Low level pointers in haskell - pointers

The foreign function interface allows haskell to work with C world. Now Haskell side allows working with the pointers using Storable instances. So for example If I have an array of integers in the C world, a plausible representation of that in the haskell world would be Ptr Int. Now suppose I want to translate the C expression a[0] = a[0] + 1. The only way to do that on the haskell side is to peek int out and then poke back the result of the addition. The problem with this approach is a temporary value is created as a result of that. (I am not sure an optimizing compiler can always avoid doing that)
Now most people might think this effect to be harmless, but think of a situation where the Pointer object contains some sensitive data. I have created this pointer on the c side in such a way that it always guaranteed that its content will never be swapped out of the memory (using mlock system call). Now peeking the result on the haskell side no more guarantees the security of the sensitive data.
So what should be the best way to avoid that in the haskell world? Has anybody else ran into similar problems with low level pointer manipulations in haskell.

I just built a test case with the code:
foo :: Ptr CInt -> IO ()
foo p = peek p >>= poke p ∘ (+1)
And using GHC 7.6.3 -fllvm -O2 -ddump-asm I see the relevant instructions:
0x0000000000000061 <+33>: mov 0x7(%r14),%rax
0x0000000000000065 <+37>: incl (%rax)
So it loads an address into rax and increments the memory at that address. Seems to be what you'd get in other languages, but let's see.
With C, I think the fair comparison is:
void foo(int *p)
{
p[0]++;
}
Which results in:
0x0000000000000000 <+0>: addl $0x1,(%rdi)
All this said, I freely admit that it is not clear to me what you are concerned about so I might have missed your point and in doing so addressed the wrong thing.

Related

Assert that a pointer is aligned to some value

Is there a guaranteed way to assert that a given raw pointer is aligned to some alignment value?
I looked at pointer's aligned_offset function, but the docs state that it is permissible for it to give false negatives (always return usize::MAX), and that correctness cannot depend on it.
I don't want to fiddle with the alignment at all, I just want to write an assertion that will panic if the pointer is unaligned. My motivation is that when using certain low-level CPU intrinsics passing a pointer not aligned to some boundary causes a CPU error, and I'd much rather get a Rust panic message pointing where the bug causing it is located than a SEGFAULT.
An example assertion (not correct according to aligned_offset docs):
#[repr(align(64))]
struct A64(u8);
#[repr(align(32))]
struct A32(u8);
#[repr(align(8))]
struct A8(u8);
fn main() {
let a64 = [A64(0)];
let a32 = [A32(0)];
let a8 = [A8(0), A8(0)];
println!("Assert for 64 should pass...");
assert_alignment(&a64);
println!("Assert for 32 should pass...");
assert_alignment(&a32);
println!("Assert for 8, one of the following should fail:");
println!("- full array");
assert_alignment(&a8);
println!("- offset by 8");
assert_alignment(&a8[1..]);
}
fn assert_alignment<T>(a: &[T]) {
let ptr = a.as_ptr();
assert_eq!(ptr.align_offset(32), 0);
}
Rust playground.
Just to satisfy my own neuroses, I went and checked the the source of ptr::align_offset.
There's a lot of careful work around edge cases (e.g. const-evaluated it always returns usize::MAX, similarly for a pointer to a zero-sized type, and it panics if alignment is not a power of 2). But the crux of the implementation, for your purposes, is here: it takes (ptr as usize) % alignment == 0 to check if it's aligned.
Edit:
This PR is adding a ptr::is_aligned_to function, which is much more readable and also safer and better reviewed than simply (ptr as usize) % alginment == 0 (though the core of it is still that logic).
There's then some more complexity to calculate the exact offset (which may not be possible), but that's not relevant for this question.
Therefore:
assert_eq!(ptr.align_offset(alignment), 0);
should be plenty for your assertion.
Incidentally, this proves that the current rust standard library cannot target anything that does not represent pointers as simple numerical addresses, otherwise this function would not work. In the unlikely situation that the rust standard library is ported to the Intel 8086 or some weird DSP that doesn't represent pointers in the expected way, this function would have to change. But really, do you care for that hypothetical that much?

