3D plot of bivariate distribution using R or Matlab - r

i would like to know if someone could tell me how you plot something similar to this
with histograms of the sample generates from the code below under the two curves. Using R or Matlab but preferably R.
# bivariate normal with a gibbs sampler...
gibbs<-function (n, rho)
{
mat <- matrix(ncol = 2, nrow = n)
x <- 0
y <- 0
mat[1, ] <- c(x, y)
for (i in 2:n) {
x <- rnorm(1, rho * y, (1 - rho^2))
y <- rnorm(1, rho * x,(1 - rho^2))
mat[i, ] <- c(x, y)
}
mat
}
bvn<-gibbs(10000,0.98)
par(mfrow=c(3,2))
plot(bvn,col=1:10000,main="bivariate normal distribution",xlab="X",ylab="Y")
plot(bvn,type="l",main="bivariate normal distribution",xlab="X",ylab="Y")
hist(bvn[,1],40,main="bivariate normal distribution",xlab="X",ylab="")
hist(bvn[,2],40,main="bivariate normal distribution",xlab="Y",ylab="")
par(mfrow=c(1,1))`
Thanks in advance
Best regards,
JC T.

You could do it in Matlab programmatically.
This is the result:
Code:
% Generate some data.
data = randn(10000, 2);
% Scale and rotate the data (for demonstration purposes).
data(:,1) = data(:,1) * 2;
theta = deg2rad(130);
data = ([cos(theta) -sin(theta); sin(theta) cos(theta)] * data')';
% Get some info.
m = mean(data);
s = std(data);
axisMin = m - 4 * s;
axisMax = m + 4 * s;
% Plot data points on (X=data(x), Y=data(y), Z=0)
plot3(data(:,1), data(:,2), zeros(size(data,1),1), 'k.', 'MarkerSize', 1);
% Turn on hold to allow subsequent plots.
hold on
% Plot the ellipse using Eigenvectors and Eigenvalues.
data_zeroMean = bsxfun(#minus, data, m);
[V,D] = eig(data_zeroMean' * data_zeroMean / (size(data_zeroMean, 1)));
[D, order] = sort(diag(D), 'descend');
D = diag(D);
V = V(:, order);
V = V * sqrt(D);
t = linspace(0, 2 * pi);
e = bsxfun(#plus, 2*V * [cos(t); sin(t)], m');
plot3(...
e(1,:), e(2,:), ...
zeros(1, nPointsEllipse), 'g-', 'LineWidth', 2);
maxP = 0;
for side = 1:2
% Calculate the histogram.
p = [0 hist(data(:,side), 20) 0];
p = p / sum(p);
maxP = max([maxP p]);
dx = (axisMax(side) - axisMin(side)) / numel(p) / 2.3;
p2 = [zeros(1,numel(p)); p; p; zeros(1,numel(p))]; p2 = p2(:);
x = linspace(axisMin(side), axisMax(side), numel(p));
x2 = [x-dx; x-dx; x+dx; x+dx]; x2 = max(min(x2(:), axisMax(side)), axisMin(side));
% Calculate the curve.
nPtsCurve = numel(p) * 10;
xx = linspace(axisMin(side), axisMax(side), nPtsCurve);
% Plot the curve and the histogram.
if side == 1
plot3(xx, ones(1, nPtsCurve) * axisMax(3 - side), spline(x,p,xx), 'r-', 'LineWidth', 2);
plot3(x2, ones(numel(p2), 1) * axisMax(3 - side), p2, 'k-', 'LineWidth', 1);
else
plot3(ones(1, nPtsCurve) * axisMax(3 - side), xx, spline(x,p,xx), 'b-', 'LineWidth', 2);
plot3(ones(numel(p2), 1) * axisMax(3 - side), x2, p2, 'k-', 'LineWidth', 1);
end
end
% Turn off hold.
hold off
% Axis labels.
xlabel('x');
ylabel('y');
zlabel('p(.)');
axis([axisMin(1) axisMax(1) axisMin(2) axisMax(2) 0 maxP * 1.05]);
grid on;

