Related
I'm new to openCL program and this is the problem I'm facing while executing a simple vector addition.
I have the following kernel code
#include <CL/cl.hpp>
#include<iostream>
#include <stdio.h>
#include <stdlib.h>
#define MAX_SOURCE_SIZE (0x100000)
int main() {
__kernel void vector_add(__global const int *A, __global const int *B, __global int *C) {
int i = get_global_id(0);
C[i] = A[i] + B[i];
}
I have integrated gpu and amd gpus on my system. I'm trying to perform vector addition on my intel gpu and for which I have installed the intel opencl drivers (i7 3rd gen processor with hd graphics).
I have the below openCL code
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
std::cout << "Total platforms including cpu: " << platforms.size() << std::endl;
if (platforms.size() == 0) {
std::cout << " No platforms found. Check OpenCL installation!\n";
exit(1);
}
int i;
const int LIST_SIZE = 50;
int *A = (int*)malloc(sizeof(int)*LIST_SIZE);
int *B = (int*)malloc(sizeof(int)*LIST_SIZE);
for(i = 0; i < LIST_SIZE; i++) {
A[i] = i;
B[i] = LIST_SIZE - i;
}
FILE *fp;
char *source_str;
size_t source_size;
fp = fopen("vector_add_kernel.cl", "r");
if (!fp) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);
}
source_str = (char*)malloc(MAX_SOURCE_SIZE);
source_size = fread( source_str, 1, MAX_SOURCE_SIZE, fp);
fclose( fp );
//std::cout<<source_str<<std::endl;
// Get platform and device information
cl_platform_id* platforms1 = NULL;
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs(1, platforms1, &ret_num_platforms);
platforms1= (cl_platform_id*) malloc(sizeof(cl_platform_id) * ret_num_platforms);
clGetPlatformIDs(ret_num_platforms, platforms1, NULL);
/*
* Platform 0: Intel Graphics
* Platform 1 : AMD Graphics
*/
//CHANGE THE PLATFORM ACCORDING TO YOUR SYSTEM!!!!
ret = clGetDeviceIDs( platforms1[0], CL_DEVICE_TYPE_GPU, 1,
&device_id, &ret_num_devices);
// Create an OpenCL context
cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret);
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
// Create memory buffers on the device for each vector
cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
cl_mem c_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
// Copy the lists A and B to their respective memory buffers
ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), A, 0, NULL, NULL);
ret = clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), B, 0, NULL, NULL);
// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &ret);
// Build the program
ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "vector_add", &ret);
// Set the arguments of the kernel
ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_mem_obj);
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&b_mem_obj);
ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&c_mem_obj);
// Execute the OpenCL kernel on the list
size_t global_item_size = LIST_SIZE; // Process the entire lists
size_t local_item_size = 16; // Divide work items into groups of 64
ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
&global_item_size, &local_item_size, 0, NULL, NULL);
// Read the memory buffer C on the device to the local variable C
int *C = (int*)malloc(sizeof(int)*LIST_SIZE);
ret = clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), C, 0, NULL, NULL);
// Display the result to the screen
for(i = 0; i < LIST_SIZE; i++)
printf("%d + %d = %d\n", A[i], B[i], C[i]);
//FREE
return 0;
}
If the LISTSIZE is 50, it prints only till 48 that is 16*3. It prints only the multiple of LISTSIZE and I'm not able to figure out why?.
OpenCL kernels execute only for a multiple of the local thread block size (local Range, in your code local_item_size), which should not be smaller than 32 and must be a multiple of 2, (so it can be (32, 64, 128, 256, ...). If you set it to 16, half of the GPU will be idle at any time. global_item_size must be a multiple of local_item_size. You need at least 32 data items for the kernel to function and a lot more for it to yield good performance.
