I'm trying to use pivot_wider move my dataset from long to wide so I can use it in a different programme.
I have seen the other posts on this topic but the solutions don't address my problem.
I have measurement variable called "rating" which has a value for each "rock" and each test ("gentest", first and second). I have an id variable called "turkcode".
For each individual in the dataset, there are 18 ratings. The problem is that there are 4 ratings for rock #8 and I think this is why the data won't pivot wider the way I want them to.
Here's a subset of the data
structure(list(turkcode = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L), .Label = c("100879",
"104655", "108505", "110324", "110600", "112445", "114083", "115814",
"116573", "117411", "117817", "118651", "119324", "121548", "121883",
"121918", "123275", "123718", "125491", "127450", "127825", "128062",
"129061", "131404", "135358", "135594", "135671", "135945", "137951",
"138675", "139469", "140924", "145730", "147222", "148533", "150851",
"153455", "158882", "164468", "166907", "169260", "171463", "172398",
"175565", "177108", "179000", "180270", "183953", "185574", "185880",
"185948", "186371", "187787", "189220", "190014", "192550", "193904",
"195308", "196755", "197493", "198368", "200155", "200297", "201915",
"214519", "215994", "217903", "218771", "219302", "220434", "222740",
"223223", "224721", "225118", "225223", "229856", "229874", "231301",
"232576", "233842", "234215", "237581", "239567", "240609", "241098",
"241423", "242108", "244633", "246055", "251597", "252929", "255252",
"256652", "259936", "274962", "277053", "279422", "280317", "282602",
"283750", "285737", "286259", "287544", "288507", "290503", "291401",
"291835", "292160", "294117", "297863", "298061", "299347", "299499",
"301399", "304875", "305231", "306312", "307410", "308979", "311157",
"311524", "311630", "318956", "318988", "319995", "321405", "324288",
"327086", "327559", "328345", "328401", "330318", "330909", "332723",
"334115", "334517", "335811", "335831", "337145", "338323", "338542",
"338575", "340083", "341182", "343612", "343947", "344554", "346476",
"349874", "350117", "350433", "350972", "351187", "355311", "356717",
"359366", "360048", "360058", "361191", "361971", "362827", "363543",
"367244", "374254", "374965", "376278", "377622", "382139", "382916",
"384586", "385229", "386782", "388951", "389029", "390299", "390662",
"396335", "396732", "398076", "398573", "399276", "399587", "403388",
"406073", "406160", "411977", "412935", "417350", "420060", "421393",
"422944", "424462", "427143", "429291", "430758", "431629", "431638",
"431935", "432218", "433788", "434291", "436681", "437087", "439385",
"439499", "440477", "440834", "441253", "441876", "443826", "444080",
"447597", "452643", "454649", "457055", "457946", "463512", "464079",
"464123", "467897", "468650", "470211", "471115", "471512", "475493",
"476937", "479198", "482871", "484066", "484070", "485462", "486402",
"491701", "491835", "499644", "501833", "502335", "502373", "504800",
"507439", "507946", "507987", "509066", "513078", "515519", "517017",
"517988", "519144", "519210", "519858", "522847", "523683", "525315",
"528577", "532463", "532630", "533028", "539033", "539852", "540690",
"546773", "546916", "549652", "551599", "554198", "556066", "559920",
"560804", "560857", "562080", "562420", "563841", "565668", "565776",
"566509", "569039", "572553", "575364", "576421", "576694", "576877",
"577120", "577155", "577534", "577605", "578463", "578820", "578995",
"580213", "581893", "582433", "582905", "583887", "584569", "585314",
"585566", "587393", "589144", "592284", "594463", "596863", "601837",
"602632", "604254", "605885", "609296", "609963", "610062", "612437",
"612949", "613161", "614372", "614777", "615372", "615384", "616927",
