I'm trying to run a linear mixed model with repeated measures at 57 different timepoints. But I keep getting the error message:
Error in solve.default(estimates[dimE[1L] - (p:1), dimE[2L] - (p:1), drop = FALSE]) :
system is computationally singular: reciprocal condition number = 7.7782e-18
What does this mean?
My code is such:
model.dataset = data.frame(TimepointM=timepoint,SubjectM=sample,GeneM=gene)
library("nlme")
model = lme(score ~ TimepointM + GeneM,data=model.dataset,random = ~1|SubjectM)
Here's the data:
score = c(2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,6,7,2,-3,11,14,1,7,6,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7,2,-3,11,14,1,7)
timepoint = c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,15,15,15,15,15,15,16,16,16,16,16,16,16,16,17,17,17,17,17,17,18,18,18,18,18,18,19,19,19,19,19,19,19,20,20,20,20,20,20,21,21,21,21,21,21,24,24,24,24,24,24,24,25,25,25,25,25,25,25,27,27,27,27,27,27,28,28,28,28,28,28,29,29,29,29,29,29,30,30,30,30,30,30,30,31,31,31,31,31,31,31,32,32,32,32,32,32,33,33,33,33,33,33,33,33,34,34,34,34,34,34,34,35,35,35,35,35,35,36,36,36,36,36,36,36,37,37,37,37,37,37,38,38,38,38,38,38,39,39,39,39,39,39,39,40,40,40,40,40,40,40,41,41,41,41,41,41,41,41,42,42,42,42,42,42,42,42,43,43,43,43,43,43,44,44,44,44,44,44,44,45,45,45,45,45,45,46,46,46,46,46,46,47,47,47,47,47,47,48,48,48,48,48,48,49,49,49,49,49,49,49,50,50,50,50,50,50,51,51,51,51,51,51,52,52,52,52,52,52,52,53,53,53,53,53,53,53,54,54,54,54,54,54,55,55,55,55,55,55,56,56,56,56,56,56,57,57,57,57,57,57)
sample = c("S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S13T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S01T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0","S02T0","S03T0","S07T0","S09T0","S10T0","S12T0")
gene =c(24.1215870,-18.8771658,-27.3747309,-41.5740199,26.1561877,-2.7836332,20.8322796,36.5745088,-24.1541743,-11.2362216,4.9042852,7.4230219,155.8663563,16.4465366,-11.7982286,-1.6102783,-35.9559091,27.7909495,-13.9181661,-29.6037658,-68.4297261,-45.0877920,-48.3157529,17.1649982,-26.9084544,19.7358439,-5.8991143,-24.1541743,-23.5960654,13.0780939,-2.7836332,18.6394081,-28.3157487,-49.9186269,-33.7086648,41.6864242,-30.6199654,36.1823804,-36.5745088,-49.9186269,-44.9448864,-4.9042852,-34.3314764,62.3465425,-42.7609951,-11.7982286,-32.2055657,-56.1811080,5.7216661,-17.6296771,4.3857431,-43.6534459,9.6616697,-44.9448864,18.7997599,-12.9902884,109.1064494,7.6750504,-43.6534459,-17.7130611,-25.8433097,5.7216661,-18.5575548,35.2750175,36.1823804,2.3596457,-25.7644526,-55.0574858,15.5302365,-19.4854325,73.3687689,63.1668918,20.8322796,16.5175201,-22.5438960,-28.0905540,15.5302365,7.4230219,39.5062602,107.4657509,36.1823804,-23.5964573,-45.0877920,-43.8212642,4.0869043,-40.8266205,26.3375068,13.1572292,-25.9561030,-40.2569571,-52.8102415,2.4521426,-49.1775202,246.1047731,36.1823804,11.7982286,-35.4261223,-26.9669318,-2.4521426,-38.0429873,38.5656349,9.8679219,16.5175201,8.0513914,-42.6976421,26.9735686,-26.9084544,4.3857431,12.9780515,-32.2055657,-33.7086648,9.8085704,-36.2800196,215.7518511,6.5786146,-9.4385829,-19.3233394,-40.4503978,17.1649982,-7.4230219,14.2536650,-23.5964573,-53.1391834,-52.8102415,22.0692834,-54.7447866,24.1215870,-44.8332688,-24.1541743,-42.6976421,26.9735686,-40.8266205,191.1413737,17.5429723,-70.7893718,-37.0364006,-39.3267756,-4.9042852,-0.9278777,93.5198138,-6.5786146,-24.7762801,-28.9850091,-39.3267756,22.0692834,-50.1053979,14.2536650,23.5964573,-20.9336177,-53.9338637,14.7128556,-39.8987428,4.3857431,-64.8902575,-59.5802966,-33.7086648,22.0692834,2.7836332,46.0503024,-35.3946859,-43.4775137,-53.9338637,30.2430921,-34.3314764,80.3942259,28.5073300,-87.3068919,-24.1541743,-62.9228410,13.0780939,-25.0526990,35.0859447,-24.7762801,-38.6466789,-58.4283523,31.0604729,0.0000000,24.4562563,1.0964358,-27.1359259,-75.6830794,-16.8543324,20.4345217,-11.1345329,74.1390629,18.2282447,-27.3044720,-45.2890768,-46.7707724,15.3258912,-27.9523169,-6.9763039,117.3099418,18.6394081,-21.2368115,-38.6466789,-34.8322870,22.0692834,-48.2496425,6.5786146,-64.8902575,-51.5289052,-80.9007955,23.7040451,-26.9084544,223.1349942,8.7714862,10.6184058,-127.2119846,-31.4614205,0.8173809,-16.7017993,9.8679219,-35.3946859,-54.7494617,-44.9448864,14.7128556,-18.5575548,97.5827836,-166.3550237,-95.0064189,-123.5984376,104.6247509,-121.5519839,33.9895089,-44.