I must admit, I took this on as a challenge because I was looking for different ways to show other datasets. I have normally done something along the lines of the scatterhist 2D graphs shown in other answers, but I've wanted to try my hand at rgl for a while.
I use your function to generate the data
gibbs<-function (n, rho) {
mat <- matrix(ncol = 2, nrow = n)
x <- 0
y <- 0
mat[1, ] <- c(x, y)
for (i in 2:n) {
x <- rnorm(1, rho * y, (1 - rho^2))
y <- rnorm(1, rho * x, (1 - rho^2))
mat[i, ] <- c(x, y)
}
mat
}
bvn <- gibbs(10000, 0.98)
Setup
I use rgl for the hard lifting, but I didn't know how to get the confidence ellipse without going to car. I'm guessing there are other ways to attack this.
library(rgl) # plot3d, quads3d, lines3d, grid3d, par3d, axes3d, box3d, mtext3d
library(car) # dataEllipse
Process the data
Getting the histogram data without plotting it, I then extract the densities and normalize them into probabilities. The *max variables are to simplify future plotting.
hx <- hist(bvn[,2], plot=FALSE)
hxs <- hx$density / sum(hx$density)
hy <- hist(bvn[,1], plot=FALSE)
hys <- hy$density / sum(hy$density)
## [xy]max: so that there's no overlap in the adjoining corner
xmax <- tail(hx$breaks, n=1) + diff(tail(hx$breaks, n=2))
ymax <- tail(hy$breaks, n=1) + diff(tail(hy$breaks, n=2))
zmax <- max(hxs, hys)
Basic scatterplot on the floor
The scale should be set to whatever is appropriate based on the distributions. Admittedly, the X and Y labels aren't placed beautifully, but that shouldn't be too hard to reposition based on the data.
## the base scatterplot
plot3d(bvn[,2], bvn[,1], 0, zlim=c(0, zmax), pch='.',
xlab='X', ylab='Y', zlab='', axes=FALSE)
par3d(scale=c(1,1,3))
Histograms on the back walls
I couldn't figure out how to get them automatically plotted on a plane in the overall 3D render, so I had to make each rect manually.
## manually create each histogram
for (ii in seq_along(hx$counts)) {
quads3d(hx$breaks[ii]*c(.9,.9,.1,.1) + hx$breaks[ii+1]*c(.1,.1,.9,.9),
rep(ymax, 4),
hxs[ii]*c(0,1,1,0), color='gray80')
}
for (ii in seq_along(hy$counts)) {
quads3d(rep(xmax, 4),
hy$breaks[ii]*c(.9,.9,.1,.1) + hy$breaks[ii+1]*c(.1,.1,.9,.9),
hys[ii]*c(0,1,1,0), color='gray80')
}
Summary Lines
## I use these to ensure the lines are plotted "in front of" the
## respective dot/hist
bb <- par3d('bbox')
inset <- 0.02 # percent off of the floor/wall for lines
x1 <- bb[1] + (1-inset)*diff(bb[1:2])
y1 <- bb[3] + (1-inset)*diff(bb[3:4])
z1 <- bb[5] + inset*diff(bb[5:6])
## even with draw=FALSE, dataEllipse still pops up a dev, so I create
## a dummy dev and destroy it ... better way to do this?
dev.new()
de <- dataEllipse(bvn[,1], bvn[,2], draw=FALSE, levels=0.95)
dev.off()
## the ellipse
lines3d(de[,2], de[,1], z1, color='green', lwd=3)
## the two density curves, probability-style
denx <- density(bvn[,2])
lines3d(denx$x, rep(y1, length(denx$x)), denx$y / sum(hx$density), col='red', lwd=3)
deny <- density(bvn[,1])
lines3d(rep(x1, length(deny$x)), deny$x, deny$y / sum(hy$density), col='blue', lwd=3)
Beautifications
grid3d(c('x+', 'y+', 'z-'), n=10)
box3d()
axes3d(edges=c('x-', 'y-', 'z+'))
outset <- 1.2 # place text outside of bbox *this* percentage
mtext3d('P(X)', edge='x+', pos=c(0, ymax, outset * zmax))
mtext3d('P(Y)', edge='y+', pos=c(xmax, 0, outset * zmax))
Final Product
One bonus of using rgl is that you can spin it around with your mouse and find the best perspective. Lacking making an animation for this SO page, doing all of the above should allow you the play-time. (If you spin it, you'll be able to see that the lines are slightly in front of the histograms and slightly above the scatterplot; otherwise I found intersections, so it looked noncontinuous at places.)
In the end, I find this a bit distracting (the 2D variants sufficed): showing the z-axis implies that there is a third dimension to the data; Tufte specifically discourages this behavior (Tufte, "Envisioning Information," 1990). However, with higher dimensionality, this technique of using RGL will allow significant perspective on patterns.
(For the record, Win7 x64, tested with R-3.0.3 in 32-bit and 64-bit, rgl v0.93.996, car v2.0-19.)