Also the part
#include <CL/cl.hpp>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#define MAX_SOURCE_SIZE (0x100000)
int main() {
is not OpenCL C code and does not belong in the .cl source file. If it is not too lengthy, you can write the OpenCL C code directly in the .cpp file as a raw string:
const string kernel_code = R"(
__kernel void vector_add(__global const int *A, __global const int *B, __global int *C) {
int i = get_global_id(0);
C[i] = A[i] + B[i];
}
)";
char* source_str = kernel_code.c_str();
Before I start I am a C beginner and I am trying to do some openCL work which might have been a mistake. Below is my kernel code:
__kernel void collatz(__global int* in, __global int* out)
{
uint id = get_global_id(0);
unsigned long n = (unsigned long)id;
uint count = 0;
while (n > 1) {
if (n % 2 == 0) {
n = n / 2;
} else {
if(n == 1572066143) {
unsigned long test = n;
printf("BEFORE - %lu\n", n);
test = (3 * test) + 1;
printf("AFTER - %lu\n", test);
n = (3 * n) + 1;
} else {
n = (3 * n) + 1;
}
}
count = count + 1;
}
out[id] = count;
}
and the output:
BEFORE - 1572066143
AFTER - 421231134
To me it looks like n is overflowing but I can't figure out why it is happening.
The interesting thing is if I create a new variable to store the same value as n then it seems to work correctly.
unsigned long test = 1572066143;
printf("BEFORE - %lu\n", test);
test = (3 * test) + 1;
printf("AFTER - %lu\n", test);
Output:
BEFORE - 1572066143
AFTER - 4716198430
As I said I am a C beginner so I could be doing something very stupid! Any help would be appreciated as I have been pulling my hair out for hours now!
Thanks,
Stephen
Update:
Here is my host code in case I am doing something stupid on that end:
int _tmain(int argc, _TCHAR* argv[])
{
/*Step1: Getting platforms and choose an available one.*/
cl_uint numPlatforms; //the NO. of platforms
cl_platform_id platform = NULL; //the chosen platform
cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms);
cl_platform_id* platforms = (cl_platform_id*)malloc(numPlatforms* sizeof(cl_platform_id));
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
platform = platforms[0];
free(platforms);
/*Step 2:Query the platform and choose the first GPU device if has one.*/
cl_device_id *devices;
devices = (cl_device_id*)malloc(1 * sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, devices, NULL);
/*Step 3: Create context.*/
cl_context context = clCreateContext(NULL, 1, devices, NULL, NULL, NULL);
/*Step 4: Creating command queue associate with the context.*/
cl_command_queue commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
/*Step 5: Create program object */
const char *filename = "HelloWorld_Kernel.cl";
std::string sourceStr;
status = convertToString(filename, sourceStr);
const char *source = sourceStr.c_str();
size_t sourceSize[] = { strlen(source) };
cl_program program = clCreateProgramWithSource(context, 1, &source, sourceSize, NULL);
status = clBuildProgram(program, 1, devices, NULL, NULL, NULL);
/*Step 7: Initial input,output for the host and create memory objects for the kernel*/
cl_ulong max = 2000000;
cl_ulong *numbers = NULL;
numbers = new cl_ulong[max];
for (int i = 1; i <= max; i++) {
numbers[i] = i;
}
int *output = (int*)malloc(sizeof(cl_ulong) * max);
cl_mem inputBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, max * sizeof(cl_ulong), (void *)numbers, NULL);
cl_mem outputBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, max * sizeof(cl_ulong), NULL, NULL);
/*Step 8: Create kernel object */
cl_kernel kernel = clCreateKernel(program, "collatz", NULL);
/*Step 9: Sets Kernel arguments.*/
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&inputBuffer);
// Determine the size of the log
size_t log_size;
clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
// Allocate memory for the log
char *log = (char *)malloc(log_size);
// Get the log
clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
// Print the log
printf("%s\n", log);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&outputBuffer);
/*Step 10: Running the kernel.*/
size_t global_work_size[] = { max };
status = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
/*Step 11: Read the data put back to host memory.*/
status = clEnqueueReadBuffer(commandQueue, outputBuffer, CL_TRUE, 0, max * sizeof(cl_ulong), output, 0, NULL, NULL);
return SUCCESS;
}
I finally got to the bottom of the issue.
I was running the code on my Intel HD Graphics 4600 chip and it was producing the strange behaviour shown in the original question. I switched to using my AMD card and then it started working as expected!
Very strange. Thanks to everyone for their help!
Host side and device size values have different sizes. In host, long can vary from 32 to 64bits, depending on the platform. In device, long refers to 64bits only.
printf() function, as defined in C says that %ld is to print long (host side long) numbers. You are using printf in a kernel, so.... It could be that the C-like parser is used, therefore printing the variable as a 32bits long.
