converting string IDs into numbers in a multilevel analysis using R [duplicate] - r

This question already has an answer here:
converting string IDs into numbers in a multilevel analysis using R
(1 answer)
Closed 9 years ago.
I have two data sets, one for student level data and another one for class level data. Student and class level IDs are generated as string values like:
Student data set:
student ID ->141PSDM2L,1420CHY1L,1JNLV36HH,1MNSBXUST,2K7EVS7X6,2N2SC26HL,...
class ID ->XK37HDN,XK37HDN,XK37HDN,3K3EH77,3K3EH77,2K36HN6,...
class level data set:
class ID ->XK37HDN,3K3EH77,2K36HN6,3K3LHSH,3K3LHSY,DK3EH14,DK3EH1H,DK3EH1K,...
In student data set,each class ID is repeated equal to the number of students in the class but in class level data set we only have one code for each class.
How can I convert those ID into integers? considering both student and class level ID.IN other words, I want to have IDs as below (or something similar):
Student data set:
student ID ->1,2,3,4,5,6,...
class ID ->1,1,1,2,2,3,...
class level data set:
class ID ->1,2,3,4,5,6,7,8,...
EDIT:
Conversion on student level data is not difficult. The problem arises when I want to convert class level data. Because of the repetition of class IDs in student data set, class IDs take values from 1 to 1533 but doing the same conversion method in class level data produces values from 1 to 896 so I don't know if , for example,class ID of 45 in student level data has the position as class ID 45 in class level data set.

Assuming that your studentID and classID are factors, I would use the fact that internally these are stored numerically. Hence if you can get the levels the same on both factors (i.e. in same order, and such that identical(levels(f1), levels(f2)) == TRUE), then you can simply coerce to integers.
I was thinking something along the lines of:
## dummy data first
set.seed(1)
df1 <- data.frame(f1 = sample(letters, 100, replace = TRUE),
f2 = sample(LETTERS, 100, replace = TRUE,
prob = rep(c(0.25, 0.75), length = 26)))
df2 <- with(df1, data.frame(f2 = sample(factor(unique(f2),
levels = sample(unique(f2)))),
vals = rnorm(length(unique(f2)))))
Note the levels of the factors are not identical even though there is a match between the data (given the way I generated them)
> identical(with(df1, levels(f2)), with(df2, levels(f2)))
[1] FALSE
Now make the levels identical, here I just take the union in case there are some values in one factor and not the other, and vice versa.
## make levels identical
levs <- sort(union(with(df1, levels(f2)), with(df2, levels(f2))))
df1 <- transform(df1, f2 = factor(f2, levels = levs))
df2 <- transform(df2, f2 = factor(f2, levels = levs))
> identical(with(df1, levels(f2)), with(df2, levels(f2)))
[1] TRUE
Now record to numeric
## recode as numeric
df1b <- transform(df1, f2int = as.numeric(f2))
df2b <- transform(df2, f2int = as.numeric(f2))
> head(df1b)
f1 f2 f2int
1 g B 2
2 j D 4
3 o R 17
4 x A 1
5 f F 6
6 x J 10
> head(df2b)
f2 vals f2int
1 Z -0.17955653 23
2 U -0.10019074 20
3 N 0.71266631 13
4 J -0.07356440 10
5 B -0.03763417 2
6 X -0.68166048 22
Notice the f1int and f2int values for f2 equal to B or J.
My point in the comments about merge() was if you want to match the tables, you can do the usual database joins using merge(). E.g.:
> head(merge(df1, df2, sort = FALSE))
f2 f1 vals
1 B g -0.03763417
2 B v -0.03763417
3 B u -0.03763417
4 B e -0.03763417
5 B w -0.03763417
6 D i -0.58889449
which would avoid the potentially error-prone step of getting the levels in order and converting to integers, if this was the ultimate aim.