Create the dataframe with bvn <- as.data.frame(gibbs(10000,0.98)). Several 2d solutions in R:
1: A quick & dirty solution with the psych package:
library(psych)
scatter.hist(x=bvn$V1, y=bvn$V2, density=TRUE, ellipse=TRUE)
which results in:
2: A nice & pretty solution with ggplot2:
library(ggplot2)
library(gridExtra)
library(devtools)
source_url("https://raw.github.com/low-decarie/FAAV/master/r/stat-ellipse.R") # needed to create the 95% confidence ellipse
htop <- ggplot(data=bvn, aes(x=V1)) +
geom_histogram(aes(y=..density..), fill = "white", color = "black", binwidth = 2) +
stat_density(colour = "blue", geom="line", size = 1.5, position="identity", show_guide=FALSE) +
scale_x_continuous("V1", limits = c(-40,40), breaks = c(-40,-20,0,20,40)) +
scale_y_continuous("Count", breaks=c(0.0,0.01,0.02,0.03,0.04), labels=c(0,100,200,300,400)) +
theme_bw() + theme(axis.title.x = element_blank())
blank <- ggplot() + geom_point(aes(1,1), colour="white") +
theme(axis.ticks=element_blank(), panel.background=element_blank(), panel.grid=element_blank(),
axis.text.x=element_blank(), axis.text.y=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank())
scatter <- ggplot(data=bvn, aes(x=V1, y=V2)) +
geom_point(size = 0.6) + stat_ellipse(level = 0.95, size = 1, color="green") +
scale_x_continuous("label V1", limits = c(-40,40), breaks = c(-40,-20,0,20,40)) +
scale_y_continuous("label V2", limits = c(-20,20), breaks = c(-20,-10,0,10,20)) +
theme_bw()
hright <- ggplot(data=bvn, aes(x=V2)) +
geom_histogram(aes(y=..density..), fill = "white", color = "black", binwidth = 1) +
stat_density(colour = "red", geom="line", size = 1, position="identity", show_guide=FALSE) +
scale_x_continuous("V2", limits = c(-20,20), breaks = c(-20,-10,0,10,20)) +
scale_y_continuous("Count", breaks=c(0.0,0.02,0.04,0.06,0.08), labels=c(0,200,400,600,800)) +
coord_flip() + theme_bw() + theme(axis.title.y = element_blank())
grid.arrange(htop, blank, scatter, hright, ncol=2, nrow=2, widths=c(4, 1), heights=c(1, 4))
which results in:
3: A compact solution with ggplot2:
library(ggplot2)
library(devtools)
source_url("https://raw.github.com/low-decarie/FAAV/master/r/stat-ellipse.R") # needed to create the 95% confidence ellipse
ggplot(data=bvn, aes(x=V1, y=V2)) +
geom_point(size = 0.6) +
geom_rug(sides="t", size=0.05, col=rgb(.8,0,0,alpha=.3)) +
geom_rug(sides="r", size=0.05, col=rgb(0,0,.8,alpha=.3)) +
stat_ellipse(level = 0.95, size = 1, color="green") +
scale_x_continuous("label V1", limits = c(-40,40), breaks = c(-40,-20,0,20,40)) +
scale_y_continuous("label V2", limits = c(-20,20), breaks = c(-20,-10,0,10,20)) +
theme_bw()
which results in:

Matlab's implementation is called scatterhist and requires the Statistics Toolbox. Unfortunately it is not 3D, it is an extended 2D plot.
% some example data
x = randn(1000,1);
y = randn(1000,1);
h = scatterhist(x,y,'Location','SouthEast',...
'Direction','out',...
'Color','k',...
'Marker','o',...
'MarkerSize',4);
legend('data')
legend boxoff
grid on
It also allows grouping of datasets:
load fisheriris.mat;
x = meas(:,1); %// x-data
y = meas(:,2); %// y-data
gnames = species; %// assigning of names to certain elements of x and y
scatterhist(x,y,'Group',gnames,'Location','SouthEast',...
'Direction','out',...
'Color','kbr',...
'LineStyle',{'-','-.',':'},...
'LineWidth',[2,2,2],...
'Marker','+od',...
'MarkerSize',[4,5,6]);