Can you try printing it as %lld or as a floating point?
Hi ,
I am trying to run the available convolution code in OpenCL.
I am having heterogeneous system with -
1) CPU
2) GPU
PFB my code base which is running in my system :
convolution.cl
// TODO: Add OpenCL kernel code here.
__kernel
void convolve(
const __global uint * const input,
__constant uint * const mask,
__global uint * const output,
const int inputWidth,
const int maskWidth){
const int x = get_global_id(0);
const int y = get_global_id(1);
uint sum = 0;
for (int r = 0; r < maskWidth; r++)
{
const int idxIntmp = (y + r) * inputWidth + x;
for (int c = 0; c < maskWidth; c++)
{
sum += mask[(r * maskWidth) + c] * input[idxIntmp + c];
}
}
output[y * get_global_size(0) + x] = sum;
}
and convolution.cpp -
//Convolution-Process of applying a 3×3 mask to an 8×8 input signal,resulting in a 6×6 output signal
#include "CL/cl.h"
#include "vector"
#include "iostream"
#include "time.h"
#include <fstream>
#include <sstream>
#include <string>
using namespace std;
// Constants
const unsigned int inputSignalWidth = 8;
const unsigned int inputSignalHeight = 8;
cl_uint inputSignal[inputSignalWidth][inputSignalHeight] =
{
{3, 1, 1, 4, 8, 2, 1, 3},
{4, 2, 1, 1, 2, 1, 2, 3},
{4, 4, 4, 4, 3, 2, 2, 2},
{9, 8, 3, 8, 9, 0, 0, 0},
{9, 3, 3, 9, 0, 0, 0, 0},
{0, 9, 0, 8, 0, 0, 0, 0},
{3, 0, 8, 8, 9, 4, 4, 4},
{5, 9, 8, 1, 8, 1, 1, 1}
};
const unsigned int outputSignalWidth = 6;
const unsigned int outputSignalHeight = 6;
cl_uint outputSignal[outputSignalWidth][outputSignalHeight];
const unsigned int maskWidth = 3;
const unsigned int maskHeight = 3;
cl_uint mask[maskWidth][maskHeight] =
{
{1, 1, 1},
{1, 0, 1},
{1, 1, 1},
};
inline void checkErr(cl_int err, const char * name)
{
if (err != CL_SUCCESS)
{
std::cerr << "ERROR: " << name
<< " (" << err << ")" << std::endl;
exit(EXIT_FAILURE);
}
}
void CL_CALLBACK contextCallback(
const char * errInfo,
const void * private_info,
size_t cb,
void * user_data)
{
std::cout << "Error occurred during context use: "<< errInfo << std::endl;
exit(EXIT_FAILURE);
}
int main(int argc,char argv[]){
cl_int errNum;
cl_uint numPlatforms;
cl_uint numDevices;
cl_platform_id * platformIDs;
cl_device_id * deviceIDs;
cl_context context = NULL;
cl_command_queue queue;
cl_program program;
cl_kernel kernel;
cl_mem inputSignalBuffer;
cl_mem outputSignalBuffer;
cl_mem maskBuffer;
double start,end,Totaltime;//Timer variables
errNum = clGetPlatformIDs(0, NULL, &numPlatforms);
checkErr(
(errNum != CL_SUCCESS) ? errNum :
(numPlatforms <= 0 ? -1 : CL_SUCCESS),
"clGetPlatformIDs");
platformIDs = (cl_platform_id *)malloc(sizeof(cl_platform_id) * numPlatforms);
errNum = clGetPlatformIDs(numPlatforms, platformIDs, NULL);
checkErr(
(errNum != CL_SUCCESS) ? errNum :
(numPlatforms <= 0 ? -1 : CL_SUCCESS), "clGetPlatformIDs");
deviceIDs = NULL;
cl_uint i;
for (i = 0; i < numPlatforms; i++)
{
errNum = clGetDeviceIDs(
platformIDs[i],
CL_DEVICE_TYPE_GPU,
0,
NULL,
&numDevices);
if (errNum != CL_SUCCESS && errNum != CL_DEVICE_NOT_FOUND)
{
checkErr(errNum, "clGetDeviceIDs");
}
else if (numDevices > 0)
{
deviceIDs = (cl_device_id *)malloc(
sizeof(cl_device_id) * numDevices);
