I have an object that I wish to be parallel to a plane. The object needs to rotate on the yaw axis while remaining parallel to the plane. Having the normal of the plane and a yaw value, how can I compute the pitch and roll values for the object?
To be less general, I have a car model resting on a plane. When the player looks around, I need to update the rotation of the model, namely the Pitch and Roll, so that the models remains aligned to that plane.
I can't give you a precise answer for your question but I do think I know how to get you somewhere. Your car is an object that has 3 rotational axes: pitch, yaw, and roll. The road (that is our plane) has the same axes. If i understand you correctly, then
You need to get the yaw of the road and use it in the rotation of your car
Ignore yaw in your rotation (but I can't know the details of your situation)
If all this fails you can
Try and find the code that UDK uses for their vehicles and maybe work from there. I know that epic as a lot of sweet code if you look for it. a program called uncode x can help you there
Or buy "Unreal Development Kit Game Programming with Unrealscript: Beginner's Guide" by Rachel Cordone. It is really helpful and explains a lot, including how to manipulate rotation.
Related
Yeah, yeah, I checked out the suggested questions/answers that were given to me but most involved quaternions, or had symbols in them that I don't even HAVE on my keyboard.
I failed at high school trig, and while I understand the basic concepts of sin and cos in 2D space, I'm at a loss when throwing in a third plane to deal with.
Basically, I have these things: centerpoint, distance, and angles for each of the three axes. Given that information, I want to calculate the point that is -distance- away from the center point, at the specified angles.
I'm not sure I'm explaining this correctly. My intent is to get what amounts to electrons orbiting around a nucleus, if anyone happens to know how to do that. I am working with Java, JRE 6, if there are any utility classes in there that can help.
I don't want just an answer, but also the how and why of the answer. If I'm going to learn something, i want to learn ABOUT it as well. I am not afraid to take a lesson in trigonometry, or how quaternions work, etc. I'm not looking for an entire course on the answer, but at least some basic understanding would be cool.
If you did this in 2D, you would have a point on a plane with certain x and y coordinates. The distance from the origin would be sqrt(x^2+y^2), and the angle atan(y/2).
If you were given angle phi and distance r you would compute x= r*cos(phi); y=r*sin(phi);
To do this in three dimensions you need two angles - angle in XY plane and angle relative to Z axis. Calling these phi and theta, you compute coordinates as
X = r*cos(phi)*sin(theta);
Y = r*sin(phi)*sin(theta);
Z = r*cos(theta);
When I have a chance I will make a sketch to show how that works.
Hey so after reading this article I've been left with a few questions I hope to resolve here.
My understanding is that the goal of any multi-dimensional collision response is to convert it to a 1D collision be putting the bodies on some kind of shared axis. I've deduced from the article that the steps to responding to a 2d collision between 2 polygons is to
First find the velocity vector of each bodies collision point
Find relative velocity based on each collision point's velocity (see question 1)
Factor in how much of that velocity is along the the "force transfer line (see question 2)"
(which is the only velocity that matters for the collision)
Factor in elasticity
Factor in mass
Find impulse/ new linear velocity based on 2-4
Finally figure out new angular velocity by figuring out how much of the impulse is "rotating around" each object's CM (which is what determines angular acceleration)
All these steps basically figure out how much velocity each point is coming at the other with after each velocity is translated to a new 1D coordinate system, right?
Question 1: The article says relative velocity is meant to find and expression for the velocity with which the colliding points are approaching each other, but to me it seems as though is simply the vector of
CM 1 -> CM 2, with magnitude based on each point's velocity. I don't understand the reasoning behind even including the CMs in the calculations since it is the points colliding, not the CMs. Also, I like visualizing things, so how does relative velocity translate geometrically, and how does it work toward the goal of getting a 1D collision problem.
Question 2: The article states that the only force during the collision is in the direction perpendicular to the impacted edge, but how was this decided? Also how can they're only be force in one direction when each body is supposed to end up bouncing off in 2 different directions.
"All these steps basically figure out how much velocity each point is coming at the other with after each velocity is translated to a new 1D coordinate system, right?"
That seems like a pretty good description of steps 1 and 2.
"Question 1: The article says relative velocity is meant to find and expression for the velocity with which the colliding points are approaching each other, but to me it seems as though is simply the vector of CM 1 -> CM 2, with magnitude based on each point's velocity."