R Implementation
Load library "car". We use only dataEllipse function to draw ellipse based on the percent of data (0.95 means 95% data falls within the ellipse).
library("car")
gibbs<-function (n, rho)
{
mat <- matrix(ncol = 2, nrow = n)
x <- 0
y <- 0
mat[1, ] <- c(x, y)
for (i in 2:n) {
x <- rnorm(1, rho * y, (1 - rho^2))
y <- rnorm(1, rho * x,(1 - rho^2))
mat[i, ] <- c(x, y)
}
mat
}
bvn<-gibbs(10000,0.98)
Open a PDF Device:
OUTFILE <- "bivar_dist.pdf"
pdf(OUTFILE)
Set up the layout first
layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), widths=c(3,1), heights=c(1,3), TRUE)
Make Scatterplot
par(mar=c(5.1,4.1,0.1,0))
The commented lines can be used to plot a scatter diagram without "car" package from where we use dataEllipse function
# plot(bvn[,2], bvn[,1],
# pch=".",cex = 1, col=1:length(bvn[,2]),
# xlim=c(-0.6, 0.6),
# ylim=c(-0.6,0.6),
# xlab="X",
# ylab="Y")
#
# grid(NULL, NULL, lwd = 2)
dataEllipse(bvn[,2], bvn[,1],
levels = c(0.95),
pch=".",
col=1:length(bvn[,2]),
xlim=c(-0.6, 0.6),
ylim=c(-0.6,0.6),
xlab="X",
ylab="Y",
center.cex = 1
)
Plot histogram of X variable in the top row
par(mar=c(0,4.1,3,0))
hist(bvn[,2],
ann=FALSE,axes=FALSE,
col="light blue",border="black",
)
title(main = "Bivariate Normal Distribution")
Plot histogram of Y variable to the right of the scatterplot
yhist <- hist(bvn[,1],
plot=FALSE
)
par(mar=c(5.1,0,0.1,1))
barplot(yhist$density,
horiz=TRUE,
space=0,
axes=FALSE,
col="light blue",
border="black"
)
dev.off(which = dev.cur())
dataEllipse(bvn[,2], bvn[,1],
levels = c(0.5, 0.95),
pch=".",
col= 1:length(bvn[,2]),
xlim=c(-0.6, 0.6),
ylim=c(-0.6,0.6),
xlab="X",
ylab="Y",
center.cex = 1
)

I took #jaap's code above and turned it into a slightly more generalized function. The code can be sourced here. Note: I am not adding anything new to #jaap's code, just a few minor changes and wrapped it in a function. Hopefully it is helpful.
density.hist <- function(df, x=NULL, y=NULL) {
require(ggplot2)
require(gridExtra)
require(devtools)
htop <- ggplot(data=df, aes_string(x=x)) +
geom_histogram(aes(y=..density..), fill = "white", color = "black", bins=100) +
stat_density(colour = "blue", geom="line", size = 1, position="identity", show.legend=FALSE) +
theme_bw() + theme(axis.title.x = element_blank())
blank <- ggplot() + geom_point(aes(1,1), colour="white") +
theme(axis.ticks=element_blank(), panel.background=element_blank(), panel.grid=element_blank(),
axis.text.x=element_blank(), axis.text.y=element_blank(), axis.title.x=element_blank(),
axis.title.y=element_blank())
scatter <- ggplot(data=df, aes_string(x=x, y=y)) +
geom_point(size = 0.6) + stat_ellipse(type = "norm", linetype = 2, color="green",size=1) +
stat_ellipse(type = "t",color="green",size=1) +
theme_bw() + labs(x=x, y=y)
hright <- ggplot(data=df, aes_string(x=x)) +
geom_histogram(aes(y=..density..), fill = "white", color = "black", bins=100) +
stat_density(colour = "red", geom="line", size = 1, position="identity", show.legend=FALSE) +
coord_flip() + theme_bw() + theme(axis.title.y = element_blank())
grid.arrange(htop, blank, scatter, hright, ncol=2, nrow=2, widths=c(4, 1), heights=c(1, 4))
}

Related

How to Add a Legend to a ggplot without plotting the raw data?