How is it possible that a function can call itself

I know about recursion, but I don't know how it's possible. I'll use the fallowing example to further explain my question.
(def (pow (x, y))
(cond ((y = 0) 1))
(x * (pow (x , y-1))))
The program above is in the Lisp language. I'm not sure if the syntax is correct since I came up with it in my head, but it will do. In the program, I am defining the function pow, and in pow it calls itself. I don't understand how it's able to do this. From what I know the computer has to completely analyze a function before it can be defined. If this is the case, then the computer should give an undefined message when I use pow because I used it before it was defined. The principle I'm describing is the one at play when you use an x in x = x + 1, when x was not defined previously.
Compilers are much smarter than you think.
A compiler can turn the recursive call in this definition:
(defun pow (x y)
(cond ((zerop y) 1)
(t (* x (pow x (1- y))))))
into a goto intruction to re-start the function from scratch:
Disassembly of function POW
(CONST 0) = 1
2 required arguments
0 optional arguments
No rest parameter
No keyword parameters
12 byte-code instructions:
0 L0
0 (LOAD&PUSH 1)
1 (CALLS2&JMPIF 172 L15) ; ZEROP
4 (LOAD&PUSH 2)
5 (LOAD&PUSH 3)
6 (LOAD&DEC&PUSH 3)
8 (JSR&PUSH L0)
10 (CALLSR 2 57) ; *
13 (SKIP&RET 3)
15 L15
15 (CONST 0) ; 1
16 (SKIP&RET 3)
If this were a more complicated recursive function that a compiler cannot unroll into a loop, it would merely call the function again.
From what I know the computer has to completely analyze a function before it can be defined.
When the compiler sees that one defines a function POW, then it tells itself: now we are defining function POW. If it then inside the definition sees a call to POW, then the compiler says to itself: oh, this seems to be a call to the function that I'm currently compiling and it can then create code to make a recursive call.
A function is just a block of code. It's name is just help so you don't have to calculate the exact address it will end up in. The programming language will turn the names into where the program is to go to execute.
How one function call another is by storing the address of the next command in this function on the stack, perhaps add arguments to the stack and then jump to the address location of the function. The function itself jumps to the return address it finds so that control goes back to the callee. There are several calling conventions implemented by the language on which side do what. CPUs don't really have function support so just like there is nothing called a while loop in CPUs functions are emulated.
Just like functions have names, arguments have names too, however they are mere pointers just like the return address. When calling itself it just adds a new return address and arguments onto the stack and jump to itself. The top of the stack will be different and thus the same variable names are unique addresses to the call so x and y in the previous call is somewhere else than the current x and y. In fact there is no special treatment needed for calling itself than calling anything else.
Historically the first high level language, Fortran, did not support recursion. It would call itself but when it returned it returned to the original callee without doing the rest of the function after the self call. Fortran itself would have been impossible to write without recursion so while itself used recursion it did not offer it to the programmer that used it. This limitation is the reason why John McCarthy discovered Lisp.
I think to see how this can work in general, and in particular in cases where recursive calls can't be turned into loops, it's worth thinking about how a general compiled language might work, because the problems are not different.
Let's imagine how a compiler might turn this function into machine code:
(defun foo (x)
(+ x (bar x)))
And let's assume that it does not know anything about bar at the time of compilation. Well, it has two options.
It can compile foo in such a way that the call to bar is translated a set of instructions which say, 'look up the function definition stored under the name bar, whatever it currently is, and arrange to call that function with the right arguments'.
It can compile foo in such a way that there is a machine-level function call to a function but the address of that function is left as a placeholder of some kind. And it can then attach some metadata to foo which says: 'before this function is called you need to find the function named bar, find its address, splice it into the code in the right place, and remove this metadata.
Both of these mechanisms allow foo to be defined before it's known what bar is. And note that instead of bar I could have written foo: these mechanisms deal with recursive calls too. They differ apart from that, however.
The first mechanism means that, every time foo is called it needs to do some kind of dynamic lookup for bar which will involve some overhead (but this overhead can be pretty small):
as a consequence of this the first mechanism will be slightly slower than it might be;
but, also as a consequence of this, if bar gets redefined, then the new definition will get picked up, which is a very desirable thing for an interactive language, which Lisp implementations usually are.
The second mechanism means that, after foo has all its references to other functions linked in to it, then the calls happen at the machine level:
this means they will be quick;
but that redefinition will be, at best, more complicated or, at worst, not possible at all.
The second of these implementations is close to how traditional compilers compile code: they compile code leaving a bunch of placeholders with associated metadata saying what names those placeholders correspond to. A linker, (sometimes known as a link-loader, or loader) then grovels over all the files produced by the compiler as well as other libraries of code and resolves all these references, resulting in a bit of code which can actually be run.
A very simple-minded Lisp system might work entirely by the first mechanism (I am pretty sure that this is how Python works, for instance). A more advanced compiler will probably work by some combination of the first and second mechanism. As an example of this, CL allows the compiler to make assumptions that apparent self-calls in functions really are self-calls, and so the compiler may well compile them as direct calls (essentially it will compile the function and then link it on the fly). But when compiling code in general, it might call 'through the name' of the function.
There are also more-or-less heroic strategies which things could do: for instance at the first call of a function link it, on the fly, to all the things it refers to, and note in their definitions that if they change then this thing needs to be unlinked as well so it all happens again. These kind of tricks once seemed implausible, but compilers for languages like JavaScript do things at least as hairy as this all the time now.
Note that compilers and linkers for modern systems actually do something more complicated than I've described, because of shared libraries &c: what I described is more-or-less what happened pre shared-library.