errNum = clGetDeviceIDs(
platformIDs[i],
CL_DEVICE_TYPE_GPU,
numDevices,
&deviceIDs[0],
NULL);
checkErr(errNum, "clGetDeviceIDs");
break;
}
}
if (deviceIDs == NULL) {
std::cout << "No CPU device found" << std::endl;
exit(-1);
}
cl_context_properties contextProperties[] =
{
CL_CONTEXT_PLATFORM,(cl_context_properties)platformIDs[i], 0
};
context = clCreateContext(
contextProperties, numDevices, deviceIDs,
&contextCallback, NULL, &errNum);
checkErr(errNum, "clCreateContext");
std::ifstream srcFile("convolution.cl");
checkErr(srcFile.is_open() ? CL_SUCCESS : -1,
"reading convolution.cl");
std::string srcProg(
std::istreambuf_iterator<char>(srcFile),
(std::istreambuf_iterator<char>()));
const char * src = srcProg.c_str();
size_t length = srcProg.length();
program = clCreateProgramWithSource(context, 1, &src, &length, &errNum);
checkErr(errNum, "clCreateProgramWithSource");
errNum = clBuildProgram(program, numDevices, deviceIDs, NULL, NULL, NULL);
checkErr(errNum, "clBuildProgram");
kernel = clCreateKernel(program, "convolve", &errNum);
checkErr(errNum, "clCreateKernel");
inputSignalBuffer = clCreateBuffer(
context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * inputSignalHeight * inputSignalWidth,
static_cast<void *>(inputSignal), &errNum);
checkErr(errNum, "clCreateBuffer(inputSignal)");
maskBuffer = clCreateBuffer(
context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * maskHeight * maskWidth,
static_cast<void *>(mask), &errNum);
checkErr(errNum, "clCreateBuffer(mask)");
outputSignalBuffer = clCreateBuffer(
context, CL_MEM_WRITE_ONLY,
sizeof(cl_uint) * outputSignalHeight * outputSignalWidth,
NULL, &errNum);
checkErr(errNum, "clCreateBuffer(outputSignal)");
queue = clCreateCommandQueue(
context, deviceIDs[0], 0, &errNum);
checkErr(errNum, "clCreateCommandQueue");
errNum = clSetKernelArg(
kernel, 0, sizeof(cl_mem), &inputSignalBuffer);
errNum |= clSetKernelArg(
kernel, 1, sizeof(cl_mem), &maskBuffer);
errNum |= clSetKernelArg(
kernel, 2, sizeof(cl_mem), &outputSignalBuffer);
errNum |= clSetKernelArg(
kernel, 3, sizeof(cl_uint), &inputSignalWidth);
errNum |= clSetKernelArg(
kernel, 4, sizeof(cl_uint), &maskWidth);
checkErr(errNum, "clSetKernelArg");
const size_t globalWorkSize[1] ={ outputSignalWidth * outputSignalHeight };
const size_t localWorkSize[1] = { 1 };
start = clock();
errNum = clEnqueueNDRangeKernel(
queue,
kernel,
1,
NULL,
globalWorkSize,
localWorkSize,
0,
NULL,
NULL
);
checkErr(errNum, "clEnqueueNDRangeKernel");
errNum = clEnqueueReadBuffer(
queue, outputSignalBuffer, CL_TRUE, 0,
sizeof(cl_uint) * outputSignalHeight * outputSignalHeight,
outputSignal, 0, NULL, NULL);
checkErr(errNum, "clEnqueueReadBuffer");
end= clock(); - start;
cout<<"Time in ms = "<<((end/CLOCKS_PER_SEC) * 1000) << endl;
for (int y = 0; y < outputSignalHeight; y++)
{
for (int x = 0; x < outputSignalWidth; x++)
{
std::cout << outputSignal[x][y] << " ";
}
std::cout << std::endl;
}
return 0;
}
Questions :
I am having below doubts-
1) When I am using device type as CL_DEVICE_TYPE_GPU,
am getting 267 ms performance .When I am using CL_DEVICE_TYPE_CPU,execution time changed to 467 ms.