I have made a plot of a polynomial function: y = x^2 - 6*x + 9
with a series of several points in a sequence + minor standard error in y. I used these points to construct a spline model for that function from the raw data points, and then I calculated the derivative from the spline model with R's predict() function and then I added both of the spline curves to the plot.
By the way, the expected derivative function is this: dy / dx = 2*x - 6
The original function I colored blue and the 1st derivative function I colored red. I wish to add legends to these plots, but I'm finding that difficult since I did not assign any points to the plots, as I declared the data-frames within the geom_smooth() functions.
The code I'm using is this:
library(ggplot2)
# Plot the function: f(x) = x^2 - 6x + 9
# with a smooth spline:
# And then the deriviative of that function from predicted values of the
# smoothed spline: f ' (x) = 2*x - 6
# Get a large sequence of x-values:
x <- seq(from = -10, to = 10, by = 0.01)
# The y-values are a function of each x value.
y <- x^2 - 6*x + 9 + rnorm(length(x), 0, 0.5)
# Fit the curve to a model which is a smoothed spine.
model <- smooth.spline(x = x, y = y)
# Predict the 1st derivative of this smoothed spline.
f_x <- predict(model, x = seq(from = min(x), to = max(x), by = 1), deriv = 1)
# Plot the smoothed spline of the original function and the derivative with respect to x.
p <- ggplot() + theme_bw() + geom_smooth(data = data.frame(x,y), aes(x = x, y = y), method = "loess", col = "blue", se = TRUE) + geom_smooth(data = data.frame(f_x$x, f_x$y), aes(x = f_x$x, y = f_x$y), method = "loess", col = "red", se = TRUE)
# Set the bounds of the plot.
p <- p + scale_x_continuous(breaks = scales::pretty_breaks(n = 20), limits = c(-5, 10)) + scale_y_continuous(breaks = scales::pretty_breaks(n = 20), limits = c(-10, 10))
# Add some axis labels
p <- p + labs(x = "x-axis", y = "y-axis", title = "Original Function and predicted derivative function")
p <- p + scale_fill_manual(values = c("blue", "red"), labels = c("Original Function", "Derivative Function with respect to x"))
print(p)
I was hoping that I could add the legend with scale_fill_manual(), but my attempt does not add a legend to the plot. Essentially, the plot I get generally looks like this, minus the messy legend that I added in paint. I would like that legend, thank you.
I did this because I want to show to my chemistry instructor that I can accurately measure the heat capacity just from the points from differential scanning calorimetry data for which I believe the heat capacity is just the first derivative plot of heat flow vs Temperature differentiated with respect to temperature.
So I tried to make a plot showing the original function overlayed with the 1st derivative function with respect to x, showing that the plot of the first derivative made only from a spline curve fitted to raw data points reliably produces the expected line dy / dx = 2 * x - 6, which it does.
I just want to add that legend.
Creating a data frame with you data and use color within aesthetics is the most common way of doing this.
df <- rbind(
data.frame(data='f(x)', x=x, y=y),
data.frame(data='f`(x)', x=f_x$x, y=f_x$y))
p <- ggplot(df, aes(x,y, color=data)) + geom_smooth(method = 'loess')
p <- p + scale_x_continuous(breaks = scales::pretty_breaks(n = 20), limits = c(-5, 10)) + scale_y_continuous(breaks = scales::pretty_breaks(n = 20), limits = c(-10, 10))
p <- p + labs(x = "x-axis", y = "y-axis", title = "Original Function and predicted derivative function")
p <- p + scale_color_manual(name = "Functions", values = c("blue", "red"), labels = c("Original Function", "Derivative Function with respect to x"))
print(p)