8332688,-40.2569571,-56.1811080,51.4949946,0.0000000,-16.9312544,95.9808615,6.5786146,-21.2368115,-9.6616697,-13.4834659,10.6259513,-25.9805767,116.4895926,-1.0964358,-16.5175201,-56.3597400,-44.9448864,13.8954747,-12.9902884,-5.6437515,71.3703842,25.2180227,-41.2938002,-53.1391834,-32.5850426,8.9911895,12.9902884,31.9812582,1.0964358,-70.7893718,-33.8158440,-38.2031534,-15.5302365,-25.0526990,153.4053085,36.1823804,-34.2148630,-41.8672354,-19.1015767,22.8866643,0.9278777,20.8322796,-29.4955716,-43.4775137,-69.6645739,33.5126155,-45.4660092,26.3144585,-33.0350402,24.1541743,-42.6976421,0.0000000,-28.7642099,38.3752520,-7.0789372,-22.5438960,-20.2251989,34.3299964,19.4854325,4.3857431,-61.3507889,-33.8158440,-64.0464631,39.2342816,-28.7642099,183.7582306,-4.3857431,-22.4166344,-28.9850091,-57.3047302,25.3388069,-26.9084544,35.0859447,7.0789372,-33.8158440,-43.8212642,-1.6347617,5.5672664,-35.0859447,-40.1139773,-14.4925046,-12.3598438,21.2519025,-14.8460438,119.7709896,30.7002016,-22.4166344,-46.6980703,-43.8212642,5.7216661,-10.2066551,203.4466124,116.2221917,-83.7674233,-109.4989234,-38.2031534,78.4685632,-56.6005421,21.9287154,-63.7104346,-56.3597400,-4.4944886,25.3388069,-73.3023414,29.6037658,-31.8552173,-46.6980703,-79.7771734,21.2519025,-18.5575548,16.4465366,-27.1359259,-43.4775137,-41.5740199,-11.4433321,-23.1969435,27.4108943,-84.9472461,-53.1391834,-40.4503978,22.8866643,16.7017993)
tl;dr I think your problem is that every individual has exactly the same response value (score) for every time point (i.e. perfect homogeneity within individuals), so the random-effects term completely explains the data; there's nothing left over for the fixed effects. Are you sure you didn't want to use gene as your response variable?? (Discovered after running through a bunch of modeling attempts, by plotting the damn data, something everyone should always do first ...)
## simplifying names etc. slightly
dd <- data.frame(timepoint,sample,gene,score,)
library("nlme")
m0 <- lme(score ~ timepoint + gene, data=dd,
random = ~1|sample)
## reproduces error
As a first check, let's just see if there's something in your fixed-effect model that is singular:
lm(score~timepoint+gene,dd)
##
## Call:
## lm(formula = score ~ timepoint + gene, data = dd)
##
## Coefficients:
## (Intercept) timepoint gene
## 5.414652 -0.004064 -0.024485
No, that works fine.
Let's try it in lme4:
library(lme4)
m1 <- lmer(score ~ timepoint + gene + (1|sample), data=dd)
## Error in fn(x, ...) : Downdated VtV is not positive definite
Let's try scaling & centering the data -- sometimes that helps:
ddsc <- transform(dd,
timepoint=scale(timepoint),
gene=scale(gene))
lme still fails:
m0sc <- lme(score ~ timepoint + gene, data=ddsc,
random = ~1|sample)
lmer works -- sort of!
m1sc <- lmer(score ~ timepoint + gene + (1|sample), data=ddsc)
## Warning message:
## In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
The results give coefficients for the parameters that are vanishingly close to zero. (The residual variance is also vanishingly small.)
## m1sc
## Linear mixed model fit by REML ['lmerMod']
## Formula: score ~ timepoint + gene + (1 | sample)
## Data: ddsc
## REML criterion at convergence: -9062.721
## Random effects:
## Groups Name Std.Dev.
## sample (Intercept) 7.838e-01
## Residual 3.344e-07
## Number of obs: 348, groups: sample, 8
## Fixed Effects:
## (Intercept) timepoint gene
## 5.714e+00 -4.194e-16 -1.032e-14
At this point I can only think of a couple of possibilities:
there's something about the experimental design that means the random effects are somehow (?) completely confounded with one or both of the fixed effects
these are simulated data that are artificially constructed to be perfectly balanced ... ?
library(ggplot2); theme_set(theme_bw())
ggplot(dd,aes(timepoint,score,group=sample,colour=gene))+
geom_point(size=4)+
geom_line(colour="red",alpha=0.5)
Aha!
In order for R to solve a matrix, it needs to be computationally invertible. The error you are getting back is telling you that, for computational purposes, your matrix is singular, which means it does not have an inverse.
As this error deals more with the statistical theory side, it's probably better suited for cross-validated. See this link for more information.
Check your data to make sure you do not have perfectly correlated independent variables.