"618118", "620041", "620336", "621634", "622289", "624098", "626163",
"626612", "627019", "627856", "630003", "630255", "634018", "634478",
"635801", "638606", "640012", "641078", "641366", "641436", "641821",
"642076", "642446", "643329", "643942", "644015", "646792", "647254",
"647700", "649516", "650792", "650810", "651229", "652387", "652671",
"654778", "657964", "658894", "660500", "660607", "664469", "666754",
"666796", "668996", "669712", "671682", "673516", "675712", "677835",
"678008", "679262", "680295", "686455", "690471", "691175", "692489",
"694023", "696001", "698716", "700133", "700641", "707812", "707953",
"708010", "708881", "713657", "715255", "715386", "716764", "718936",
"719956", "725348", "727753", "728436", "729588", "730513", "731928",
"732013", "732438", "733366", "733559", "734672", "735174", "735675",
"737044", "737127", "741264", "745262", "748173", "748414", "748943",
"749221", "749963", "750363", "753518", "754512", "754970", "758639",
"760838", "761642", "766250", "770646", "772574", "773054", "775271",
"776762", "778208", "779453", "781378", "781861", "782257", "785763",
"785860", "787011", "790280", "791735", "791903", "792178", "796650",
"796822", "796970", "798621", "802731", "804701", "805606", "807848",
"809142", "810539", "812182", "812321", "814029", "814545", "814774",
"815079", "816572", "824215", "825063", "827763", "829973", "829983",
"830126", "832112", "832666", "833066", "834756", "835270", "835340",
"837413", "837746", "839882", "846097", "847975", "848746", "851745",
"851975", "856622", "858918", "859174", "859182", "859726", "859850",
"862222", "864356", "865028", "869700", "871576", "872256", "873350",
"873597", "875873", "883140", "886308", "886592", "886706", "892144",
"893930", "894959", "896820", "900374", "901373", "902879", "904147",
"905194", "906305", "908049", "908798", "911505", "913314", "915390",
"915833", "919057", "922432", "924120", "925640", "927671", "932006",
"936810", "936916", "938349", "940727", "941945", "942271", "943188",
"944548", "945783", "947164", "948322", "949181", "951414", "952632",
"955090", "956428", "956985", "959916", "960349", "962224", "962980",
"964665", "967160", "967588", "969929", "972543", "972893", "977734",
"978083", "978981", "980427", "980782", "981541", "981850", "982220",
"983781", "985193", "986366", "988934", "989056", "991218", "991914",
"995411", "995630", "995873", "995936", "996309"), class = "factor"),
aid = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("mem",
"noMem"), class = "factor"), gentest = structure(c(1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L), .Label = c("first", "second"), class = "factor"),
rocks = structure(c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 5L,
6L, 6L, 7L, 7L, 8L, 8L, 8L, 8L, 1L, 1L), .Label = c("R1",
"R2", "R3", "R4", "R5", "R6", "R7", "R8"), class = "factor"),
rating = c(7L, 5L, 2L, 7L, 4L, 2L, 6L, 3L, 3L, 2L, 3L, 3L,
2L, 1L, 3L, 6L, 3L, 2L, 2L, 4L), condition = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L), .Label = c("baseline", "category", "property"
), class = "factor"), order = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("after", "before", "none"), class = "factor")), row.names = c(NA,
-20L), class = c("grouped_df", "tbl_df", "tbl", "data.frame"), groups = structure(list(
turkcode = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L), .Label = c("100879",
"104655", "108505", "110324", "110600", "112445", "114083",
"115814", "116573", "117411", "117817", "118651", "119324",
"121548", "121883", "121918", "123275", "123718", "125491",
"127450", "127825", "128062", "129061", "131404", "135358",
"135594", "135671", "135945", "137951", "138675", "139469",
"140924", "145730", "147222", "148533", "150851", "153455",