Related

Limiting Duplication of Specified Columns

I'm trying to find a way to add some constraints into a linear programme to force the solution to have a certain level of uniqueness to it. I'll try explain what I mean here. Take the example below, the linear programme returns the max possible Score for a combination of 2 males and 1 female.
Looking at the Team/Grade/Rep columns however we can see that there is a lot of duplication from row to row. In fact Shana and Jason are identical.
Name<-c("Jane","Brad","Harry","Shana","Debra","Jason")
Sex<-c("F","M","M","F","F","M")
Score<-c(25,50,36,40,39,62)
Team<-c("A","A","A","B","B","B")
Grade<-c(1,2,1,2,1,2)
Rep<-c("C","D","C","D","D","D")
df<-data.frame(Name,Sex,Score,Team,Grade,Rep)
df
Name Sex Score Team Grade Rep
1 Jane F 25 A 1 C
2 Brad M 50 A 2 D
3 Harry M 36 A 1 C
4 Shana F 40 B 2 D
5 Debra F 39 B 1 D
6 Jason M 62 B 2 D
library(Rglpk)
num <- length(df$Name)
obj<-df$Score
var.types<-rep("B",num)
matrix <- rbind(as.numeric(df$Sex == "M"),as.numeric(df$Sex == "F"))
direction <- c("==","==")
rhs<-c(2,1)
sol <- Rglpk_solve_LP(obj = obj, mat = matrix, dir = direction, rhs = rhs,types = var.types, max = TRUE)
df[sol$solution==1,]
Name Sex Score Team Grade Rep
2 Brad M 50 A 2 D
4 Shana F 40 B 2 D
6 Jason M 62 B 2 D
What I am trying to work out is how to limit say the level of randomness across those last three columns. For example I would like there to no more than ie 2 columns the same across any two rows. So this would mean that either the Shana row or Jason row would be replaced in the model with an alternative.
I'm not sure if this is something that can be easily added into the Rglpk model? Appreciate any help that can be offered.
It sounds like you're asking how to prevent having a pair of individuals who are "too similar" from being returned by your optimization model. Once you have determined a rule for what makes a pair of people "too similar", you can simply add a constraint for each pair, limiting your solution to have no more than one of those two people.
For instance, if we use your rule of having no more than 2 columns the same, we could easily identify all pairs that we want to block:
pairs <- t(combn(nrow(df), 2))
(blocked <- pairs[rowSums(sapply(df[,c("Team", "Grade", "Rep")], function(x) {
x[pairs[,1]] == x[pairs[,2]]
})) >= 3,])
# [,1] [,2]
# [1,] 1 3
# [2,] 4 6
We want to block the pairs Jane/Harry and Shana/Jason. This is easy to do with linear constraints:
library(Rglpk)
num <- length(df$Name)
obj<-df$Score
var.types<-rep("B",num)
matrix <- rbind(as.numeric(df$Sex == "M"), as.numeric(df$Sex == "F"),
outer(blocked[,1], seq_len(num), "==") + outer(blocked[,2], seq_len(num), "=="))
direction <- rep(c("==", "<="), c(2, nrow(blocked)))
rhs<-c(2, 1, rep(1, nrow(blocked)))
sol <- Rglpk_solve_LP(obj = obj, mat = matrix, dir = direction, rhs = rhs,types = var.types, max = TRUE)
df[sol$solution==1,]
# Name Sex Score Team Grade Rep
# 2 Brad M 50 A 2 D
# 5 Debra F 39 B 1 D
# 6 Jason M 62 B 2 D
The approach of computing every pair to block is attractive because we could have a much more complicated rule for which pairs to block, since we don't need to encode the rule into the linear program. All we need to be able to do is to compute every pair that needs to be blocked.
For each group of rows having the same last 3 columns we construct a constraint such that at most one of those rows may appear. If a is an indictor vector of the rows of such a group then the constraint would look like this:
a'x <= 1
To do that split the row numbers by the last 3 columns into a list of vectors s each of whose components is a vector of row numbers for rows having the same last 3 columns. Only keep those conponents having more than 1 row number giving s1. In this case the first component of s1 is c(1, 3) referring to the Jane and Harry rows and the second component is c(4, 6) referring to the Shana and Jason rows. In this particular data there were 2 rows in each of the groups but in other data there could be more than 2 rows in a group. excl has one row (constraint) for each element of s1.
The data in the question only has groups of size 2 but in general if there were k rows in some group one would need k choose 2 constraint rows to ensure that only one of the k were chosen if this were done pairwise whereas the approach here only requires one constraint row for the entire group. For example, if k = 10 then choose(10, 2) = 45 so this uses 1 constraint in place of 45.
Finally rbind excl to matrix giving matrix2 and adjust the other Rglpk_solve_LP arguments accordingly giving:
nr <- nrow(df)
s <- split(1:nr, df[4:6])
s1 <- s[lengths(s) > 1]
excl <-t(sapply(s1, "%in%", x = 1:nr)) + 0
matrix2 <- rbind(matrix, excl)
direction2 <- c(direction, rep("<=", nrow(excl)))
rhs2 <- c(rhs, rep(1, nrow(excl)))
sol2 <- Rglpk_solve_LP(obj = obj, mat = matrix2,
dir = direction2, rhs = rhs2, types = "B", max = TRUE)
df[ sol2$solution == 1, ]
giving:
Name Sex Score Team Grade Rep
2 Brad M 50 A 2 D
5 Debra F 39 B 1 D
6 Jason M 62 B 2 D