I want to know that what is the difference between running a convolution code on a CPU without GPU and CPU with GPU (by selecting device type as CL_DEVICE_TYPE_CPU) .
2) As I can see the convolution.cl file where there is a for loop which is executing 3 times.Can I call other Kernel for doing this operation from available kernel file ??
I am asking this question as I am new to the OpenCL coding and want to know that thing.
Both CPU & GPU are OpenCL Devices. So, by choosing CL_DEVICE_TYPE_CPU, you are telling OpenCL runtime to compile kernel code to CPU assembler & run it on CPU. When you are choosing CL_DEVICE_TYPE_GPU, kernel code is compiled to GPU assembler & executed on your video card. Ability to change device type without re-writing source code is of the main OpenCL features. It doesn't matter, does your CPU have integrated GPU, and / or discrete GPU is installed, you just pick available Device & run kernel on it.
For OpenCL 1.2 & older you can't call kernel from kernel. Dynamic parallelism is implemented in OpenCL 2.0.
For the first question: you should vectorize the kernel so opencl can easily use SIMD feature of your CPU hence unlock 4x(or 8x) more compute units per core.
__kernel
void convolve(
const __global uint8 * const input, // uint8 fits AVX(AVX2?) and uint4 fits SSE(SSE3?)
__constant uint8 * const mask,
__global uint8 * const output,
const int inputWidth,
const int maskWidth){
const int x = get_global_id(0); // this is 1/8 size now
const int y = get_global_id(1); // this is 1/8 size now
uint8 sum = 0; // a vector of 8 unsigneds
for (int r = 0; r < maskWidth; r++)
{
const int idxIntmp = (y + r) * inputWidth + x;
for (int c = 0; c < maskWidth; c++)
{
sum += mask[(r * maskWidth) + c] * input[idxIntmp + c]; //8 issued per clock
// scalars get promoted when used in direct multiplication of addition.
}
}
output[y * get_global_size(0) + x] = sum;
}
dont forget to decrease total work threads by 7/8 ratio (example: from 8k threads to 1k threads).
Please increase work per thread such as 50 convolutions per thread to increase occupation ratio of work units, then work on some local memory optimizations(for GPU) to get even better results such as 5ms per kernel..
On my AVX capable CPU, a simple matrix multiplication got speed up ratio of 2.4X going for 8-element vectorizations like this.
Running a kernel 3 times is not an issue if you offload enough work on it. If not, you should concatenate multiple kernels into a single one using some tricky algorithm.
If a profiler is not available at the moment, you can check GPU/CPU temperatures to get some idea of how close you are to the limits of hardware.
Play with number of local threads per work group. This can change performance as it lets more or less registers to be used per thread.
Doing simple matrix multiplication using OpenCL:
// Multiply two matrices A * B = C
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <oclUtils.h>
#define WA 3
#define HA 3
#define WB 3
#define HB 3
#define WC 3
#define HC 3
// Allocates a matrix with random float entries.