R ggplot2 adding function to a histogram

I am trying to add this function curve to a histogram. Individually, they work. But when I try to put them on the same graph, the function messes up... I can't seem to figure out how to get them together.
# make dataframe for ggplot (can use random numbers from 0 to 10 to simulate x)
c= data.frame(x= x, cx= c(seq(from= 0.001, to= 10, by= 0.001)))
x and cx have the same number of data points.
# function for curve (alpha and beta are just constants set at 0.5)
fx= function(x){
(beta^alpha)/((x+beta)^(alpha+1)*gamma(alpha))
}
When either the geom_histogram or the stat_function is commented out, the graph works correctly.
# graph code
h_x= ggplot(data= NULL) +
geom_histogram(data= c, aes(x= x, y= ..density..), binwidth= 0.2, col= "purple", fill= "yellow") +
stat_function(fun= fx, data= c, aes(x= cx)) +
coord_cartesian(xlim= c(0:10)) +
labs(title= "Figure 03", x= "x")
plot(h_x)
Curve by itself
;
Histogram and curve together
Like #Gregor, I made some changes to your code and the graph looks OK.
I hope it can help you.
set.seed(1)
x <- rgamma(10000,1)
df1 <- data.frame(x= x, cx= c(seq(from= 0.001, to= 10, by= 0.001)))
beta <- alpha <- 0.5
fx <- function(x) {
print(str(x))
(beta^alpha)/((x+beta)^(alpha+1)*gamma(alpha))
}
# graph code
h_x <- ggplot(data=df1) +
geom_histogram(aes(x= x, y= ..density..), binwidth= 0.2, col= "purple", fill= "yellow") +
stat_function(fun=fx, aes(x=cx), lwd=1) +
coord_cartesian(xlim= c(0:10)) +
labs(title= "Figure 03", x="x")
plot(h_x)
Thanks for the help! I ended up figuring out the problem... It's because there was some large values (greater than 100) for my x values, when I removed these points, the graph looked much better!
But now my graph looks like this:
n= 10000
i= 1
alpha= 0.5
beta= 0.5
x= matrix(data= 5, nrow= n)
lambda= matrix(data= 1.5, nrow= n)
while (i < n) {
x[i+1]= rexp(1, rate= lambda[i])
lambda[i+1]= (x[i+1]+beta)^(alpha+1)*(lambda[i]^alpha)*exp(-lambda[i]*(x[i+1]+beta))
if ((lambda[i+1] < 0.00001) || (lambda[i+1] > 10)) {
while ((lambda[i+1] < 0.00001) || (lambda[i+1] > 10)) {
x[i+1]= rexp(1, rate= lambda[i])
lambda[i+1]= (x[i+1]+beta)^(alpha+1)*(lambda[i]^alpha)*exp(-lambda[i]*(x[i+1]+beta))
}
}
i= i+1
}
# data frame:
df4= data.frame(x= x[x<100], cx= c(seq(from= 0.011, to= 10, by= 0.001)))
# graph (same function (fx) from first post):
h_x= ggplot(data= df4) +
geom_histogram(aes(x= x, y= ..density..), binwidth= 0.2, col= "purple", fill= "yellow") +
stat_function(fun= fx) +
coord_cartesian(xlim= c(0:10)) +
labs(title= "Figure 03", x= "x")
plot(h_x)
Is there any way to make it a smooth curve? I tried scale_x_continuous but to no avail...