Fortran Pointer arithmetic

That's my first question post ever ... don't be cruel, please.
My problem is the following. I'd like to assign a fortran pointer as an expression. I think that's not possible by simple fortran techniques. But since new fortran versions seem to provide ways to handle things used in C and C++ (like c_ptr and c_f_pointer ... ), maybe someone knows a way to solve my problem. (I have not really in idea about C, but I read that pointer arithmetic is possible in C)
To make things more clear, here is the code which came to my mind immediately but isn't working:
program pointer
real(8),target :: a
real(8),pointer :: b
b=>a*2.0d0 ! b=>a is of course working
do i=1,10
a=dble(i)*2.0d0
write(*,*)b
end do
end program
I know that there are ways around this issue, but in the actual program, all of which came to my mind, would lead to much longer computation time and/or quite wiered code.
Thanks, a lot, in advance!
Best, Peter
From Michael Metcalf,
Pointers are variables with the POINTER attribute; they are not a distinct data type (and so no 'pointer arithmetic' is possible).
They are conceptually a descriptor listing the attributes of the objects (targets) that the pointer may point to, and the address, if any, of a target. They have no associated storage until it is allocated or otherwise associated (by pointer assignment, see below):
So your idea of b=>a*2 doesn't work because b is being assigned to a and not given the value of a.
Expression, in general (there two and a half very significant exceptions), are not valid pointer targets. Evaluation of an expression (in general) yields a value, not an object.
(The exceptions relate to the case where the overall expression results in a reference to a function with a data pointer result - in that case the expression can be used on the right hand side of a pointer assignment statement, or as the actual argument in a procedure reference that correspond to a pointer dummy argument or [perhaps - and F2008 only] in any context where a variable might be required, such as the left hand side of an ordinary assignment statement. But your expressions do not result in such a function reference and I don't think the use cases are relevant to what you wnt to do. )
I think you want the value of b to change as the "underlying" value of a changes, as per the form of the initial expression. Beyond the valid pointer target issue, this requires behaviour contrary to one of the basic principles of the language (most languages really) - evaluation of an expression uses the value of its primaries at the time the expression is evaluation - subsequent changes in those primaries do not result in a change in the historically evaluated value.
Instead, consider writing a function that calculates b based on a.
program pointer
IMPLICIT NONE
real(8) :: a
do i=1,10
a=dble(i)*2.0d0
write(*,*) b(a)
end do
contains
function b(x)
real(kind(a)), intent(in) :: x
real(kind(a)) :: b
b = 2.0d0 * x
end function b
end program
Update: I'm getting closer to what I wanted to have (for those who are interested):
module test
real,target :: a
real, pointer :: c
abstract interface
function func()
real :: func
end function func
end interface
procedure (func), pointer :: f => null ()
contains
function f1()
real,target :: f1
c=>a
f1 = 2.0*c
return
end function f1
end module
program test_func_ptrs
use test
implicit none
integer::i
f=>f1
do i=1,10
a=real(i)*2.0
write(*,*)f()
end do
end program test_func_ptrs
I would be completely satisfied if I could find a way to avoid the dummy arguments (at least in when I'm calling f).
Additional information: The point is that I want to define different functions f1 and deside before starting the loop, what f is going to be inside of the loop (depending on whatever input).
Pointer arithmetic, in the sense of calculating address offsets from a pointer, is not allowed in Fortran. Pointer arithmetic can easily cause memory errors and the authors of Fortran considered it unnecessary. (One could do it via the back door of interoperability with C.)
Pointers in Fortran are useful for passing procedures as arguments, setting up data structures such as linked lists (e.g., How can I implement a linked list in fortran 2003-2008), etc.

