The problem I need to solve is to rotate a 4-simplex given in 4D on the hyperplane with normal vector (1, 1, 1, 1) so that I can draw it in 3D. For instance I need to know the rotation for the regular one having vertices e_i (that is the coordinate vectors), and all its sub-simplices after division.
In order to understand the problem, let's go one dimension back. If you have a 3-simplex in 3D on the hyperplane with normal vector (1, 1, 1) like here (http://upload.wikimedia.org/wikipedia/commons/thumb/3/38/2D-simplex.svg/150px-2D-simplex.svg.png), one can follow the idea of Nosredna to the question
Rotate normal vector onto axis plane
It works fine in 3D, but in 4D there is no cross products, so I cannot extend this answer to my question. On the other hand using rotation matrices I managed to rotate the simplex around the x axes by -45 degree, then rotating around the y axes by around 35 degree (atan(sqrt(2)/2) using the coordinate rotation matrices (http:// upload.wikimedia.org/math/2/8/5/2851c9dc2031127e6dacfb84b96446d8.png).
I also tried to calculate a rotation matrix from axes rotations like in http://ken-soft.com/2009/01/08/graph4d-rotation4d-project-to-2d/ but I could not find out what should be the angles to use. So I used R=rotXU*rotYU*rotZU with the angles pi/4, -atan(sqrt(2)/2, and -pi/6, which looked good, but somehow the result wasn't ok.
Sorry, I could not put the images directly as I'm a newbie...
Thank you for any answer!
There are no rotation axes in 4D, for the same reason there is no cross product: the group of 4D rotations is 6-dimentional, and the space you are rotating is 4-dimentional. Imagine, for example, a simultaneous rotation in XY plane and ZT plane: it has no non-zero stationary vectors, and therefore no axes.
The most appropriate thing to do is to work with the usual transormation matrix, which is applicable in any dimention N:
[ a11 ... a1N d1 ]
...
[ aN1 ... aNN dN ]
[ 0 ... 0 1 ]
Here d1 ... dN represent translations, and the NxN submatrix aIJ represent rotations, dilations, projections, and mirroring. To limit to rotations only make this matrix orthogonal: its product with its own transpose should be the unit matrix. This is a common practice for N=2 and N=3, you just do the same for N=4.
To find the appropriate rotation matrix in your case write down add the requirement that the entire 4th row of an orthogonal 4x4 matrix is zero, and that would give you a bunch of solutions, each being an acceptable answer to your question.
Related
I Have the orthographic projection of a unit cube with one of its vertex at origin as shown above. I have the x,y (no z) co ordinates of the projections. I would like to compute the angle of rotation of the plane to get the second orthographic projection from the first one (maybe euler angles??)
Is there any other easy way to compute this?
UPDATE:
Could I use this rotation matrix to get a system of equations in cos, sin angles and the x,y and x',y' and solve them easily? Or is there any easier way to get the angles back? (Am I on the right direction to solve this? )
First method
Use this idea to generate equations:
a1, a2 and a3 are coordinates in the original system, x y are the coordinates you get from the end-result and z is a coordinate you don’t know. This generates 2 equations for every point of the cube. E.g for point 0 with coordinates (-1, -1, 1) these are:
Do this for the 4 front points of the cube and you get 8 equations. Now add the fact that this is a rotation matrix -> the determinant is 1 and you have 9 equations. Solve these with any of the usual algorithms for solving equation systems and you have the transformation matrix. Getting the axis and angle from that is easy via google: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/
Second method
Naming your points 0, 1, 2, 3 a, b, c, d respectively, you can get the z coordinates of the vectors between them (e.g. b-a) with this idea:
you will still have to sort out if b3-a3 is positive, though. One way to do that is to use the centermost point as b (calculate distance from the center for all points, use the one with the minimal distance). Then you know for sure that b3-a3 is positive (if z is positive towards you).