Add segments of circles to ggplot based on product of x & y

I want to add shaded areas to a chart to help people understand where bad, ok, and good points can fit.
Good = x*y>=.66
Ok = x*y>=.34
Bad = x*y<.34
Generating the right sequence of data to correctly apply the curved boundaries to the chart is proving tough.
What is the most elegant way to generate the curves?
Bonus Q: How would you do this to produce non-overlapping areas so that different colours could be used?
Updates
I've managed to do in a rather hacky way the drawing of the circle segments. I updated the MRE to use the revised segMaker function.
MRE
library(ggplot2)
pts<-seq(0,1,.02)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
# What function will generate correct sequence of values as these are linear?
segMaker<-function(x,by){
# Original
# data.frame(x=c(seq(0,x,by),0)
# ,y=c(seq(x,0,-by),0)
# )
zero <- data.frame(x = 0, y = 0)
rs <- seq(0, pi, by)
xc <- x * cos(rs)
yc <- x * sin(rs)
gr <- data.frame(x = xc, y = yc)
gr <- rbind(gr[gr$x >= 0, ], zero)
return(gr)
}
firstSeg <-segMaker(.34,0.02)
secondSeg <-segMaker(.66,0.02)
thirdSeg <-segMaker(1,0.02)
ggplot(data.frame(x,y),aes(x,y, colour=x*y))+
geom_point() +
geom_polygon(data=firstSeg, fill="blue", alpha=.25)+
geom_polygon(data=secondSeg, fill="blue", alpha=.25)+
geom_polygon(data=thirdSeg, fill="blue", alpha=.25)
Current & desired shadings
You can create a data frame with the boundaries between each region and then use geom_ribbon to plot it. Here's an example using the conditions you supplied (which result in boundaries that are the reciprocal function, rather than circles, but the idea is the same, whichever function you use for the boundaries):
library(ggplot2)
# Fake data
pts<-seq(0,1,.02)
set.seed(19485)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
df = data.frame(x,y)
# Region boundaries
x = seq(0.001,1.1,0.01)
bounds = data.frame(x, ymin=c(-100/x, 0.34/x, 0.66/x),
ymax=c(0.34/x, 0.66/x, 100/x),
g=rep(c("Bad","OK","Good"), each=length(x)))
bounds$g = factor(bounds$g, levels=c("Bad","OK","Good"))
ggplot() +
coord_cartesian(ylim=0:1, xlim=0:1) +
geom_ribbon(data=bounds, aes(x, ymin=ymin, ymax=ymax, fill=g), colour="grey50", lwd=0.2) +
geom_point(data=df, aes(x,y), colour="grey20") +
scale_fill_manual(values=hcl(c(15, 40, 240), 100, 80)) +
#scale_fill_manual(values=hcl(c(15, 40, 240), 100, 80, alpha=0.25)) + # If you want the fill colors to be transparent
labs(fill="") +
guides(fill=guide_legend(reverse=TRUE))
For circular boundaries, assuming we want boundaries at r=1/3 and r=2/3:
# Calculate y for circle, given r and x
cy = function(r, x) {sqrt(r^2 - x^2)}
n = 200
x = unlist(lapply(c(1/3,2/3,1), function(to) seq(0, to, len=n)))
bounds = data.frame(x, ymin = c(rep(0, n),
cy(1/3, seq(0, 1/3, len=n/2)), rep(0, n/2),
cy(2/3, seq(0, 2/3, len=2*n/3)), rep(0, n/3)),
ymax = c(cy(1/3, seq(0,1/3,len=n)),
cy(2/3, seq(0,2/3,len=n)),
rep(1,n)),
g=rep(c("Bad","OK","Good"), each=n))
bounds$g = factor(bounds$g, levels=c("Bad","OK","Good"))
If you can use a github package, ggforce adds geom_arc_bar():
# devtools::install_github('thomasp85/ggforce')
library(ggplot2)
library(ggforce)
pts<-seq(0,1,.02)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
arcs <- data.frame(
x0 = 0,
y0 = 0,
start = 0,
end = pi / 2,
r0 = c(0, 1/3, 2/3),
r = c(1/3, 2/3, 1),
fill = c("bad", "ok", "good")
)
ggplot() +
geom_arc_bar(data = arcs,
aes(x0 = x0, y0 = y0, start = start, end = end, r0 = r0, r = r,
fill = fill), alpha = 0.6) +
geom_point(data = data.frame(x = x, y = y),
aes(x = x, y = y))
Based on #eipi10's great answer, to do the product component (basically ends up with the same thing) I did:
library(ggplot2)
library(data.table)
set.seed(19485)
pts <- seq(0, 1, .001)
x <- sample(pts, 50, replace = TRUE)
y <- sample(pts, 50, replace = TRUE)
df <- data.frame(x,y)
myRibbon<-CJ(pts,pts)
myRibbon[,prod:=V1 * V2]
myRibbon[,cat:=ifelse(prod<=1/3,"bad",
ifelse(prod<=2/3,"ok","good"))]
myRibbon<-myRibbon[
,.(ymin=min(V2),ymax=max(V2))
,.(cat,V1)]
ggplot() +
geom_ribbon(data=myRibbon
, aes(x=V1, ymin=ymin,ymax=ymax
, group=cat, fill=cat),
colour="grey90", lwd=0.2, alpha=.5)+
geom_point(data=df, aes(x,y), colour="grey20") +
theme_minimal()
This doesn't do anything fancy but works out for each value of x, what the smallest and largest values were that could give rise to a specific banding.
If I had just wanted arcs, the use of ggforce (#GregF) would be really great- it tucks away all the complexity.