Match and Fill Values in R

I have a data set containing 3 columns. First column contains Products Name (A through E) and corresponding 2 columns contain nearest 2 neighbors (i.e customers who own Product specified in column A are more likely to buy the next best 2 products (nearest 2 neighbors).
m1 = data.frame(Product=c("A","B","C","D","E"), V1=c("C","A","A","A","D"),
V2=c("D","D","B","E","A"))
In the second data set, i have data at user level. First column contains User IDs and corresponding 5 columns contain information whether user own the product or not. 1 - Own it. 0 - Don't own it.
m2 = data.frame(ID = c(1:7), A = rbinom(7,1,1/2), B = rbinom(7,1,1/2),
C = rbinom(7,1,1/2), D = rbinom(7,1,1/2), E = rbinom(7,1,1/2))
I want product recommendation at user level. I want m1 data to be merged with m2 based on the user own it or not. The output should look like -
User - 1 A D
You haven't posted reproducible example and exact expected results, but this seems to do what you want.
set.seed(321)
m1 = data.frame(Product=c("A","B","C","D","E"), V1=c("C","A","A","A","D"),
V2=c("D","D","B","E","A"))
m2 = data.frame(ID = c(1:7), A = rbinom(7,1,1/2), B = rbinom(7,1,1/2),
C = rbinom(7,1,1/2), D = rbinom(7,1,1/2), E = rbinom(7,1,1/2))
recommended <- apply(m2, 1, function(x) {
client.recommended <- m1[as.logical(x[-1]),-1]
top <- names(sort(table(as.vector(t(client.recommended))),
decreasing = TRUE)[1:2])
c(x[1], top)
})
recommended <- as.data.frame(t(recommended), stringsAsFactors = FALSE)
ID V2 V3
1 1 A B
2 2 A D
3 3 A B
4 4 A D
5 5 A D
6 6 A D
7 7 A B
What this code does:
For every row in m2 data.frame (every client), take that row
Take subset of m1 data.frame corresponding to values found in row (if client chosen "A" and "B", take rows "A" and "B" from m1
Turn this subset into vector
Count occurrences of unique values in vector
Sort unique values by count
Take first most common unique values
Return these values along with client ID
Turn everything into proper data.frame for further processing
It seems that you expect to obtain only two products for each client and that is what this code does. For products with the same number of occurrences, apparently one that comes first alphabetically wins. You can get all recommended product by dropping [1:2] part, but then you will need to figure out how to coerce uneven-length vectors into single data.frame.