void randomInit(float* data, int size)
{
for (int i = 0; i < size; ++i)
data[i] = rand() / (float)RAND_MAX;
}
/////////////////////////////////////////////////////////
// Program main
/////////////////////////////////////////////////////////
int
main(int argc, char** argv)
{
// set seed for rand()
srand(2006);
// 1. allocate host memory for matrices A and B
unsigned int size_A = WA * HA;
unsigned int mem_size_A = sizeof(float) * size_A;
float* h_A = (float*) malloc(mem_size_A);
unsigned int size_B = WB * HB;
unsigned int mem_size_B = sizeof(float) * size_B;
float* h_B = (float*) malloc(mem_size_B);
// 2. initialize host memory
randomInit(h_A, size_A);
randomInit(h_B, size_B);
// 3. print out A and B
printf("\n\nMatrix A\n");
for(int i = 0; i < size_A; i++)
{
printf("%f ", h_A[i]);
if(((i + 1) % WA) == 0)
printf("\n");
}
printf("\n\nMatrix B\n");
for(int i = 0; i < size_B; i++)
{
printf("%f ", h_B[i]);
if(((i + 1) % WB) == 0)
printf("\n");
}
// 4. allocate host memory for the result C
unsigned int size_C = WC * HC;
unsigned int mem_size_C = sizeof(float) * size_C;
float* h_C = (float*) malloc(mem_size_C);
// 5. Initialize OpenCL
// OpenCL specific variables
cl_context clGPUContext;
cl_command_queue clCommandQue;
cl_program clProgram;
cl_kernel clKernel;
size_t dataBytes;
size_t kernelLength;
cl_int errcode;
// OpenCL device memory for matrices
cl_mem d_A;
cl_mem d_B;
cl_mem d_C;
/*****************************************/
/* Initialize OpenCL */
/*****************************************/
clGPUContext = clCreateContextFromType(0,
CL_DEVICE_TYPE_GPU,
NULL, NULL, &errcode);
shrCheckError(errcode, CL_SUCCESS);
// get the list of GPU devices associated
// with context
errcode = clGetContextInfo(clGPUContext,
CL_CONTEXT_DEVICES, 0, NULL,
&dataBytes);
cl_device_id *clDevices = (cl_device_id *)
malloc(dataBytes);
errcode |= clGetContextInfo(clGPUContext,
CL_CONTEXT_DEVICES, dataBytes,
clDevices, NULL);
//shrCheckError(errcode, CL_SUCCESS);
//Create a command-queue
clCommandQue = clCreateCommandQueue(clGPUContext,
clDevices[0], 0, &errcode);
//shrCheckError(errcode, CL_SUCCESS);
// Setup device memory
d_C = clCreateBuffer(clGPUContext,
CL_MEM_READ_WRITE,
mem_size_A, NULL, &errcode);
d_A = clCreateBuffer(clGPUContext,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
mem_size_A, h_A, &errcode);
d_B = clCreateBuffer(clGPUContext,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
mem_size_B, h_B, &errcode);
// 6. Load and build OpenCL kernel
char *clMatrixMul = oclLoadProgSource("kernel.cl",
"// My comment\n",
&kernelLength);
//shrCheckError(clMatrixMul != NULL, shrTRUE);
clProgram = clCreateProgramWithSource(clGPUContext,
1, (const char **)&clMatrixMul,
&kernelLength, &errcode);
//shrCheckError(errcode, CL_SUCCESS);
errcode = clBuildProgram(clProgram, 0,
NULL, NULL, NULL, NULL);
//shrCheckError(errcode, CL_SUCCESS);
clKernel = clCreateKernel(clProgram,
"matrixMul", &errcode);
//shrCheckError(errcode, CL_SUCCESS);
// 7. Launch OpenCL kernel
size_t localWorkSize[2], globalWorkSize[2];
int wA = WA;
int wC = WC;
errcode = clSetKernelArg(clKernel, 0,
sizeof(cl_mem), (void *)&d_C);
errcode |= clSetKernelArg(clKernel, 1,
sizeof(cl_mem), (void *)&d_A);
errcode |= clSetKernelArg(clKernel, 2,
sizeof(cl_mem), (void *)&d_B);
errcode |= clSetKernelArg(clKernel, 3,
sizeof(int), (void *)&wA);
errcode |= clSetKernelArg(clKernel, 4,
sizeof(int), (void *)&wC);
//shrCheckError(errcode, CL_SUCCESS);
localWorkSize[0] = 3;
localWorkSize[1] = 3;
globalWorkSize[0] = 3;
globalWorkSize[1] = 3;
errcode = clEnqueueNDRangeKernel(clCommandQue,
clKernel, 2, NULL, globalWorkSize,
localWorkSize, 0, NULL, NULL);
//shrCheckError(errcode, CL_SUCCESS);
// 8. Retrieve result from device
errcode = clEnqueueReadBuffer(clCommandQue,
d_C, CL_TRUE, 0, mem_size_C,
h_C, 0, NULL, NULL);
//shrCheckError(errcode, CL_SUCCESS);
// 9. print out the results
printf("\n\nMatrix C (Results)\n");
for(int i = 0; i < size_C; i++)
{
printf("%f ", h_C[i]);
if(((i + 1) % WC) == 0)
printf("\n");
}
printf("\n");
// 10. clean up memory
free(h_A);
free(h_B);
free(h_C);
clReleaseMemObject(d_A);
clReleaseMemObject(d_C);
clReleaseMemObject(d_B);
free(clDevices);
free(clMatrixMul);
clReleaseContext(clGPUContext);
clReleaseKernel(clKernel);
clReleaseProgram(clProgram);
clReleaseCommandQueue(clCommandQue);
}
In the above code I keep getting error at the place :
/**********************/ / Initialize OpenCL
/ /**********************/
clGPUContext = clCreateContextFromType(0,
CL_DEVICE_TYPE_GPU,
NULL, NULL, &errcode); shrCheckError(errcode, CL_SUCCESS);
The error code being returned is -32 that means: CL_INVALID_PLATFORM"
How do I remove this error?
