Tail-recursion on trees - functional-programming

I have a data structure,
datatype 'a tree = Leaf | Branch of 'a tree * 'a * 'a tree
and I want to write a function that traverses this tree in some order. It doesn't matter what it does, so it could be a treefold : ('a * 'b -> 'b) -> 'b -> 'a tree -> 'b. I can write this function like this:
fun treefold f acc1 Leaf = acc1
| treefold f acc1 (Branch (left, a, right)) =
let val acc2 = treefold f acc1 left
val acc3 = f (a, acc2)
val acc4 = treefold f acc3 right
in acc4 end
But because I inevitably have two branches in the last case, this is not a tail-recursive function.
Is it possible to create one that is, given the type signature is allowed to be expanded, and at what cost? I also wonder if it's even worth trying; that is, does it give any speed benefits in practice?

You can achieve a tail-recursive treefold using continuation-passing style:
fun treefold1 f Leaf acc k = k acc
| treefold1 f (Branch (left, a, right)) acc k =
treefold1 f left acc (fn x => treefold1 f right (f(a, x)) k)
fun treefold f t b = treefold1 f t b (fn x => x)
For example:
fun sumtree t = treefold op+ t 0
val t1 = Branch (Branch(Leaf, 1, Leaf), 2, Branch (Leaf, 3, Leaf))
val n = sumtree t1
results in n = 6 as expected.

Like #seanmcl writes, the systematic way to convert a function to be tail-recursive is to use continuation-passing style.
After that you probably want to reify your continuations and use a more concrete data type, like a list for instance:
fun treefoldL f init tree =
let fun loop Leaf acc [] = acc
| loop Leaf acc ((x, right) :: stack) =
loop right (f(x,acc)) stack
| loop (Branch (left, x, right)) acc stack =
loop left acc ((x, right) :: stack)
in loop tree init [] end

Related

OCaml Tree Operation

I am trying to write methods on arbitrary trees in OCaml. Here is my tree constructor:
type 'a tree =
| Leaf of 'a
| Node of ('a tree) list
I am having trouble with fold_tree:
let rec fold_tree (f : 'b list -> 'b) (g : 'a -> 'b) (t : 'a tree): 'b.
For example, fold_tree sum (fun x -> x) (node [node [leaf 7; leaf 8]; leaf 9])=24
Not sure what you are trying to accomplish here... Is it something like this?
let rec fold_tree f acc (t:'a tree) =
match t with
| Leaf e -> f acc e
| Node l ->
List.fold_left
(
fun a e -> fold_tree f a e
) acc l
Example of usage:
let data = Node [Node [Leaf 7; Leaf 8; Leaf 100]; Leaf 9; Leaf 10;]
let ans = fold_tree (fun a e -> a + e) 0 data
let () = print_endline(string_of_int ans)

Debugging this OCaml code? Functional Programming

let rec fold_inorder f acc t =
match t with
| Leaf -> acc
| Node (l, n, r) -> f (fold_inorder f acc l) (f n (fold_inorder f acc r))
I'm trying to print the infold of a tree as following :
fold_inorder (fun acc x -> acc # [x]) [] (Node (Node (Leaf,1,Leaf), 2, Node (Leaf,3,Leaf))) = [1;2;3]
I'm getting an error saying my [x] is
This expression has type 'a list
but an expression was expected of type 'a
The type variable 'a occurs inside 'a list
I'm really not sure what to do from here. Can anyone nudge me in the right direction?
In your definition of fold_inorder, what type do you expect f to have?
If I look at this call:
f n (fold_inorder f acc r)
it appears that the first parameter of f is a new value from a tree node and the second parameter is an accumulated value.
But in your test call you define f like this:
(fun acc x -> ...)
This suggests that the first parameter is the accumulated value and the second parameter is a new value from a tree node.