Transferring factor properties between two data frames

I've built a predictive model that uses a large number (30 or so) of independent factor variables. As the dataset I'm using is much larger than the RAM of my machine, I have sampled it for both my training and test sets.
I am now looking to use the model to make predictions over the entire dataset. I'm pulling in the dataset 1 million rows at a time, and each time, I find new levels for some of my factor variables that were not in my training and test set, therefore preventing the model from making predictions.
As there are so many independent factor variables (and so many overall observations), correcting each case by hand is becoming a real pain.
One additional wrinkle to be aware of: there is no guarantee that the order of variables in the overall dataframe and the training/test sets are the same, as I do pre-processing on the data that changes their order.
As such, I'd like to write a function that:
Selects and sorts the columns of the new data based on the
configuration of my sampled dataframe
Loops through the sampled and new dataframe and designates all factor levels in the new
dataframe that do not exist in their corresponding column in the
sample dataframe as Other.
If a factor level exists in my sample but not the new dataframe, create the level (with no observations assigned to it) to its corresponding column in the new dataframe.
I've got #1 together, but don't know the best way to do #2 and #3. If it were any other language, I'd use for loops, but I know that's frowned upon in R.
Here's a reproducible example:
sampleData <- data.frame(abacus=factor(c("a","b","a","a","a")), montreal=factor(c("f","f","f","f","a")), boston=factor(c("z","y","z","z","q")))
dataset <- data.frame(florida=factor(c("e","q","z","d","b", "a")), montreal=factor(c("f","f","f","f","a", "a")), boston=factor(c("m","y","z","z","r", "f")), abacus=factor(c("a","b","z","a","a", "g")))
sampleData
abacus montreal boston
1 a f z
2 b f y
3 a f z
4 a f z
5 a a q
dataset
florida montreal boston abacus
1 e f m a
2 q f y b
3 z f z z
4 d f z a
5 b a r a
6 a a f g
sampleData <- sample[,order(names(sampleData))]
dataset <- dataset[,order(names(dataset))]
dataset <- dataset[,(colnames(sampleData)]
Below is what I would want dataset to look like once this function is complete (I don't really care about the final ordering of the columns in dataset; I'm just thinking its necessary for the loop (or whatever you guys deem best) to work. Notice that the column dataset$florida is omitted:
dataset
montreal boston abacus
1 f Other a
2 f y b
3 f z Other
4 f z a
5 a Other a
6 a Other Other
Also note that in dataset, the 'q' level for boston does not appear, although it does appear in sampleData. Therefore, the levels will differ if we omit 'q' from the factor in dataset, meaning that in 'dataset', we need boston to include the level q, but to have no actual observations assigned to it.
Last, note that as I'm doing this on 30 variables at a time, I need a programmatic solution and not one that reassigns factors by using explicit column names.
This seems like it might work.
From this function, the new levels returned for the boston column are Other y z q, even though there are no values for the level q. Regarding your comment in the original question, the only way I've found to effectively apply new factor levels is also with a for loop like you, and it's worked well for me so far.
A function, findOthers() :
findOthers <- function(newData) ## might want a second argument for sampleData
{
## take only those columns that are in 'sampleData'
dset <- newData[, names(sampleData)]