OS: Windows 7, 32 bit, NVIDIA GPU GeForce 610
The Nvidia drivers expect you to provide a non-NULL properties pointer as first argument to the clCreateContextFromType call.
The Khronos specification for clCreateContextFromType states that if NULL is passed for the properties parameter, the platform that is selected is implementation dependent. In case of Nvidia the choice seems to be that no platform at all is selected if a NULL pointer is passed. See clCreateContextFromType for more information.
On the other hand, this behavior is consistent with Issue #3 in the cl_khr_icd extension, which would apply if you are using OpenCL through the ICD, and which states:
3: How will the ICD handle a NULL cl_platform_id?
RESOLVED: The NULL platform is not supported by the ICD.
To pass the properties to clCreateContextFromType, first query the platforms with clGetPlatformIDs. Then construct a properties array with the desired platform ID and pass it to clCreateContextFromType. Something along the following lines should work with a C99 compliant compiler:
// query the number of platforms
cl_uint numPlatforms;
errcode = clGetPlatformIDs(0, NULL, &numPlatforms);
shrCheckError(errcode, CL_SUCCESS);
// now get all the platform IDs
cl_platform_id platforms[numPlatforms];
errcode = clGetPlatformIDs(numPlatforms, platforms, NULL);
shrCheckError(errcode, CL_SUCCESS);
// set platform property - we just pick the first one
cl_context_properties properties[] = {CL_CONTEXT_PLATFORM, (int) platforms[0], 0};
clGPUContext = clCreateContextFromType(properties, CL_DEVICE_TYPE_GPU, NULL, NULL, &errcode);
shrCheckError(errcode, CL_SUCCESS);
I'm trying to just get a basic program to work using clCreateProgramWithBinary. This is so I know how to use it rather than a "true" application.
I see that one of the parameters is a list of binaries. How exactly would I go about creating a binary to test with? I have some test code which creates a program from source, builds and enqueues it. Is there a binary created at some point during this process which I can feed into clCreateProgramWithBinary?
Here is some of my code, just to give an idea of my overall flow. I've omitted comments and error checks for simplicity.
program = clCreateProgramWithSource(clctx, 1, &dumbkernelsource, NULL, &errcode);
errcode = clBuildProgram(program, env->num_devices, env->device, NULL, NULL, NULL);
mykernel = clCreateKernel(program, "flops", &errcode);
errcode = clGetKernelWorkGroupInfo(mykernel, *(env->device), CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
global = num_workgroups * local;
errcode = clEnqueueNDRangeKernel(commands, mykernel, 1, NULL, &global, &local, 0, NULL, NULL);
After you compile your program, you can get its binary code with clGetProgramInfo, and then save it to a file.
Example code (not tried to compile, but should be something along these lines):
program = clCreateProgramWithSource(clctx, 1, &dumbkernelsource, NULL, &errcode);
errcode = clBuildProgram(program, env->num_devices, env->device, NULL, NULL, NULL);
int number_of_binaries;
char **binary;
int *binary_sizes;
errcode = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, NULL, 0, &number_of_binaries);
binary_sizes = new int[number_of_binaries];
binary = new char*[number_of_binaries];
errcode = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, binary_sizes, number_of_binaries*sizeof(int), &number_of_binaries);
for (int i = 0; i < number_of_binaries; ++i) binary[i] = new char[binary_sizes[i]];
errcode = clGetProgramInfo(program, CL_PROGRAM_BINARIES, binary, number_of_binaries*sizeof(char*), &number_of_binaries);
Minimal runnable example
Compile the embedded vector increment shader from CL C source, save the binary to a.bin, load the binary shader, and run it:
./a.out
Assertions are done at the end of the program.
