however as far as I know, it cannot deal with panel data output.
The plm can do other diagnostics such as a unit root test but I found no method to calculate for multicollinearity.
Is there a way to calculate a similar test to vif, or can I just regard each variable as a time-series, leaving out the panel information and run tests using the car package?
I cannot disclose the data, but the problem should be relevant to all panel data models.
The dimension is roughly 1,000 observations, over 50 time-periods.
The code I use looks like this:
pdata <- plm.data(RegData, index=c("id","time"))
fixed <- plm(Y~X, data=pdata, model="within")
and then
vif(fixed)
returns an error.
Thank you in advance.
This question has been asked with reference to other statistical packages such as SAS https://communities.sas.com/thread/47675 and Stata http://www.stata.com/statalist/archive/2005-08/msg00018.html and the common answer has been to use pooled model to get VIF. The logic is that since multicollinearity is only about independent variable there is no need to control for individual effects using panel methods.
Here's some code extracted from another site:
mydata=read.csv("US Panel Data.csv")
attach(mydata) # not sure is that's really needed
Y=cbind(Return) # not sure what that is doing
pdata=plm.data(mydata, index=c("id","t"))
model=plm(Y ~ 1+ESG+Beta+Market.Cap+PTBV+Momentum+Dummy1+Dummy2+Dummy3+Dummy4+Dummy5+
Dummy6+Dummy7+Dummy8+Dummy9,
data=pdata,model="pooling")
vif(model)
Related
Maybe anyone can help me with this question. I conducted a follow-up study and obviously now have to face missing data. Now I am considering how to impute the missing data at best using MLM in R (f.e. participants concluded the follow up 2 survey, but not the follow up 1 survey, therefore I am missing L1 predictors for my longitudinal analysis).
I read about Multiple Imputation of multilevel data using the pan package (Schafer & Yucel, 2002) and came across the following code:
imp <- panImpute(data, formula = fml, n.burn = 1000, n.iter = 100, m = 5)
Yet, I have troubles understanding it completely. Is there maybe another way to impute missing data in R? Or maybe somebody could illustrate the process of the imputation method a bit more detailed, that would be so great! Do I have to conduct the imputation for every model I built in my MLM? (f.e. when I compared, whether a random intercept versus a random intercept and random slope model fits better for my data, do I have to use the imputation code for every model, or do I use it at the beginning of all my calculations?)
Thank you in advance
Is there maybe another way to impute missing data in R?
There are other packages. mice is the one that I normally use, and it does support multilevel data.
Do I have to conduct the imputation for every model I built in my MLM? (f.e. when I compared, whether a random intercept versus a random intercept and random slope model fits better for my data, do I have to use the imputation code for every model, or do I use it at the beginning of all my calculations?)
You have to specify the imputation model. Basically that means you have to tell the software which variables are predicted by which other variables. Since you are comparing models with the same fixed effect, and only changing the random effects (in particular comparing models with and without random slopes), the imputation model should be the same in both cases. So the workflow is:
perform the imputations;
run the model on all the imputed datasets,
pool the results (typically using Rubin's rules)
So you will need to do this twice, to end up with 2 sets of pooled results - one for each model. The software should provide functionality for doing all of this.
Having said all of that, I would advise against choosing your model based on fit statistics and instead use expert knowledge. If you have strong theoretical reasons for expecting slopes to vary by group, then include random slopes. If not, then don't include them.
I am currently running a simple linear regression model with 5 multiply imputed datasets in R.
E.g. model <- with(imp, lm(outcome ~ exposure))
To pool the summary estimates I could use the command summary(mitools::MIcombine(model)) from the mitools package. However, this does not give results for p-values. I could also use the command summary(pool(model)) from the mice package and this does give results for p-values.
Because of this, I am wondering if there is a specific reason why MIcombine does not produce p-values?
After looking through the documentation, it doesn't seem like there is a particular reason that the mitools library doesn't provide p-values. Although, the package's focus is on imputation, not model results.
However, you don't need either of these packages to see your results–along with the per model p-values. I started writing this as a comment but decided to include the code. If you weren't aware...you can use base R's summary. I realize that the output of mice is comparative, as is mitools. I thought it was important enough to mention this, as well.
If the output of your call is model, then this will work.
library(tidyverse)
map(1:length(model), ~summary(model[.x]))
I hope I have come to the right forum. I'm an ecologist making species distribution models using the maxent (version 3.3.3, http://www.cs.princeton.edu/~schapire/maxent/) function in R, through the dismo package. I have used the argument "replicates = 5" which tells maxent to do a 5-fold cross-validation. When running maxent from the maxent.jar file directly (the maxent software), an html file with statistics will be made, including the prediction maps. In R, an html file is also made, but the prediction maps have to be extracted afterwards, using the function "predict" in the dismo package in r. When I do this, I get 5 maps, due to the 5-fold cross-validation setting. However, (and this is the problem) I want only one output map, one "summary" prediction map. I assume this is possible, although I don't know how maxent computes it. The maxent tutorial (see link above) says that:
"...you may want to avoid eating up disk space by turning off the “write output grids” option, which will suppress writing of output grids for the replicate runs, so that you only get the summary statistics grids (avg, stderr etc.)."