filled.contour vs. ggplot2 + stat_contour

I am new to ggplot2, and I am trying to replicate a graph that I created using filled.contour with ggplot2.
below is my code:
require(ggplot2)
require(reshape2)
#data prep
scale <- 10
xs <- scale * c(0, 0.5, 0.8, 0.9, 0.95, 0.99, 1)
ys <- scale * c(0, 0.01, 0.05, 0.1, 0.2, 0.5, 1)
df <- data.frame(expand.grid(xs,ys))
colnames(df) <- c('x','y')
df$z <- ((scale-df$x) * df$y) / ((scale-df$x) * df$y + 1)
#filled contour looks good
filled.contour(xs, ys, acast(df, x~y, value.var='z'))
#ggplot contour looks bad
p <- ggplot(df, aes(x=x, y=y, z=z))
p + stat_contour(geom='polygon', aes(fill=..level..))
I can't figure out how to get ggplot contour to fill the polygons all the way up to the upper left hand side (there's a point at (0,10) with z= 0.99) ...all I get are these weird triangles
To create a ggplot version of the filled.contour plot you'll need to have a larger data.frame than the df object in your example and using geom_tile will produce the plot you are looking for. Consider the following:
# a larger data set
scl <- 10
dat <- expand.grid(x = scl * seq(0, 1, by = 0.01),
y = scl * seq(0, 1, by = 0.01))
dat$z <- ((scl - dat$x) * dat$y) / ((scl - dat$x) * dat$y + 1)
# create the plot, the geom_contour may not be needed, but I find it helpful
ggplot(dat) +
aes(x = x, y = y, z = z, fill = z) +
geom_tile() +
geom_contour(color = "white", alpha = 0.5) +
scale_fill_gradient(low = "lightblue", high = "magenta") +
theme_bw()

How do I plot lines and points with limited points?

I am trying to replot the following figure in a more legible way. Observe that I am trying to plot both lines and points. However, the number of points being printed is way too many and the line is getting covered up. Is there a way I can plot:
Different lines for different datasets
Different points shapes for different datasets but limit the number of points to say 30-50
Add the line and point information to the legend
My plotting code is here (It was too big for SO)
Do you need something like this?
transData$Type2 <- factor(transData$Type, labels = c("Some Info for P", "Some Info for Q"))
ggplot(transData, aes(x=Value, y=ecd)) +
geom_line(aes(group=Type2,colour=Type2, linetype=Type2), size=1.5) +
geom_point(aes(shape = Type2), data = transData[round(seq(1, nrow(transData), length = 30)), ], size = 5) +
opts(legend.position = "top", legend.key.width = unit(3, "line"))
You can plot large, partially transparent points: the denser areas will appear darker.
p <- ggplot(transData, aes(x=Value, y=ecd, group=Type))
p +
geom_point(size=20, colour=rgb(0,0,0,.02)) +
geom_line(aes(colour=Type), size=3)
The following code adds points more or less evenly spaced, though they're not necessarily actual data points (could be interpolated),
barbedize <- function(x, y, N=10, ...){
ind <- order(x)
x <- x[ind]
y <- y[ind]
lengths <- c(0, sqrt(diff(x)^2 + diff(y)^2))
l <- cumsum(lengths)
tl <- l[length(l)]
el <- seq(0, to=tl, length=N+1)[-1]
res <-
sapply(el[-length(el)], function(ii){
int <- findInterval(ii, l)
xx <- x[int:(int+1)]
yy <- y[int:(int+1)]
dx <- diff(xx)
dy <- diff(yy)
new.length <- ii - l[int]
segment.length <- lengths[int+1]
ratio <- new.length / segment.length
xend <- x[int] + ratio * dx
yend <- y[int] + ratio * dy
c(x=xend, y=yend)
})
as.data.frame(t(res))
}
library(plyr)
few_points <- ddply(transData, "Type", function(d, ...)
barbedize(d$Value, d$ecd, ...), N=10)
ggplot(transData, aes(x=Value, y=ecd)) +
geom_line(aes(group=Type,colour=Type, linetype=Type), size=1) +
geom_point(aes(x=x,y=y, colour=Type, shape=Type), data=few_points, size=3)
(this is a quick and dirty proof-of-principle, barbedize should be cleaned up and written more efficiently...)

Resources