What is so special about Monads?

A monad is a mathematical structure which is heavily used in (pure) functional programming, basically Haskell. However, there are many other mathematical structures available, like for example applicative functors, strong monads, or monoids. Some have more specific, some are more generic. Yet, monads are much more popular. Why is that?
One explanation I came up with, is that they are a sweet spot between genericity and specificity. This means monads capture enough assumptions about the data to apply the algorithms we typically use and the data we usually have fulfills the monadic laws.
Another explanation could be that Haskell provides syntax for monads (do-notation), but not for other structures, which means Haskell programmers (and thus functional programming researchers) are intuitively drawn towards monads, where a more generic or specific (efficient) function would work as well.
I suspect that the disproportionately large attention given to this one particular type class (Monad) over the many others is mainly a historical fluke. People often associate IO with Monad, although the two are independently useful ideas (as are list reversal and bananas). Because IO is magical (having an implementation but no denotation) and Monad is often associated with IO, it's easy to fall into magical thinking about Monad.
(Aside: it's questionable whether IO even is a monad. Do the monad laws hold? What do the laws even mean for IO, i.e., what does equality mean? Note the problematic association with the state monad.)
If a type m :: * -> * has a Monad instance, you get Turing-complete composition of functions with type a -> m b. This is a fantastically useful property. You get the ability to abstract various Turing-complete control flows away from specific meanings. It's a minimal composition pattern that supports abstracting any control flow for working with types that support it.
Compare this to Applicative, for instance. There, you get only composition patterns with computational power equivalent to a push-down automaton. Of course, it's true that more types support composition with more limited power. And it's true that when you limit the power available, you can do additional optimizations. These two reasons are why the Applicative class exists and is useful. But things that can be instances of Monad usually are, so that users of the type can perform the most general operations possible with the type.
Edit:
By popular demand, here are some functions using the Monad class:
ifM :: Monad m => m Bool -> m a -> m a -> m a
ifM c x y = c >>= \z -> if z then x else y
whileM :: Monad m => (a -> m Bool) -> (a -> m a) -> a -> m a
whileM p step x = ifM (p x) (step x >>= whileM p step) (return x)
(*&&) :: Monad m => m Bool -> m Bool -> m Bool
x *&& y = ifM x y (return False)
(*||) :: Monad m => m Bool -> m Bool -> m Bool
x *|| y = ifM x (return True) y
notM :: Monad m => m Bool -> m Bool
notM x = x >>= return . not
Combining those with do syntax (or the raw >>= operator) gives you name binding, indefinite looping, and complete boolean logic. That's a well-known set of primitives sufficient to give Turing completeness. Note how all the functions have been lifted to work on monadic values, rather than simple values. All monadic effects are bound only when necessary - only the effects from the chosen branch of ifM are bound into its final value. Both *&& and *|| ignore their second argument when possible. And so on..
Now, those type signatures may not involve functions for every monadic operand, but that's just a cognitive simplification. There would be no semantic difference, ignoring bottoms, if all the non-function arguments and results were changed to () -> m a. It's just friendlier to users to optimize that cognitive overhead out.
Now, let's look at what happens to those functions with the Applicative interface.
ifA :: Applicative f => f Bool -> f a -> f a -> f a
ifA c x y = (\c' x' y' -> if c' then x' else y') <$> c <*> x <*> y
Well, uh. It got the same type signature. But there's a really big problem here already. The effects of both x and y are bound into the composed structure, regardless of which one's value is selected.
whileA :: Applicative f => (a -> f Bool) -> (a -> f a) -> a -> f a
whileA p step x = ifA (p x) (whileA p step <$> step x) (pure x)
Well, ok, that seems like it'd be ok, except for the fact that it's an infinite loop because ifA will always execute both branches... Except it's not even that close. pure x has the type f a. whileA p step <$> step x has the type f (f a). This isn't even an infinite loop. It's a compile error. Let's try again..
whileA :: Applicative f => (a -> f Bool) -> (a -> f a) -> a -> f a
whileA p step x = ifA (p x) (whileA p step <*> step x) (pure x)
Well shoot. Don't even get that far. whileA p step has the type a -> f a. If you try to use it as the first argument to <*>, it grabs the Applicative instance for the top type constructor, which is (->), not f. Yeah, this isn't gonna work either.
In fact, the only function from my Monad examples that would work with the Applicative interface is notM. That particular function works just fine with only a Functor interface, in fact. The rest? They fail.
Of course it's to be expected that you can write code using the Monad interface that you can't with the Applicative interface. It is strictly more powerful, after all. But what's interesting is what you lose. You lose the ability to compose functions that change what effects they have based on their input. That is, you lose the ability to write certain control-flow patterns that compose functions with types a -> f b.
Turing-complete composition is exactly what makes the Monad interface interesting. If it didn't allow Turing-complete composition, it would be impossible for you, the programmer, to compose together IO actions in any particular control flow that wasn't nicely prepackaged for you. It was the fact that you can use the Monad primitives to express any control flow that made the IO type a feasible way to manage the IO problem in Haskell.