Ignore the CL C shader, load binary from a.bin, and run it:
./a.out 0
Compile and run with:
gcc -ggdb3 -std=c99 -Wall -Wextra a.c -lOpenCL && ./a.out
Tested in Ubuntu 16.10, NVIDIA NVS5400, driver 375.39.
GitHub upstream: https://github.com/cirosantilli/cpp-cheat/blob/b1e9696cb18a12c4a41e0287695a2a6591b04597/opencl/binary_shader.c
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#include <CL/cl.h>
const char *source =
"__kernel void kmain(__global int *out) {\n"
" out[get_global_id(0)]++;\n"
"}\n"
;
#define BIN_PATH "a.bin"
char* common_read_file(const char *path, long *length_out) {
char *buffer;
FILE *f;
long length;
f = fopen(path, "r");
assert(NULL != f);
fseek(f, 0, SEEK_END);
length = ftell(f);
fseek(f, 0, SEEK_SET);
buffer = malloc(length);
if (fread(buffer, 1, length, f) < (size_t)length) {
return NULL;
}
fclose(f);
if (NULL != length_out) {
*length_out = length;
}
return buffer;
}
int main(int argc, char **argv) {
FILE *f;
char *binary;
cl_command_queue command_queue;
cl_context context;
cl_device_id device;
cl_int input[] = {1, 2}, errcode_ret, binary_status;
cl_kernel kernel, binary_kernel;
cl_mem buffer;
cl_platform_id platform;
cl_program program, binary_program;
const size_t global_work_size = sizeof(input) / sizeof(input[0]);
int use_cache;
long lenght;
size_t binary_size;
if (argc > 1) {
use_cache = !strcmp(argv[1], "0");
} else {
use_cache = 0;
}
/* Get the binary, and create a kernel with it. */
clGetPlatformIDs(1, &platform, NULL);
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);
context = clCreateContext(NULL, 1, &device, NULL, NULL, NULL);
command_queue = clCreateCommandQueue(context, device, 0, NULL);
if (use_cache) {
binary = common_read_file(BIN_PATH, &lenght);
binary_size = lenght;
} else {
program = clCreateProgramWithSource(context, 1, &source, NULL, NULL);
clBuildProgram(program, 1, &device, "", NULL, NULL);
kernel = clCreateKernel(program, "kmain", NULL);
clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &binary_size, NULL);
binary = malloc(binary_size);
clGetProgramInfo(program, CL_PROGRAM_BINARIES, binary_size, &binary, NULL);
f = fopen(BIN_PATH, "w");
fwrite(binary, binary_size, 1, f);
fclose(f);
}
binary_program = clCreateProgramWithBinary(
context, 1, &device, &binary_size,
(const unsigned char **)&binary, &binary_status, &errcode_ret
);
free(binary);
clBuildProgram(binary_program, 1, &device, NULL, NULL, NULL);
binary_kernel = clCreateKernel(binary_program, "kmain", &errcode_ret);
/* Run the kernel created from the binary. */
buffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(input), input, NULL);
clSetKernelArg(binary_kernel, 0, sizeof(buffer), &buffer);
clEnqueueNDRangeKernel(command_queue, binary_kernel, 1, NULL, &global_work_size, NULL, 0, NULL, NULL);
clFlush(command_queue);
clFinish(command_queue);
clEnqueueReadBuffer(command_queue, buffer, CL_TRUE, 0, sizeof(input), input, 0, NULL, NULL);
/* Assertions. */
assert(input[0] == 2);
assert(input[1] == 3);
/* Cleanup. */
clReleaseMemObject(buffer);
clReleaseKernel(kernel);
clReleaseKernel(binary_kernel);
clReleaseProgram(program);
clReleaseProgram(binary_program);
clReleaseCommandQueue(command_queue);
clReleaseContext(context);
return EXIT_SUCCESS;
}
I highly recommend cat a.bin, which contains human readable (and editable) PTX assembly for this implementation.
The official OpenCL Programming Guide book has a nice example of this. There's also a Google code project, opencl-book-samples, which includes the code from the book. The example you're looking for is here.