Implement a map functional for a list of lists without using nested maps

I set myself the following challenge (and failed):
I want to write a map functional, map f lofls, that takes a function, f 'a -> 'b and a list of lists, lofls 'a list list and applies the function f on every element of the list of lists. The constraint that I added is that I am not allowed to used nested maps for lists, and I have to do it recursively.
I tried to do it in F# but any language should do. Any ideas?
Edit
Here is my attempt (which works but is ugly and I am not a fan of the use of rev either . . .)
let map f lis =
let rec map2 f lis aux =
match (lis, aux) with
|([], []) -> []
|([], aux) -> [aux]
|(hd::tl, aux) ->
match hd with
|[] -> (List.rev aux) :: (map2 f tl [])
|x::xs -> map2 f (xs::tl) ( (f x) :: aux )
map2 f lis []
(I also realised that this has been posted in a more concise form already)
Lets go step by step, from simple to complex.
This is the signature that you want your map function to have:
('a -> 'b) -> 'a list list -> 'b list list
The simple solution is this:
let map0 (f:'a -> 'b) (lofls:'a list list) : 'b list list = lofls |> List.map (List.map f)
But that one is not recursive and it uses nested maps.
A recursive solution could be this:
let rec map1 (f:'a -> 'b) (lofls:'a list list) : 'b list list =
match lofls with
| [] -> []
| l::rest -> (List.map f l) :: map1 f rest
It is recursive although it is still calling List.map in there.
So, here is the next level:
let rec map (f:'a -> 'b) (lofls:'a list list) : 'b list list =
match lofls with
| [ ] -> [ ]
| [ ] :: rest -> [ ] :: (rest |> map f)
| ( e::restl ) :: rest ->
match restl :: rest |> map f with
| [ ] -> [ ]
| [ ] :: rest -> [ f e ] :: rest
| ( restl ) :: rest -> ( f e :: restl ) :: rest
Another way:
let rec mapNested f lofls =
match lofls with
| [] -> []
| h::t -> (map f h) :: (mapNested f t)
and map f lst =
match lst with
| [] -> []
| h::t -> (f h) :: (map f t)
If this were a homework question, which I am sure it is not, the answer depends on what constitutes "a nested map for lists".
A construct like map [] (map [] f) can be rewritten with pipelining as f |> map [] |> map [], or with the function composition operator as (map [] >> map []) f, but may be still considered a nested map.
let mapNested f =
let rec map acc g = function
| [] -> List.rev acc
| x::xs -> map (g x::acc) g xs
f |> map [] |> map []
// val mapNested : f:('a -> 'b) -> ('a list list -> 'b list list)
This is the opportunity to demonstrate your grasp of lambda calculus and the Y combinator. Nested passing of the map function as an argument should clearly pass muster.
let rec Y f x = f (Y f) x
let map f acc g = function
| [] -> List.rev acc
| x::xs -> f (g x::acc) g xs
let map1 f =
Y map [] f
// val map1 : f:('a -> 'b) -> ('a list -> 'b list)
let map2 f =
Y map [] f
|> Y map []
// val map2 : f:('a -> 'b) -> ('a list list -> 'b list list)
A tail recursive way
let mapNested f lofls =
let rec map f lst acc =
match lst with
| [] -> List.rev acc
| h::t -> map f t (f h :: acc)
map (fun x -> map f x []) lofls []
I'm not sure why this question is tagged with SML, but since it is, here is how it can be done in SML:
First, this is the idiomatic solution that you're explicitly avoiding:
fun mapmap f = map (map f)
(You could write val mapmap = map o map if it weren't for ML's value restriction.)
And if you'd like to write mapmap using explicit recursion:
fun mapmap f [] = []
| mapmap f (xs::xss) = map f xs :: mapmap f xss
and map f [] = []
| map f (x::xs) = f x :: map f xs
One reason behind why this function is hard to write with a single explicitly recursive function is that the call stack is used for two things:
Collecting the result of each inner list, and
Collecting the result of the outer list.
One of those uses of the call stack can be turned into an explicit stack in an accumulating argument. This is how e.g. a tail-recursive rev is defined:
fun rev xs =
let fun aux [] acc = acc
| aux (x::xs) acc = aux xs (x::acc)
in aux xs [] end
The accumulating argument similarly isn't needed in the interface to mapmap, so it can be hidden in an inner helper function. So a single function that performs explicit recursion on both the inner and the outer list is complicated by this explicit bookkeeping:
fun mapmap f xss =
let fun aux f [] _ = []
| aux f ([]::xss) ys = rev ys :: aux f xss []
| aux f ((x::xs)::xss) ys = aux f (xs::xss) (f x :: ys)
in aux f xss [] end