"158882", "164468", "166907", "169260", "171463", "172398",
"175565", "177108", "179000", "180270", "183953", "185574",
"185880", "185948", "186371", "187787", "189220", "190014",
"192550", "193904", "195308", "196755", "197493", "198368",
"200155", "200297", "201915", "214519", "215994", "217903",
"218771", "219302", "220434", "222740", "223223", "224721",
"225118", "225223", "229856", "229874", "231301", "232576",
"233842", "234215", "237581", "239567", "240609", "241098",
"241423", "242108", "244633", "246055", "251597", "252929",
"255252", "256652", "259936", "274962", "277053", "279422",
"280317", "282602", "283750", "285737", "286259", "287544",
"288507", "290503", "291401", "291835", "292160", "294117",
"297863", "298061", "299347", "299499", "301399", "304875",
"305231", "306312", "307410", "308979", "311157", "311524",
"311630", "318956", "318988", "319995", "321405", "324288",
"327086", "327559", "328345", "328401", "330318", "330909",
"332723", "334115", "334517", "335811", "335831", "337145",
"338323", "338542", "338575", "340083", "341182", "343612",
"343947", "344554", "346476", "349874", "350117", "350433",
"350972", "351187", "355311", "356717", "359366", "360048",
"360058", "361191", "361971", "362827", "363543", "367244",
"374254", "374965", "376278", "377622", "382139", "382916",
"384586", "385229", "386782", "388951", "389029", "390299",
"390662", "396335", "396732", "398076", "398573", "399276",
"399587", "403388", "406073", "406160", "411977", "412935",
"417350", "420060", "421393", "422944", "424462", "427143",
"429291", "430758", "431629", "431638", "431935", "432218",
"433788", "434291", "436681", "437087", "439385", "439499",
"440477", "440834", "441253", "441876", "443826", "444080",
"447597", "452643", "454649", "457055", "457946", "463512",
"464079", "464123", "467897", "468650", "470211", "471115",
"471512", "475493", "476937", "479198", "482871", "484066",
"484070", "485462", "486402", "491701", "491835", "499644",
"501833", "502335", "502373", "504800", "507439", "507946",
"507987", "509066", "513078", "515519", "517017", "517988",
"519144", "519210", "519858", "522847", "523683", "525315",
"528577", "532463", "532630", "533028", "539033", "539852",
"540690", "546773", "546916", "549652", "551599", "554198",
"556066", "559920", "560804", "560857", "562080", "562420",
"563841", "565668", "565776", "566509", "569039", "572553",
"575364", "576421", "576694", "576877", "577120", "577155",
"577534", "577605", "578463", "578820", "578995", "580213",
"581893", "582433", "582905", "583887", "584569", "585314",
"585566", "587393", "589144", "592284", "594463", "596863",
"601837", "602632", "604254", "605885", "609296", "609963",
"610062", "612437", "612949", "613161", "614372", "614777",
"615372", "615384", "616927", "618118", "620041", "620336",
"621634", "622289", "624098", "626163", "626612", "627019",
"627856", "630003", "630255", "634018", "634478", "635801",
"638606", "640012", "641078", "641366", "641436", "641821",
"642076", "642446", "643329", "643942", "644015", "646792",
"647254", "647700", "649516", "650792", "650810", "651229",
"652387", "652671", "654778", "657964", "658894", "660500",
"660607", "664469", "666754", "666796", "668996", "669712",
"671682", "673516", "675712", "677835", "678008", "679262",
"680295", "686455", "690471", "691175", "692489", "694023",
"696001", "698716", "700133", "700641", "707812", "707953",
"708010", "708881", "713657", "715255", "715386", "716764",
"718936", "719956", "725348", "727753", "728436", "729588",
"730513", "731928", "732013", "732438", "733366", "733559",
"734672", "735174", "735675", "737044", "737127", "741264",
"745262", "748173", "748414", "748943", "749221", "749963",
"750363", "753518", "754512", "754970", "758639", "760838",
"761642", "766250", "770646", "772574", "773054", "775271",