No, imagine both CMs almost stationary, but one rectangle rotating and striking the other. The relative velocity of the colliding points will be almost perpendicular to the displacement vector between CM1 and CM2.
"...How does relative velocity translate geometrically?"
Zoom in on the site of collision, just before impact. If you are standing on the collision point of one body, you see the collision point on the other point approaching you with a certain velocity (in your frame, the one in which you are standing still).
"...And how does it work toward the goal of getting a 1D collision problem?"
At the site of collision, it is a 1D collision problem.
"Question 2: The article states that the only force during the collision is in the direction perpendicular to the impacted edge, but how was this decided?"
It looks like an arbitrary decision to make the surfaces slippery, in order to make the problem easier to solve.
"Also how can [there] only be force in one direction when each body is supposed to end up bouncing off in 2 different directions."
Each body experiences a force in one direction. It departs in a certain direction, rotating with a certain angular velocity. I can't parse the rest of the question.
I am using a 3D engine called Electro which is programmed using Lua. It's not a very good 3D engine, but I don't have any choice in the matter.
Anyway, I'm trying to take a flat quadrilateral and transform it to be in a specific location and orientation. I know exactly where it is supposed to go (i.e. I know the exact vertices where the corners should end up), but I'm hitting a snag in getting it rotated to the right place.
Electro does not allow you to apply transformation matrices. Instead, you must transform models by using built-in scale, position (that is, translate), and rotation functions. The rotation function takes an object and 3 angles (in degrees):
E.set_entity_rotation(entity, xangle, yangle, zangle)
The documentation does not speficy this, but after looking through Electro's source, I'm reasonably certain that the rotation is applied in order of X rotation -> Y rotation -> Z rotation.
My question is this: If my starting object is a flat quadrilateral lying on the X-Z plane centered at the origin, and the destination position is in a different location and orientation where the destination vertices are known, how could I use Electro's rotation function to rotate it into the correct orientation before I move it to the correct place?
I've been racking my brain for two days trying to figure this out, looking at math that I don't understand dealing with Euler angles and such, but I'm still lost. Can anyone help me out?
Can you tell us more about the problem? It sounds odd phrased in this way. What else do you know about the final orientation you have to hit? Is it completely arbitrary or user-specified or can you use more knowledge to help solve the problem? Is there any other Electro API you could use to help?
If you really must solve this general problem, then too bad, it's hard, and underspecified. Here's some guy's code that may work, from euclideanspace.com.
First do the translation to bring one corner of the quadrilateral to the point you'd like it to be, then apply the three rotational transformations in succession:
If you know where the quad is, and you know exactly where it needs to go, and you're certain that there are no distortions of the quad to fit it into the place where it needs to go, then you should be able to figure out the angles using the vector scalar product.
If you have two vectors, the angle between them can be calculated by taking the dot product.
I'm an artist involved with building various sorts of computer controlled machines. I've started prototyping a gimble-based XY painting machine and have realized that the maths needed are out of my reach. I'm a decent enough programmer but not strong in math- esp. 3D math.
To get a sense of what I'm needing to do, it might be helpful to look at the rig:
Early prototype:
http://roypardi.com/gimble/gimbleSmall.MOV (small video)
http://roypardi.com/gimble/gimbleLarge.mov (larger video)
The two inner rings represent the X/Y axes and are controlled by stepper motors. I want to be able to use both raster images and vector data (gcode). So I need to be able to address a point in 2D space on the paper/from my data and have the gimble figure out what orientation it needs to be at in order to get there (i.e. how much to step each motor).
I've been searching out 2D > 3D projection, Euler angles, etc. but I'm out of my depth. Any pointers, pushes in the right direction, or code snippets would be most welcome. I can make sense of most programming languages.
Very nice machine you have made, I hope this works for you I believe it is correct.
The way I see it, is to get one angle is simple, but the other is slightly harder to visualise as we have tilted the axis which it turns upon.
I'm going to avoid using tan, as when programming this could result in a division by 0, which could be frustrating. Also Z is going to be the height of the origin above the paper.
YAxis = arcsin( X / sqrt(X² + Z²))
XAxis = arcsin( Y / sqrt(Y² + X² + Z²))
or we could use
XAxis = arcsin(Y / sqrt(Y² + Z²))
YAxis = arcsin( X / sqrt(X² + Y² + Z²))
Also, I'd very much like to see a video of this plotting, if it works.