Now assume that a is (0,0,0) in your transformed space and you can calculate all the point positions by adding the appropriate vectors to that.
To get the rotation you use the fact that you know where b-a did point in your origin space (e.g. (1,0,0)). You get the rotation angle via dot product of b-a and (1,0,0) and the rotation axis via cross product between those vectors.
I'm doing something where I have a plane in a coord sys A with a set of points already on it. I also have a normal vector in space N. How can I rotate the points on coord sys A so that the underlying plane will have the same normal direction as N?
Wondering if any one has a good idea on how to do this. Thanks
If you have, or can easily compute, the normal vector to the plane that your points are currently in, I think the easiest way to do this will be to rotate around the axis common to the two planes. Here's how I'd go about it:
Let M be the vector normal to your current plane, and N be the vector normal to the plane you want to rotate into. If M == N you can stop now and leave the original points unchanged.
Calculate the rotation angle as
costheta = dot(M,N)/(norm(M)*norm(N))
Calculate the rotation axis as
axis = unitcross(M, N)
where unitcross is a function that performs the cross product and normalizes it to a unit vector, i.e. unitcross(a, b) = cross(a, b) / norm(cross(a, b)). As user1318499 pointed out in a comment, this step can cause an error if M == N, unless your implementation of unitcross returns (0,0,0) when a == b.
Compute the rotation matrix from the axis and angle as
c = costheta
s = sqrt(1-c*c)
C = 1-c
rmat = matrix([ x*x*C+c x*y*C-z*s x*z*C+y*s ],
[ y*x*C+z*s y*y*C+c y*z*C-x*s ]
[ z*x*C-y*s z*y*C+x*s z*z*C+c ])
where x, y, and z are the components of axis. This formula is described on Wikipedia.
For each point, compute its corresponding point on the new plane as
newpoint = dot(rmat, point)
where the function dot performs matrix multiplication.
This is not unique, of course; as mentioned in peterk's answer, there are an infinite number of possible rotations you could make that would transform the plane normal to M into the plane normal to N. This corresponds to the fact that, after you take the steps described above, you can then rotate the plane around N, and your points will be in different places while staying in the same plane. (In other words, each rotation you can make that satisfies your conditions corresponds to doing the procedure described above followed by another rotation around N.) But if you don't care where in the plane your points wind up, I think this rotation around the common axis is the simplest way to just get the points into the plane you want them in.
If you don't have M, but you do have the coordinates of the points in your starting plane relative to an origin in that plane, you can compute the starting normal vector from two points' positions x1 and x2 as
M = cross(x1, x2)
(you can also use unitcross here but it doesn't make any difference). If you have the points' coordinates relative to an origin that is not in the plane, you can still do it, but you'll need three points' positions:
M = cross(x3-x1, x3-x2)
A single vector (your normal - N) will not be enough. You will need another two vectors for the other two dimensions. (Imagine that your 3D space could still rotate/spin around the normal vector, and you need another 2 vectors to nail it down). Once you have the normal and another one on the plane, the 3rd one should be easy to find (left- or right-handed depending on your system).
Make sure all three are normalized (length of 1) and put them in a matrix; use that matrix to transform any point in your 3D space (use matrix multiplication). This should give you the new coordinates.
I'm thinking make a unit vector [0,0,1] and use the dot-product along two planes to find the angle of difference, and shift all your points by those angles. This is assuming you want the z-axis to align with the normal vector, else just use [1,0,0] or [0,1,0] for x and y respectively.
As far as I know, Direct3D works with an LH coordinate system right?
So how would I get position and x/y/z axis (local orientation axis) out of a LH 4x4 (world) matrix?
Thanks.