"776762", "778208", "779453", "781378", "781861", "782257",
"785763", "785860", "787011", "790280", "791735", "791903",
"792178", "796650", "796822", "796970", "798621", "802731",
"804701", "805606", "807848", "809142", "810539", "812182",
"812321", "814029", "814545", "814774", "815079", "816572",
"824215", "825063", "827763", "829973", "829983", "830126",
"832112", "832666", "833066", "834756", "835270", "835340",
"837413", "837746", "839882", "846097", "847975", "848746",
"851745", "851975", "856622", "858918", "859174", "859182",
"859726", "859850", "862222", "864356", "865028", "869700",
"871576", "872256", "873350", "873597", "875873", "883140",
"886308", "886592", "886706", "892144", "893930", "894959",
"896820", "900374", "901373", "902879", "904147", "905194",
"906305", "908049", "908798", "911505", "913314", "915390",
"915833", "919057", "922432", "924120", "925640", "927671",
"932006", "936810", "936916", "938349", "940727", "941945",
"942271", "943188", "944548", "945783", "947164", "948322",
"949181", "951414", "952632", "955090", "956428", "956985",
"959916", "960349", "962224", "962980", "964665", "967160",
"967588", "969929", "972543", "972893", "977734", "978083",
"978981", "980427", "980782", "981541", "981850", "982220",
"983781", "985193", "986366", "988934", "989056", "991218",
"991914", "995411", "995630", "995873", "995936", "996309"
), class = "factor"), rocks = structure(c(1L, 1L, 2L, 2L,
3L, 3L, 4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 1L, 1L), .Label = c("R1",
"R2", "R3", "R4", "R5", "R6", "R7", "R8"), class = "factor"),
gentest = structure(c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L), .Label = c("first",
"second"), class = "factor"), .rows = list(1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15:16, 17:18,
19L, 20L)), row.names = c(NA, -18L), class = c("tbl_df",
"tbl", "data.frame"), .drop = TRUE))
Does anyone know how I can modify the second set of ratings for rock #8 so that I can pivot the data wider or even exclude this data from the dataset altogether?
EDIT:
Here is an example of how I'd like the output to look
id <- rep("100879", times = 6)
aid <- rep("mem", times = 6)
test <- rep(c("first", "second"), times = 3)
order <- rep("after", times = 6)
condition <- rep ("cat", times = 6)
R1 <- sample(0:9, 6, replace=T)
R2 <- sample(0:9, 6, replace=T)
R3 <- sample(0:9, 6, replace=T)
R4 <- sample(0:9, 6, replace=T)
R5 <- sample(0:9, 6, replace=T)
R6 <- sample(0:9, 6, replace=T)
R7 <- sample(0:9, 6, replace=T)
R8 <- sample(0:9, 6, replace=T)
df <- cbind(id, aid, test, order, condition, R1, R2, R3, R4, R5, R6, R7, R8)
a data.table suggestion
library( data.table )
#set data as data.table
setDT( mydata )
#create rowid by group
mydata[, row_id := rowidv( mydata, cols = c("turkcode", "aid", "gentest", "condition", "order", "rocks") ) ]
#create new rocks-column to group on
mydata[, rocks2 := paste0( rocks, ifelse( row_id == 1, "", paste0("_",row_id ) ) ) ]
#now cast to wide
dcast( mydata, turkcode + aid + gentest + condition + order ~ rocks2, value.var = "rating" )
# turkcode aid gentest condition order R1 R2 R3 R4 R5 R6 R7 R8 R8_2
# 1: 100879 mem first category after 7 2 4 6 3 3 2 3 6
# 2: 100879 mem second category after 5 7 2 3 2 3 1 3 2
# 3: 104655 mem first category after 2 NA NA NA NA NA NA NA NA
# 4: 104655 mem second category after 4 NA NA NA NA NA NA NA NA
Another option using pivot_wider and separate
library(dplyr)
library(tidyr)
#short version, but you will end up with R1-R8 in list foramt
df %>%
pivot_wider(id_cols = c("turkcode", "aid", "gentest", "condition", "order"),
names_from = "rocks", values_from = "rating", values_fn = list(rating = list))
#clean version
df %>%
#id_cols: A set of columns that uniquely identifies each observation.