## change the 'dset' columns to character
dsetvals <- sapply(dset, as.character)
## change the 'sampleData' levels to character
samplevs <- sapply(sampleData, function(y) as.character(levels(y)))
## find the unmatched elements
others <- sapply(seq(ncol(dset)), function(i){
!(dsetvals[,i] %in% samplevs[[i]])
})
## change the unmatched elements to 'Other'
dsetvals[others] <- "Other"
## create new data frame
newDset <- data.frame(dsetvals)
## get the new levels for each column
newLevs <- lapply(seq(newDset), function(i){
Get <- c(as.character(newDset[[i]]), as.character(samplevs[[i]]))
ul <- unique(unlist(Get))
})
## set the new levels for each column
for(i in seq(newDset)) newDset[,i] <- factor(newDset[,i], newLevs[[i]])
## result
newDset
}
Your sample data :
sampleData <- data.frame(abacus=factor(c("a","b","a","a","a")),
montreal=factor(c("f","f","f","f","a")),
boston=factor(c("z","y","z","z","q")))
dataset <- data.frame(florida=factor(c("e","q","z","d","b", "a")),
montreal=factor(c("f","f","f","f","a", "a")),
boston=factor(c("m","y","z","z","r", "f")),
abacus=factor(c("a","b","z","a","a", "g")))
Call findOthers() and view the result with the new factor levels :
(new <- findOthers(newData = dataset))
# abacus montreal boston
# 1 a f Other
# 2 b f y
# 3 Other f z
# 4 a f z
# 5 a a Other
# 6 Other a Other
as.list(new)
# $abacus
# [1] a b Other a a Other
# Levels: a b Other
#
# $montreal
# [1] f f f f a a
# Levels: f a
#
# $boston
# [1] Other y z z Other Other
# Levels: Other y z q ## note the new level 'q', with no value in the column
To answer just the question you ask (rather than suggest what you might do instead). Here we have to make each column character, replace then re-factorise.
sampleData = sapply(sampleData, as.character)
sampleData = gsub("q", "other", sampleData)
sampleData = sapply(sampleData, as.factor)
This depends on "q" only inhabiting one column. Otherwise you just have to edit each column separately to get only the changes you want:
sampleData = sapply(sampleData, as.character)
sampleData$boston = gsub("q", "other", sampleData$boston)
sampleData = sapply(sampleData, as.factor)
However I think you should just filter the train and test data of these rows as they are so few
they will make absolutely no difference to your model. Otherwise you're making it difficult.
summary(dataset)
dataset <- dataset[dataset$abacus!="z", ]
If the dataset is very very large and you are not doing this because of that then you may want to do this with something like the dplyr package and filter function.
Does this accomplish what you want?
# Select and sort the columns of dataset as in sampleData
sampleData <- sampleData[, order(names(sampleData))]
dataset <- dataset[, colnames(sampleData)]
f <- function(dataset, sampleData, col) {
# For a given column col, assign "Other" to all factor levels
# in dataset[col] that do not exist in sampleData[col].
# If a factor level exists in sampleData[col] but not in dataset[col],
# preserve it as a factor level.
v <- factor(dataset[, col], levels = c(levels(sampleData[, col]), "Other"))
v[is.na(v)] <- "Other"
v
}
# Apply f to all columns of dataset
l <- lapply(colnames(dataset), function(x) f(dataset, sampleData, x))
res <- data.frame(l) # Format into a data frame
colnames(res) <- colnames(dataset) # Assign the names of dataset
dataset <- res # Assign the result to dataset
You can test as follows
> dataset[, "boston"]
[1] Other y z z Other Other
Levels: q y z Other
> dataset[, "montreal"]
[1] f f f f a a
Levels: a f Other
> dataset[, "abacus"]
[1] a b Other a a Other
Levels: a b Other