Trying to replicate the elements in a list n times in OCaml

I'm trying to write a function that would take an input like :
repeat 3 [1;2] ;;
and display something like:
[1;2;1;2;1;2]
Now the code I have is:
let repeat ls n =
let rec helper acc n l =
if n = 0 then acc else helper (l :: acc) (n-1) l in
let rec helper2 acc = function
| [] -> acc
| h :: t -> helper2 (helper acc n h) t in helper2 [] (List.rev ls);;
which gives me an output of:
[1;1;1;2;2;2]
for the same input. What can I do to fix this?
You are almost at the end ;)
Just modify the first helper :
let rec helper acc n l =
if n = 0 then acc else helper (l # acc) (n-1) l ;;
And you will be close to the solution.
(you just want to replicate the input list so # is ok to concatenate this list to the acc, you do not want to parse each and every element of the list, so :: is not what you need)
I think this solution may be a little bit faster in term of complexity (and simplicity):
let repeat ls n =
let rec f l = function
| 0 -> l
| n -> f (List.rev_append ls l) (n-1) in
List.rev (f [] n)
Also I always forget if List.rev is a tail-recursive or not, so this may be even better:
let repeat ls n =
let rec rev l = function
| [] -> l
| a::t -> rev (a::l) t in
let rec f l = function
| 0 -> l
| n -> f (List.rev_append ls l) (n-1) in
rev [] (f [] n)
Note: in my opinion Pierre's answer is good enough, my post is more like remark.

recursion in ocaml nested lists

I am new to Ocaml and am writing code to substitute elements in nested Ocaml lists. My code is as follows:
type 'a sexp = S of 'a | L of 'a sexp list
My substitution function(it replaces all occurrences of element a with b in nested lists) is as follows:
let rec subst a b list = match list with
| [] -> list
| S s :: t -> if s = a then (S b) :: (subst a b t) else (S s) :: (subst a b t)
| L l :: t -> (subst a b l) :: (subst a b t)
Despite multiple attempts(for nearly 6 hours), I have not been able to compile this code.. Please help!
Can I suggest to first write a function subst of type 'a -> 'a -> 'a sexp -> 'a sexp instead? It would read
let subst x y sexp =
let rec visit = function
| S z -> S (if z = x then y else z)
| L sexps -> L (List.map visit sexps)
in
visit sexp
and arguably nicely and idiomatically captures the idea of recursing over an sexp.
Now, to obtain a function to operate on lists rather than single sexps, you can easily define a function subst_list of type 'a -> 'a -> 'a sexp list -> 'a sexp list:
let subst_list x y sexps = List.map (subst x y) sexps
Even nicer is to abstract away from substitution and have a more generally applicable function map of type ('a -> 'b) -> 'a sexp -> 'b sexp for performing structure-preserving mappings of sexps:
let map f sexp =
let rec visit = function
| S x -> S (f x)
| L sexps -> L (List.map visit sexps)
in
visit sexp
And then define subst in terms of map and subst_list, as before, in terms of subst:
let subst x y sexp = map (fun z -> if z = x then y else z) sexp
let subst_list x y sexps = List.map (subst x y) sexps
Note: using an F# compiler here; I don't have an OCaml compiler on this computer.
The last line of your subst function has an error: It should be as follows:
| L l :: t -> L (subst a b l) :: (subst a b t)
So the complete code would look like this:
type 'a Sexp =
| S of 'a
| L of 'a Sexp list
let rec subst (a) (b) (lst : 'a Sexp list) =
match lst with
| [] -> lst
| S s :: t -> if s = a then (S b) :: (subst a b t) else (S s) :: (subst a b t)
| L l :: t -> L (subst a b l) :: (subst a b t)
let test () =
let (lst : int Sexp list) = [S 1; L [S 2; L [S 3]; S 4]; S 5]
let a = 2
let b = 3
subst a b lst
The output of test() is
[S 1; L [S 3; L [S 3]; S 4]; S 5]
The reason is that your function subst returns a 'a Sexp list. If you omit the L constructor from the last line, then subst a b l is of type 'a Sexp list, which you are attempting to cons with another list of type 'a Sexp list. This does not work.
Nor was this your intention, since you wanted to end up with an entity of type 'a Sexp list, which means you must cons an element of type 'a Sexp with a list of type 'a Sexp list. By specifying the L constructor, you are creating an element of type 'a Sexp list, which you can now cons with the rest of the list.
It looks like your function subst is supposed to return something of type 'a sexp list. That's what the first and second match cases return.
In the third match case, then, your returned value is:
(subst a b l) :: (subst a b t)
Since your function returns 'a sexp list, this type doesn't make a lot of sense. The head of the list is of type 'a sexp list and the tail of the list is also of type 'a sexp list. It's very difficult to come up with any lists that have this kind of structure. I think what you want is for the head of the list to be of type 'a sexp.
If you want the head of the list to be of type 'a sexp, you need some way of packaging up a list of things into a single 'a sexp. If this isn't enough of a hint, look at your L constructor. That's exactly what it does.

Resources