Many more types than just IO have semantically valid Monad interfaces. And it happens that Haskell has the language facilities to abstract over the entire interface. Due to those factors, Monad is a valuable class to provide instances for, when possible. Doing so gets you access to all the existing abstract functionality provided for working with monadic types, regardless of what the concrete type is.
So if Haskell programmers seem to always care about Monad instances for a type, it's because it's the most generically-useful instance that can be provided.
First, I think that it is not quite true that monads are much more popular than anything else; both Functor and Monoid have many instances that are not monads. But they are both very specific; Functor provides mapping, Monoid concatenation. Applicative is the one class that I can think of that is probably underused given its considerable power, due largely to its being a relatively recent addition to the language.
But yes, monads are extremely popular. Part of that is the do notation; a lot of Monoids provide Monad instances that merely append values to a running accumulator (essentially an implicit writer). The blaze-html library is a good example. The reason, I think, is the power of the type signature (>>=) :: Monad m => m a -> (a -> m b) -> m b. While fmap and mappend are useful, what they can do is fairly narrowly constrained. bind, however, can express a wide variety of things. It is, of course, canonized in the IO monad, perhaps the best pure functional approach to IO before streams and FRP (and still useful beside them for simple tasks and defining components). But it also provides implicit state (Reader/Writer/ST), which can avoid some very tedious variable passing. The various state monads, especially, are important because they provide a guarantee that state is single threaded, allowing mutable structures in pure (non-IO) code before fusion. But bind has some more exotic uses, such as flattening nested data structures (the List and Set monads), both of which are quite useful in their place (and I usually see them used desugared, calling liftM or (>>=) explicitly, so it is not a matter of do notation). So while Functor and Monoid (and the somewhat rarer Foldable, Alternative, Traversable, and others) provide a standardized interface to a fairly straightforward function, Monad's bind is considerably more flexibility.
In short, I think that all your reasons have some role; the popularity of monads is due to a combination of historical accident (do notation and the late definition of Applicative) and their combination of power and generality (relative to functors, monoids, and the like) and understandability (relative to arrows).
Well, first let me explain what the role of monads is: Monads are very powerful, but in a certain sense: You can pretty much express anything using a monad. Haskell as a language doesn't have things like action loops, exceptions, mutation, goto, etc. Monads can be expressed within the language (so they are not special) and make all of these reachable.
There is a positive and a negative side to this: It's positive that you can express all those control structures you know from imperative programming and a whole bunch of them you don't. I have just recently developed a monad that lets you reenter a computation somewhere in the middle with a slightly changed context. That way you can run a computation, and if it fails, you just try again with slightly adjusted values. Furthermore monadic actions are first class, and that's how you build things like loops or exception handling. While while is primitive in C in Haskell it's actually just a regular function.
The negative side is that monads give you pretty much no guarantees whatsoever. They are so powerful that you are allowed to do whatever you want, to put it simply. In other words just like you know from imperative languages it can be hard to reason about code by just looking at it.
The more general abstractions are more general in the sense that they allow some concepts to be expressed which you can't express as monads. But that's only part of the story. Even for monads you can use a style known as applicative style, in which you use the applicative interface to compose your program from small isolated parts. The benefit of this is that you can reason about code by just looking at it and you can develop components without having to pay attention to the rest of your system.
What is so special about monads?
The monadic interface's main claim to fame in Haskell is its role in the replacement of the original and unwieldy dialogue-based I/O mechanism.
As for their status in a formal investigative context...it is merely an iteration of a seemingly-cyclic endeavour which is now (2021 Oct) approximately one half-century old:
During the 1960s, several researchers began work on proving things about programs. Efforts were
made to prove that:
A program was correct.
Two programs with different code computed the same answers when given the
same inputs.
One program was faster than another.
A given program would always terminate.
While these are abstract goals, they are all, really, the same as the practical goal of "getting the
program debugged".
Several difficult problems emerged from this work. One was the problem of specification: before
one can prove that a program is correct, one must specify the meaning of "correct", formally and
unambiguously. Formal systems for specifying the meaning of a program were developed, and they
looked suspiciously like programming languages.
The Anatomy of Programming Languages, Alice E. Fischer and Frances S. Grodzinsky.
(emphasis by me.)
...back when "programming languages" - apart from an intrepid few - were most definitely imperative.
Anyone for elevating this mystery to the rank of Millenium problem? Solving it would definitely advance the science of computing and the engineering of software, one way or the other...
Monads are special because of do notation, which lets you write imperative programs in a functional language. Monad is the abstraction that allows you to splice together imperative programs from smaller, reusable components (which are themselves imperative programs). Monad transformers are special because they represent enhancing an imperative language with new features.