Append values from column 2 to values from column 1

In R, I have two data frames (A and B) that share columns (1, 2 and 3). Column 1 has a unique identifier, and is the same for each data frame; columns 2 and 3 have different information. I'm trying to merge these two data frames to get 1 new data frame that has columns 1, 2, and 3, and in which the values in column 2 and 3 are concatenated: i.e. column 2 of the new data frame contains: [data frame A column 2 + data frame B column 2]
Example:
dfA <- data.frame(Name = c("John","James","Peter"),
Score = c(2,4,0),
Response = c("1,0,0,1","1,1,1,1","0,0,0,0"))
dfB <- data.frame(Name = c("John","James","Peter"),
Score = c(3,1,4),
Response = c("0,1,1,1","0,1,0,0","1,1,1,1"))
dfA:
Name Score Response
1 John 2 1,0,0,1
2 James 4 1,1,1,1
3 Peter 0 0,0,0,0
dfB:
Name Score Response
1 John 3 0,1,1,1
2 James 1 0,1,0,0
3 Peter 4 1,1,1,1
Should results in:
dfNew <- data.frame(Name = c("John","James","Peter"),
Score = c(5,5,4),
Response = c("1,0,0,1,0,1,1,1","1,1,1,1,0,1,0,0","0,0,0,0,1,1,1,1"))
dfNew:
Name Score Response
1 John 5 1,0,0,1,0,1,1,1
2 James 5 1,1,1,1,0,1,0,0
3 Peter 4 0,0,0,0,1,1,1,1
I've tried merge but that simply appends the columns (much like cbind)
Is there a way to do this, without having to cycle through all columns, like:
colnames(dfNew) <- c("Name","Score","Response")
dfNew$Score <- dfA$Score + dfB$Score
dfNew$Response <- paste(dfA$Response, dfB$Response, sep=",")
The added difficulty is, as you might have noticed, that for some columns we need to use addition, whereas others require concatenation separated by a comma (the columns requiring addition are formatted as numerical, the others as text, which might make it easier?)
Thanks in advance!
PS. The string 1,0,0,1,0,1,1,1 etc. captures the response per trial – this example has 8 trials to which participants can either respond correctly (1) or incorrectly (0); the final score is collected under Score. Just to explain why my data/example looks the way it does.
Personally, I would try to avoid concatenating 'response per trial' to a single variable ('Response') from the start, in order to make the data less static and facilitate any subsequent steps of analysis or data management. Given that the individual trials already are concatenated, as in your example, I would therefore consider splitting them up. Formatting the data frame for a final, pretty, printed output I would consider a different, later issue.
# merge data (cbind would also work if data are ordered properly)
df <- merge(x = dfA[ , c("Name", "Response")], y = dfB[ , c("Name", "Response")],
by = "Name")
# rename
names(df) <- c("Name", c("A", "B"))
# split concatenated columns
library(splitstackshape)
df2 <- concat.split.multiple(data = df, split.cols = c("A", "B"),
seps = ",", direction = "wide")
# calculate score
df2$Score <- rowSums(df2[ , -1])
df2
# Name A_1 A_2 A_3 A_4 B_1 B_2 B_3 B_4 Score
# 1 James 1 1 1 1 0 1 0 0 5
# 2 John 1 0 0 1 0 1 1 1 5
# 3 Peter 0 0 0 0 1 1 1 1 4
I would approach this with a for loop over the column names you want to merge. Given your example data:
cols <- c("Score", "Response")
dfNew <- dfA[,"Name",drop=FALSE]
for (n in cols) {
switch(class(dfA[[n]]),
"numeric" = {dfNew[[n]] <- dfA[[n]] + dfB[[n]]},
"factor"=, "character" = {dfNew[[n]] <- paste(dfA[[n]], dfB[[n]], sep=",")})
}
This solution is basically what you had as your idea, but with a loop. The data sets are looked at to see if they are numeric (add them numerically) or a string or factor (concatenate the strings). You could get a similar result by having two vectors of names, one for the numeric and one for the character, but this is extensible if you have other data types as well (though I don't know what they might be). The major drawback of this method is that is assumes the data frames are in the same order with regard to Name. The next solution doesn't make that assumption
dfNew <- merge(dfA, dfB, by="Name")
for (n in cols) {
switch(class(dfA[[n]]),
"numeric" = {dfNew[[n]] <- dfNew[[paste0(n,".x")]] + dfNew[[paste0(n,".y")]]},
"factor"=, "character" = {dfNew[[n]] <- paste(dfNew[[paste0(n,".x")]], dfNew[[paste0(n,".y")]], sep=",")})
dfNew[[paste0(n,".x")]] <- NULL
dfNew[[paste0(n,".y")]] <- NULL
}
Same general idea as previous, but uses merge to make sure that the data is correctly aligned, and then works on columns (whose names are postfixed with ".x" and ".y") with dfNew. Additional steps are included to get rid of the separate columns after joining. Also has the bonus feature of carrying along any other columns not specified for joining together in cols.

How to ddply() without sorting?