In case you don't know: LH stands for left-handed
If the 4x4 matrix is what I think it is (a homogeneous rigid body transformation matrix, same as an element of SE(3)) then it should be fairly easy to get what you want. Any rigid body transformation can be represented by a 4x4 matrix of the form
g_ab = [ R, p;
0, 1]
in block matrix notation. The ab subscript denotes that the transformation will take the coordinates of a point represented in frame b and will tell you what the coordinates are as represented in frame a. R here is a 3x3 rotation matrix and p is a vector that, when the rotation matrix is unity (no rotation) tells you the coordinates of the origin of b in frame a. Usually, however, a rotation is present, so you have to do as below.
The position of the coordinate system described by the matrix will be given by applying the transformation to the point (0,0,0). This will well you what world coordinates the point is located at. The trick is that, when dealing with SE(3), you have to add a 1 at the end of points and a 0 at the end of vectors, which makes them vectors of length 4 instead of length 3, and hence operable on by the matrix! So, to transform point (0,0,0) in your local coordinate frame to the world frame, you'd right multiply your matrix (let's call it g_SA) by the vector (0,0,0,1). To get the world coordinates of a vector (x,y,z) you multiply the matrix by (x,y,z,0). You can think of that as being because vectors are differences of points, so the 1 in the last element goes the away. So, for example, to find the representation of your local x-axis in the world coordinates, you multiply g_SA*(1,0,0,0). To find the y-axis you do g_SA*(0,1,0,0), and so on.
The best place I've seen this discussed (and where I learned it from) is A Mathematical Introduction to Robotic Manipulation by Murray, Li and Sastry and the chapter you are interested in is 2.3.1.
I'm experimenting with using axis-angle vectors for rotations in my hobby game engine. This is a 3-component vector along the axis of rotation with a length of the rotation in radians. I like them because:
Unlike quats or rotation matrices, I can actually see the numbers and visualize the rotation in my mind
They're a little less memory than quaternions or matrices.
I can represent values outside the range of -Pi to Pi (This is important if I store an angular velocity)
However, I have a tight loop that updates the rotation of all of my objects (tens of thousands) based on their angular velocity. Currently, the only way I know to combine two rotation axis vectors is to convert them to quaternions, multiply them, and then convert the result back to an axis/angle. Through profiling, I've identified this as a bottleneck. Does anyone know a more straightforward approach?
You representation is equivalent to quaternion rotation, provided your rotation vectors are unit length. If you don't want to use some canned quaternion data structure you should simply ensure your rotation vectors are of unit length, and then work out the equivalent quaternion multiplications / reciprocal computation to determine the aggregate rotation. You might be able to reduce the number of multiplications or additions.
If your angle is the only thing that is changing (i.e. the axis of rotation is constant), then you can simply use a linear scaling of the angle, and, if you'd like, mod it to be in the range [0, 2π). So, if you have a rotation rate of α raidans per second, starting from an initial angle of θ0 at time t0, then the final rotation angle at time t is given by:
θ(t) = θ0+α(t-t0) mod 2π
You then just apply that rotation to your collection of vectors.
If none of this improves your performance, you should consider using a canned quaternion library as such things are already optimized for the kinds of application you're disucssing.
You can keep them as angle axis values.
Build a cross-product (anti-symmetric) matrix using the angle axis values (x,y,z) and weight the elements of this matrix by multiplying them by the angle value. Now sum up all of these cross-product matrices (one for each angle axis value) and find the final rotation matrix by using the matrix exponential.
If matrix A represents this cross-product matrix (built from Angle Axis value) then,
exp(A) is equivalent to the rotation matrix R (i.e., equivalent to your quaternion in matrix form).
Therefore,
exp (A1 + A2) = R1 * R2
probably a more expensive calucation in the end...
You should use unit quaternions rather than scaled vectors to represent your rotations. It can be shown (not by me) that any representation of rotations using three parameters will run into problems (i.e. is singular) at some point. In your case it occurs where your vector has a length of 0 (i.e. the identity) and at lengths of 2pi, 4pi, etc. In these cases the representation becomes singular. Unit quaternions and rotation matrices do not have this problem.