Higher-order functions in VHDL or Verilog

I've been programming in more functional-style languages and have gotten to appreciate things like tuples, and higher-order functions such as maps, and folds/aggregates. Do either VHDL or Verilog have any of these kinds of constructs?
For example, is there any way to do even simple things like
divByThreeCount = count (\x -> x `mod` 3 == 0) myArray
or
myArray2 = map (\x -> x `mod` 3) myArray
or even better yet let me define my own higher-level constructs recursively, in either of these languages?
I think you're right that there is a clash between the imperative style of HDLs and the more functional aspects of combinatorial circuits. Describing parallel circuits with languages which are linear in nature is odd, but I think a full blown functional HDL would be a disaster.
The thing with functional languages (I find) is that it's very easy to write code which takes huge resources, either in time, memory, or processing power. That's their power; they can express complexity quite succinctly, but they do so at the expense of resource management. Put that in an HDL and I think you'll have a lot of large, power hungry designs when synthesised.
Take your map example:
myArray2 = map (\x -> x `mod` 3) myArray
How would you like that to synthesize? To me you've described a modulo operator per element of the array. Ignoring the fact that modulo isn't cheap, was that what you intended, and how would you change it if it wasn't? If I start breaking that function up in some way so that I can say "instantiate a single operator and use it multiple times" I lost a lot of the power of functional languages.
...and then we've got retained state. Retained state is everywhere in hardware. You need it. You certainly wouldn't use a purely functional language.
That said, don't throw away your functional design patterns. Combinatorial processes (VHDL) and "always blocks" (Verilog) can be viewed as functions that apply themselves to the data presented at their input. Pipelines can be viewed as chains of functions. Often the way you structure a design looks functional, and can share a lot with the "Actor" design pattern that's popular in Erlang.
So is there stuff to learn from functional programming? Certainly. Do I wish VHDL and Verilog took more from functional languages? Sometimes. The trouble is functional languages get too high level too quickly. If I can't distinguish between "use one instance of f() many times" and "use many instances of f()" then it doesn't do what a Hardware Description Language must do... describe hardware.
Have a look at http://clash-lang.org for an example of a higher-order language that is transpiled into VHDL/Verilog. It allows functions to be passed as arguments, currying etc., even a limited set of recursive data structures (Vec). As you would expect the pure moore function instantiates a stateful Moore machine given step/output functions and a start state. It has this signature:
moore :: (s -> i -> s) -> (s -> o) -> s -> Signal i -> Signal o
Signals model the time-evolved values in sequential logic.
BlueSpec is used by a small com. known by few people only - INTEL
It’s an extension of SystemVerilog (SV) and called BSV
But it’s NOT open - I don’t think you can try use or even learn it without paying BlueSpec.com BIG money
There’s also Lava that’s used by Xilinx but I don’t know if you can use it directly.
Note:
In Vhdl functions (and maybe Verilog too)
CAN’T have time delay (you can’t ask function to wait for clk event)
Vhdl has a std. lib. for complex num. cal.
But in Vhdl you can change or overload a system function like add (“+”) and define your implementation.
You can declare vector or matrix add sub mul or div (+ - * /) function,
use generic size (any) and recursive declarations - most synthesizers will "understand you" and do what you’ve asked.

Resources