I use the following code to summarize my data, grouped by Compound, Replicate and Mass.
summaryDataFrame <- ddply(reviewDataFrame, .(Compound, Replicate, Mass),
.fun = calculate_T60_Over_T0_Ratio)
An unfortunate side effect is that the resulting data frame is sorted by those fields. I would like to do this and keep Compound, Replicate and Mass in the same order as in the original data frame. Any ideas? I tried adding a "Sorting" column of sequential integers to the original data, but of course I can't include that in the .variables since I don't want to 'group by' that, and so it is not returned in the summaryDataFrame.
Thanks for the help.
This came up on the plyr mailing list a while back (raised by #kohske no less) and this is a solution offered by Peter Meilstrup for limited cases:
#Peter's version used a function gensym to
# create the col name, but I couldn't track down
# what package it was in.
keeping.order <- function(data, fn, ...) {
col <- ".sortColumn"
data[,col] <- 1:nrow(data)
out <- fn(data, ...)
if (!col %in% colnames(out)) stop("Ordering column not preserved by function")
out <- out[order(out[,col]),]
out[,col] <- NULL
out
}
#Some sample data
d <- structure(list(g = c(2L, 2L, 1L, 1L, 2L, 2L), v = c(-1.90127112738315,
-1.20862680183042, -1.13913266070505, 0.14899803094742, -0.69427656843677,
0.872558638137971)), .Names = c("g", "v"), row.names = c(NA,
-6L), class = "data.frame")
#This one resorts
ddply(d, .(g), mutate, v=scale(v)) #does not preserve order of d
#This one does not
keeping.order(d, ddply, .(g), mutate, v=scale(v)) #preserves order of d
Please do read the thread for Hadley's notes about why this functionality may not be general enough to roll into ddply, particularly as it probably applies in your case as you are likely returning fewer rows with each piece.
Edited to include a strategy for more general cases
If ddply is outputting something that is sorted in an order you do not like you basically have two options: specify the desired ordering on the splitting variables beforehand using ordered factors, or manually sort the output after the fact.
For instance, consider the following data:
d <- data.frame(x1 = rep(letters[1:3],each = 5),
x2 = rep(letters[4:6],5),
x3 = 1:15,stringsAsFactors = FALSE)
using strings, for now. ddply will sort the output, which in this case will entail the default lexical ordering:
> ddply(d,.(x1,x2),summarise, val = sum(x3))
x1 x2 val
1 a d 5
2 a e 7
3 a f 3
4 b d 17
5 b e 8
6 b f 15
7 c d 13
8 c e 25
9 c f 27
> ddply(d[sample(1:15,15),],.(x1,x2),summarise, val = sum(x3))
x1 x2 val
1 a d 5
2 a e 7
3 a f 3
4 b d 17
5 b e 8
6 b f 15
7 c d 13
8 c e 25
9 c f 27
If the resulting data frame isn't ending up in the "right" order, it's probably because you really want some of those variables to be ordered factors. Suppose that we really wanted x1 and x2 ordered like so:
d$x1 <- factor(d$x1, levels = c('b','a','c'),ordered = TRUE)
d$x2 <- factor(d$x2, levels = c('d','f','e'), ordered = TRUE)
Now when we use ddply, the resulting sort will be as we intend:
> ddply(d,.(x1,x2),summarise, val = sum(x3))
x1 x2 val
1 b d 17
2 b f 15
3 b e 8
4 a d 5
5 a f 3
6 a e 7
7 c d 13
8 c f 27
9 c e 25
The moral of the story here is that if ddply is outputting something in an order you didn't intend, it's a good sign that you should be using ordered factors for the variables you're splitting on.
I eventually ended up adding an 'indexing' column to the original data frame. It consisted of two columns pasted with sep="_". Then I made another data frame made of only unique members of the 'indexing' column and a counter 1:length(df). I did my ddply() on the data which returned a sorted data frame. Then to get things back in the original order I did merge() the results data frame and the index data frame (making sure the columns are named the same thing makes this easier). Finally, I did order and removed the extraneous columns.
Not an elegant solution, but one that works.
Thanks for the assist. It got me thinking in the right direction.

Resources