From your description, it sounds like you are updating your rotation state as a result of numerical integration. In this case you can update your rotation state by converting your rotational rate (\omega) to a quaternion rate (q_dot). If we represent your quaternion as q = [q0 q1 q2 q3] where q0 is the scalar part then:
q_dot = E*\omega
where
[ -q1 -q2 -q3 ]
E = [ q0 -q3 q2 ]
[ q3 q0 -q1 ]
[ -q2 q1 q0 ]
Then your update becomes
q(k+1) = q(k) + q_dot*dt
for simple integration. You could choose a different integrator if you choose.
Old question, but another example of stack overflow answering questions the OP wasn't asking. OP already listed out his reasoning for not using quaternions to represent velocity. I was in the same boat.
That said, the way you combine two angular velocities, with each represented by a vector, which represents the axis of rotation with its magnitude representing the amount of rotation.
Just add them together. Component-by-component. Hope that helps some other soul out there.
I want to calculate the angle between two vectors a and b. Lets assume these are at the origin. This can be done with
theta = arccos(a . b / |a| * |b|)
However arccos gives you the angle in [0, pi], i.e. it will never give you an angle greater than 180 degrees, which is what I want. So how do you find out when the vectors have gone past the 180 degree mark? In 2D I would simply let the sign of the y-component on one of the vectors determine what quadrant the vector is in. But what is the easiest way to do it in 3D?
EDIT: I wanted to keep the question general but here we go. I'm programming this in c and the code I use to get the angle is theta = acos(dot(a, b)/mag(a)*mag(b)) so how would you programmatically determine the orientation?
This works in 2D because you have a plane defined in which you define the rotation.
If you want to do this in 3D, there is no such implicit 2D plane. You could transform your 3D coordinates to a 2D plane going through all three points, and do your calculation inside this plane.
But, there are of course two possible orientations for the plane, and that will affect which angles will be > 180 or smaller.
I came up with the following solution that takes advantage of the direction change of the cross product of the two vectors:
Make a vector n = a X b and normalize it. This vector is normal to the plane spanned by a and b.
Whenever a new angle is calculated compare it with the old normal. In the comparison, treat the old and the current normals as points and compute the distance between them. If this distance is 2 the normal (i.e. the cross product a X b has flipped).
You might want to have a threshold for the distance as the distance after a flip might be shorter than 2, depending on how the vectors a and b are oriented and how often you update the angle.
One solution that you could use:
What you effectively need to do is create a plane that one of the vectors is coplanar to.
Getting the cross product of both vectors will create a plane, then is you get the normal of this plane, you can get the angle between this and the vector you need to get the signed angle for, and you can use the angle to determine the sign.
If the angle is greater than 90 degrees, then it is below the created plane; less than 90 degrees, and it is above.
Depending on cost of calculations, the dot product can be used at this stage instead of the angle.
Just make sure that you always calculate the normals by the same order of vectors.
This is useable more easily if you're using the XYZ axes, and that's what you're comparing against, since you already have the vectors needed for the plane.
There are possbly more efficient solutions, but this is one I came up with.
Edit: clarification of created vectors
a X b = p. This is perpendicular to both a and b.
Then, do either:
a X p or b X p to create another vector that is the normal to the plane created by the 2 vectors. Choice of vector depends on which you're trying to find the angle for.
Strictly speaking, two 3D vectors always have two angles between them - one below or equal to 180, the other over or equal to 180. Arccos gives you one of them, you can get the other by subtracting from 360. Think of it that way: imagine two lines intersect. You have 4 angles there - 2 of one value, 2 of another. What's the angle between the lines? No single answer. Same here. Without some kind of extra criteria, you can not, in theory, tell which of the two angle values should be taken into account.
EDIT: So what you really need is an arbitrary example of fixing an orientation. Here's one: we look from the positive Z direction. If the plane between the two vectors contains the Z axis, we look from the positive Y direction. If the plane is YZ, we look from the positive X direction. I'll think how to express this in coordinate form, then edit again.