Edit:
After thinking about it i believe only one solution will work it depends on which axis is affected by the other. Is the YAxis in the Middle or the Xaxis?
I think it's a problem of simple http://en.wikipedia.org/wiki/Trigonometry
Let's say that the distance from the centre of your rings to the nearest point on the paper (which I'll call point 'O' for 'Origin') is distance X.
Take another point P directly north of O, whose distance from O is Y.
To paint this point, you need the angle alpha such that tan(alpha)=Y/X, i.e. you can calculate alpha using the formula "arctan(Y/X)" [arctan is sometimes also known as atan]. Arctan is a trignometric function, which I think you'll probably find defined in the API of a general purpose math library.
The above is the simplest case.
The only other case that I can think of is when the point P isn't due north. Instead of being due north, let's say that its distance is Y1 to the north, and Y2 to the east. The solution is two angles (one angle for each of two rings), one of which is "arctan(Y1/X)" and the other of which is "arctan(Y2/X)".
Perhaps I misunderstand, but I don't believe a gimbal will do what you want. A gimbal can point in any 3D direction, but it cannot move to arbitrary points in 3D space. If the plane of the paper intersects the volume swept by the pen held in the gimbal, the pen might be able to draw a circle, but nothing more. Even drawing a circle is not a sure thing, since in this case the paper would also intersect the volume swept by the gimbal rings; trying to orient the pen would make a ring hit the paper.
I think what you want is a plotter, not a gimbal.
So I have written a Quaternion based 3D Camera oriented toward new programmers so it is ultra easy for them to integrate and begin using.
While I was developing it, at first I would take user input as Euler angles, then generate a Quaternion based off of the input for that frame. I would then take the Camera's Quaternion and multiply it by the one we generated for the input, and in theory that should simply add the input rotation to the current state of the camera's rotation, and things would be all fat and happy. Lets call this: Accumulating Quaternions, because we are storing and adding Quaternions only.
But I noticed that there was a problem with this method. The more I used it, even if I was only rotating on one Euler angle, say Yaw, it would, over some iterations, begin bleeding over into another, say Pitch. It was slight, but fairly unacceptable.
So I did some more research and found an article stating it was better to accumulate Euler angles, so the camera stores it's current rotation as Euler angles, and input is simply added to them each frame. Then I generate a Quaternion from them each frame, which is in turn used to generate my rotation matrix. And this fixed the issue of rotation bleeding into improper axes.
So do any Stackoverflow members have any insight into this problem? Is that a proper way of doing things?
Multiplying quaternions is going to suffer from accumulation of floating-point roundoff issues (even simple angles like 45 degrees won't be exact). It's a great way to composite rotations, but the precision of each of your quaternion components is going to drop-off over time. The bleed-through is one side-effect, a visually worse one though is your quaternion could start incorporating a scale factor - to recover that, you'd have to renormalize back to Euler angles in any case. A fixed-point Euler angle isn't going to accumulate roundoff.
Recalculating the quaternion per-frame is minimal. I wouldn't bother trying to optimize it out. You could probably allow a few quaternions to accumulate before you renormalized to get the accuracy back, but it really isn't worth the effort.
Accumulation is an inexact process. Accumulating lots of incremental rotations will accumulate roundoff error whether you do it with quaternions or matrices.
I imagine something like this: you got your code up and running, but noticed that after a certain amount of navigation your camera was heeling over annoyingly -- violating an invariant you hadn't thought of in advance. Effectively, you've realized you don't want to accumulate rotations; instead you want to do something else.
You can look at this as more of an interface design issue than a numerical accuracy issue. Basically, people expect a camera to navigate according to pitch, yaw, and roll, so choosing to control and represent the angles directly can avoid a lot of problems.
The bummer here is that the quaterions seem to have become redundant (for this particular usage, at least). You still want the quaternions, though -- interpolating with the raw pitch/yaw/roll angles can be ugly. Again, it's an interface design question: you need to figure out where you'll need the quaternions, and how to get them in and out...
I've seen both argued for. I think the real question you'll have to deal with is flexibility in your camera system down the line; IMO yaw is generally more interesting in a third-person view (because you're going to rotate about the character's vertical axis). While you can arguably "yaw" around the vertical in first-person view as well, I'm not sure it's really the same thing.
However, I do think it's kind of a waste to recalculate your quaternions per-frame. Perhaps it would be better to store the latest quaternions and mark them dirty if your frame receives input?