#Defaults to all columns in data except for the columns specified in names_from and values_from.
pivot_wider(id_cols = c("turkcode", "aid", "gentest", "condition", "order"),
names_from = "rocks",
values_from = "rating",
values_fn = list(rating = ~paste(., collapse = ","))
#values_fn = list(rating = mean)
#,values_fill = list(rating=0)
) %>%
separate(R8, into = c('R8','R8_1'))
# A tibble: 4 x 14
# Groups: turkcode, gentest [1,118]
turkcode aid gentest condition order R1 R2 R3 R4 R5 R6 R7 R8 R8_1
<fct> <fct> <fct> <fct> <fct> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 100879 mem first category after 7 2 4 6 3 3 2 3 6
2 100879 mem second category after 5 7 2 3 2 3 1 3 2
3 104655 mem first category after 2 NA NA NA NA NA NA NA NA
4 104655 mem second category after 4 NA NA NA NA NA NA NA NA
I have a dataframe in the following form:
person currentTest beforeValue afterValue
1 1 A 1.284297055 2.671763513
2 2 A -0.618359548 -2.354926905
3 3 A 0.039457430 -0.091709968
4 4 A -0.448608324 -0.362851832
5 5 A -0.961777124 -1.416284339
6 6 A 0.702471895 2.052181444
7 7 A -0.455222045 -2.125684279
8 8 A -1.231549132 -2.777425148
9 9 A -0.797234990 -0.558306183
10 10 A -0.709734963 -1.244159550
11 1 B -0.472799377 -0.869472343
12 2 B 0.059720737 1.444855389
13 3 B 0.924201532 2.731049485
14 4 B 0.658884183 1.017542475
15 5 B -1.989807256 -4.712671740
16 6 B 0.660241305 1.971232718
17 7 B 0.089636952 -0.564457911
18 8 B -0.828399941 0.507659171
19 9 B -0.838074237 -0.316996942
20 10 B -1.659197101 -3.317623686
...
What I'd like is to get a data frame of:
person A_Before A_After B_Before, B_After, ...
1 1.284297055 2.671763513 -0.472799377 -0.869472343
2 -0.618359548 -2.354926905 0.059720737 1.444855389
...
I've tried gather and spread but that's not quite what I need as there's the creation of new columns. Any suggestions?
The dput version for easy access is below:
resultsData <- dput(resultsData)
structure(list(person = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L), currentTest = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c("A", "B", "C",
"D", "E", "F"), class = "factor"), beforeValue = c(1.28429705541541,
-0.618359548370402, 0.039457429902531, -0.448608324038257, -0.961777123997687,
0.702471895259405, -0.455222044740939, -1.23154913153736, -0.797234989892673,
-0.709734963076803, -0.47279937661921, 0.0597207367403981, 0.924201531911827,
0.658884182599422, -1.98980725637449, 0.660241304554785, 0.0896369516528346,
-0.828399941497236, -0.838074236572976, -1.65919710134782, 0.577469369909437,
1.92748171699512, -0.245593641496638, 0.126104785456265, -0.559338325961641,
1.29802115505785, 0.719406692531958, 0.969414499181256, -0.814697072724845,
0.86465983690719, -0.709539159817187, 1.02775240926492, -0.50490096148732,
0.40769259465753, -0.868531009656408, 0.949518511358715, 2.32458579520932,
-0.257578702370506, -0.789761851618986, 0.0979274657020477, -0.00803566278013502,
1.42984177159549, 1.45485678109231, -0.956556613290905, 0.443323691839299,
-0.261951072972966, -1.30990441429799, 0.0921741874883992, -1.02612779569131,
0.81550719514697, -0.403037731404182, -0.384422139459082, 0.417074857491798,
-1.37128032791855, -0.0796160137501127, 1.35302483988882, -0.752751140138746,