A list of arguments that can be put into R is found in this forum https://groups.google.com/forum/#!topic/maxent/yRBlvZ1_9rQ.
I have tried to use the argument "outputgrids=FALSE" both in the maxent function itself, and in the predict function, but it doesn't work. I still get 5 maps, even though I don't get any errors in R.
So my question is: How do I get one "summary" prediction map instead of the five prediction maps that results from the cross-validation?
I hope someone can help me with this, I am really stuck and haven't found any answers anywhere on the internet. Not even a discussion about this. Hope my question is clear. This is the R-script that I use:
model1<-maxent(x=predvars, p=presence_points, a=target_group_absence, path="//home//...//model1", args=c("replicates=5", "outputgrids=FALSE"))
model1map<-predict(model1, predvars, filename="//home//...//model1map.tif", outputgrids=FALSE)
Best regards,
Kristin
Sorry to be the bearer of bad news, but based on the source code, it looks like Dismo's predict function does not have the ability to generate a summary map.
Nitty-gritty details for those who care: When you call maxent with replicates set to something greater than 1, the maxent function returns a MaxEntReplicates object, rather than a normal MaxEnt object. When predict receives a MaxEntReplicates object, it just iterates through all of the models that it contains and calls predict on them individually.
So, what next? Fortunately, all is not lost! The reason that Dismo doesn't have this functionality is that for most kinds of model-building, there isn't actually a valid way to average parameters across your cross-validation models. I don't want to go so far as to say that that's definitely the case for MaxEnt specifically, but I suspect it is. As such, cross-validation is usually used more as a way of checking that your model building methodology works for your data than as a way of building your model directly (see this question for further discussion of that point). After verifying via cross-validation that models built using a given procedure seem to be accurate for the phenomenon you're modelling, it's customary to build a final model using all of your data. In theory this new model should only be better than models trained on a subset of your data.
So basically, assuming your cross-validated models look reasonable, you can run MaxEnt again with only one replicate. Your final result will be a model accuracy estimate based on the cross-validation and a map based on the second run with all of your data lumped together. Depending on what exactly your question is, there might be other useful summary statistics from the cross-validation that you want to use, but those are all things you've already seen in the html output.
I may have found this a couple of years later. But you could do something like this:
xm <- maxent(predictors, pres_train) # basically the maxent model
px <- predict(predictors, xm, ext=ext, progress= '' ) #prediction
px2 <- predict(predictors, xm2, ext=ext, progress= '' ) #prediction #02
models <- stack(px,px2) # create a stack of prediction from all the models
final_map <- mean(px,px2) # Take a mean of all the prediction
plot(final_map) #plot the averaged map
xm1,xm2,.. would be the maxent models for each partitions in cross-validation, and px, px2,.. would be the predicted maps.
I'm using randomForest in order to find out the most significant variables. I was expecting some output that defines the accuracy of the model and also ranks the variables based on their importance. But I am a bit confused now. I tried randomForest and then ran importance() to extract the importance of variables.
But then I saw another command rfcv (Random Forest Cross-Valdidation for feature selection), which should be the most appropriate for this purpose I suppose, but the question I have regarding this is: how to get the list of the most important variables? How to see the output after running it? Which command to use?
Another thing: What is the difference between randomForest and predict.randomForest?
I am not very familiar with randomforest and R therefore any help would be appreciated.
Thank you in advance!
After you have made a randomForest model you use predict.randomForest to use the model you created on new data e.g. build a random forest with training data then run your validation data through that model with predict.randomForest.
As for the rfcv there is an option recursive which (from the help):
whether variable importance is (re-)assessed at each step of variable
reduction
Its all in the help file
Is it possible to do regressions in R using a panel data set with a binary dependent variable? I am familiar with using glm for logit and probit and plm for panel data, but am not sure how to combine the two. Are there any existing code examples?
EDIT
It would also be helpful if I could figure out how to extract the matrix that plm() is using when it does a regression. For instance, you could use plm to do fixed effects, or you could create a matrix with the appropriate dummy variables and then run that through glm(). In a case like this, however, it is annoying to generate the dummies yourself and it would be easier to have plm do it for you.
The package "pglm" might be what you need.
http://cran.r-project.org/web/packages/pglm/pglm.pdf
This package offers some functions of glm-like models for panel data.
Maybe the package lme4 is what you are looking for.
It seems to be possible to run generalized regressions with fixed effects using the comand glme.
But you should be aware that panel data with binary dependent variable is different than the usual linear models.
This site may be helpful.
Best regards,
Manoel
model.frame(plmmodel)
will give you the data frame that is actually used by plm for fitting the model (i.e. after list-wise deletion if you have NAs, etc.)
I don't think that plm has implemented functions to estimate models with binary outcomes, but I may be wrong. Check out the reference manual at: http://cran.r-project.org/web/packages/plm/index.html
If I'm right, this would suggest that you can't "combine the two" without considerable work in extending the functions provided by plm.