0.812453275384099, -1.32443072805549, -1.66986584340583), afterValue = c(2.67176351335094,
-2.35492690509713, -0.0917099675669388, -0.362851831626841, -1.4162843393352,
2.05218144382074, -2.12568427901904, -2.77742514848958, -0.558306182843248,
-1.24415954975022, -0.869472343362331, 1.44485538931333, 2.73104948477609,
1.01754247530805, -4.71267174035743, 1.9712327179732, -0.564457911016569,
0.507659170771878, -0.31699694238194, -3.31762368638082, 1.09068172988414,
4.37537723545199, -0.116850493406969, 1.9533832597394, -1.69003563933244,
2.62250581307257, -0.00837379068728961, 1.84192937988371, -0.675899868505659,
2.08506660046288, -0.583526785879512, 0.699298693972492, -1.26172199141024,
1.23589313451783, -1.56008919968504, 0.436686458587792, 0.11699090169902,
-1.07206510594109, 1.21204947218164, -0.812406581646911, 0.50373332256566,
-0.084945367568491, -0.236015748624917, -0.479606239480476, -0.596799139055039,
-0.562575023441403, -0.339935276865152, -0.213813544612318, -0.265296303857373,
-1.12545083569158, 0.0105156062602101, 0.635695183644557, 0.767433440961415,
0.16648012185356, 0.544633089427927, -0.904001384160196, -0.429299134808951,
0.764224744168297, -0.166062348771635, -0.101892580202475)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -60L), .Names = c("person",
"currentTest", "beforeValue", "afterValue"))
We can use dcast from reshape2
library(reshape2)
meltdf <- melt(resultsData, id.vars=1:2)
dcast(meltdf, person ~ currentTest + variable)
> dcast(meltdf, person ~ currentTest + variable)
person A_beforeValue A_afterValue B_beforeValue B_afterValue C_beforeValue C_afterValue D_beforeValue D_afterValue E_beforeValue
1 1 1.28429706 2.67176351 -0.47279938 -0.8694723 0.5774694 1.090681730 -0.70953916 -0.5835268 -0.008035663
2 2 -0.61835955 -2.35492691 0.05972074 1.4448554 1.9274817 4.375377235 1.02775241 0.6992987 1.429841772
3 3 0.03945743 -0.09170997 0.92420153 2.7310495 -0.2455936 -0.116850493 -0.50490096 -1.2617220 1.454856781
4 4 -0.44860832 -0.36285183 0.65888418 1.0175425 0.1261048 1.953383260 0.40769259 1.2358931 -0.956556613
5 5 -0.96177712 -1.41628434 -1.98980726 -4.7126717 -0.5593383 -1.690035639 -0.86853101 -1.5600892 0.443323692
6 6 0.70247190 2.05218144 0.66024130 1.9712327 1.2980212 2.622505813 0.94951851 0.4366865 -0.261951073
7 7 -0.45522204 -2.12568428 0.08963695 -0.5644579 0.7194067 -0.008373791 2.32458580 0.1169909 -1.309904414
8 8 -1.23154913 -2.77742515 -0.82839994 0.5076592 0.9694145 1.841929380 -0.25757870 -1.0720651 0.092174187
9 9 -0.79723499 -0.55830618 -0.83807424 -0.3169969 -0.8146971 -0.675899869 -0.78976185 1.2120495 -1.026127796
10 10 -0.70973496 -1.24415955 -1.65919710 -3.3176237 0.8646598 2.085066600 0.09792747 -0.8124066 0.815507195
E_afterValue F_beforeValue F_afterValue
1 0.50373332 -0.40303773 0.01051561
2 -0.08494537 -0.38442214 0.63569518
3 -0.23601575 0.41707486 0.76743344
4 -0.47960624 -1.37128033 0.16648012
5 -0.59679914 -0.07961601 0.54463309
6 -0.56257502 1.35302484 -0.90400138
7 -0.33993528 -0.75275114 -0.42929913
8 -0.21381354 0.81245328 0.76422474
9 -0.26529630 -1.32443073 -0.16606235
10 -1.12545084 -1.66986584 -0.10189258
You can use a combined gather + spread approach; Gather the *Values columns and combine with currentTest to form the new header, then spread to wide format:
resultsData %>%
gather(key, value, -person, -currentTest) %>%
unite(header, c('currentTest', 'key'), sep = "_") %>%
spread(header, value)
# A tibble: 10 x 13
# person A_afterValue A_beforeValue B_afterValue B_beforeValue C_afterValue C_beforeValue
# * <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 1 2.67176351 1.28429706 -0.8694723 -0.47279938 1.090681730 0.5774694
# 2 2 -2.35492691 -0.61835955 1.4448554 0.05972074 4.375377235 1.9274817
# 3 3 -0.09170997 0.03945743 2.7310495 0.92420153 -0.116850493 -0.2455936
# 4 4 -0.36285183 -0.44860832 1.0175425 0.65888418 1.953383260 0.1261048
# 5 5 -1.41628434 -0.96177712 -4.7126717 -1.98980726 -1.690035639 -0.5593383
# 6 6 2.05218144 0.70247190 1.9712327 0.66024130 2.622505813 1.2980212
# 7 7 -2.12568428 -0.45522204 -0.5644579 0.08963695 -0.008373791 0.7194067
# 8 8 -2.77742515 -1.23154913 0.5076592 -0.82839994 1.841929380 0.9694145
# 9 9 -0.55830618 -0.79723499 -0.3169969 -0.83807424 -0.675899869 -0.8146971
#10 10 -1.24415955 -0.70973496 -3.3176237 -1.65919710 2.085066600 0.8646598
# ... with 6 more variables: D_afterValue <dbl>, D_beforeValue <dbl>, E_afterValue <dbl>,
# E_beforeValue <dbl>, F_afterValue <dbl>, F_beforeValue <dbl>
If you need to rename the columns:
resultsData %>%
gather(key, value, -person, -currentTest) %>%
unite(header, c('currentTest', 'key'), sep = "_") %>%
spread(header, value) %>%
rename_at(vars(matches("Value$")), funs(gsub("Value$", "", .)))
We could do this in a single line using recast
reshape2::recast(resultsData, person ~currentTest + variable, id.var = 1:2)
#person A_beforeValue A_afterValue B_beforeValue B_afterValue C_beforeValue C_afterValue D_beforeValue D_afterValue
#1 1 1.28429706 2.67176351 -0.47279938 -0.8694723 0.5774694 1.090681730 -0.70953916 -0.5835268
#2 2 -0.61835955 -2.35492691 0.05972074 1.4448554 1.9274817 4.375377235 1.02775241 0.6992987
#3 3 0.03945743 -0.09170997 0.92420153 2.7310495 -0.2455936 -0.116850493 -0.50490096 -1.2617220
#4 4 -0.44860832 -0.36285183 0.65888418 1.0175425 0.1261048 1.953383260 0.40769259 1.2358931
#5 5 -0.96177712 -1.41628434 -1.98980726 -4.7126717 -0.5593383 -1.690035639 -0.86853101 -1.5600892
#6 6 0.70247190 2.05218144 0.66024130 1.9712327 1.2980212 2.622505813 0.94951851 0.4366865
#7 7 -0.45522204 -2.12568428 0.08963695 -0.5644579 0.7194067 -0.008373791 2.32458580 0.1169909
#8 8 -1.23154913 -2.77742515 -0.82839994 0.5076592 0.9694145 1.841929380 -0.25757870 -1.0720651
#9 9 -0.79723499 -0.55830618 -0.83807424 -0.3169969 -0.8146971 -0.675899869 -0.78976185 1.2120495
#10 10 -0.70973496 -1.24415955 -1.65919710 -3.3176237 0.8646598 2.085066600 0.09792747 -0.8124066
# E_beforeValue E_afterValue F_beforeValue F_afterValue
#1 -0.008035663 0.50373332 -0.40303773 0.01051561
#2 1.429841772 -0.08494537 -0.38442214 0.63569518
#3 1.454856781 -0.23601575 0.41707486 0.76743344
#4 -0.956556613 -0.47960624 -1.37128033 0.16648012
#5 0.443323692 -0.59679914 -0.07961601 0.54463309
#6 -0.261951073 -0.56257502 1.35302484 -0.90400138
#7 -1.309904414 -0.33993528 -0.75275114 -0.42929913
#8 0.092174187 -0.21381354 0.81245328 0.76422474
#9 -1.026127796 -0.26529630 -1.32443073 -0.16606235
#10 0.815507195 -1.12545084 -1.66986584 -0.10189258