Is it possible to write a flexible function expression?
I want to use input arguments to control the expression of function.
For example
input arg -> function
c(1,1) -> func1 = function(x) x+1
c(1,3,2) -> func2 = function(x) x^2+3*x+2
c(6,8,-1) -> func3 = function(x) 6*x^2+8*x-1
makepoly <- function(b)
{
p <- rev(seq_along(b) - 1)
function(x)
{
xp <- outer(x, p, '^')
rowSums(xp * rep(b, each=length(x)))
}
}
# x^2 + 2x + 3
f <- makepoly(1:3)
f(0:4)
[1] 3 6 11 18 27
Here is my take on this task
create_poly <- function(coef)
paste(rev(coef),
paste("x", seq_along(coef) - 1, sep = "^"),
sep = "*", collapse = " + ")
make_polyfun <- function(input) {
myfun <- paste("function(x)", create_poly(input))
eval(parse(text = myfun))
}
With the example the OP gave we have :
make_polyfun(c(1, 1))
## function(x) 1*x^0 + 1*x^1
## <environment: 0x243a540>
make_polyfun(c(1, 3, 2))
## function(x) 2*x^0 + 3*x^1 + 1*x^2
## <environment: 0x1bd46e0>
make_polyfun(c(6, 8, 1))
## function(x) 1*x^0 + 8*x^1 + 6*x^2
## <environment: 0x22a59c0>
You can use polynom
library(polynom)
as.polynomial(c(2,3,1))
2 + 3*x + x^2
as.polynomial(c(6,8,1)
1 + 8*x + 6*x^2
EDIT you can of course coerce the result to a function using the genericas.function.polynomial. better here you can use ,as.polylist` to create many polynomials given a list of coefficients lists. For example:
lapply(as.polylist(list(c(2,3,1),c(6,8,1),c(6,8,-1))),
as.function)
[[1]]
function (x)
{
w <- 0
w <- 1 + x * w
w <- 3 + x * w
w <- 2 + x * w
w
}
<environment: 0x00000000113bd778>
[[2]]
function (x)
{
w <- 0
w <- 1 + x * w
w <- 8 + x * w
w <- 6 + x * w
w
}
<environment: 0x0000000011524168>
[[3]]
function (x)
{
w <- 0
w <- -1 + x * w
w <- 8 + x * w
w <- 6 + x * w
w
}
<environment: 0x0000000011527f28>
It's not clear how general you want to be from OP. For the particular case of polynomials, you can do:
f = function(x, coeffs) {
sum(outer(x, seq_along(coeffs) - 1, `^`) * coeffs)
}
f(2, c(1,2,3)) # 1 + 2*x + 3*x^2, with x = 2
#[1] 17
I read this as the desire to make functions and I think the agstudy/eddi responses would probably do this, but I thought trying it from scratch might be instructive:
poly.maker <- function(coefs) { func <- function(x){} #empty func in x
body(func) <- parse(text= paste( seq_along(coefs),"*x^",
(length(coefs)-1):0,collapse="+" ) )
return(func) }
func2 <- poly.maker(c(1,2,3)) # return a function
func2(3) # now test it out
#[1] 18
Note I needed to swap the order to agree with the OP request, which I only noticed after getting different results than #dickoa. This seems less clunky:
poly.make2 <- function(coefs) { func <- function(x){}
body(func) <- bquote(sum(.(coefs)*x^.( (length(coefs)-1):0 ) ) )
return(func) }
func <- poly.make2(c(1,2,5))
func
#function (x)
#sum(c(1, 2, 5) * x^c(2L, 1L, 0L))
#<environment: 0x29023d508>
func(3)
#[1] 20
One liner:
polymaker2 <- function(coefs)
{
eval(parse(text=paste0( "function(x) sum(x^(",length(coefs)-1,":0) * ",capture.output(dput(coefs)),")" )))
}
Vectorized form:
polymaker3 <- function(coefs)
{
eval(parse(text=paste0( "function(x) colSums(t(outer(x, ",length(coefs)-1,":0, `^`))*",capture.output(dput(coefs)),")" )))
}
Related
I need to find exact and numerical solutions to a function but my code in R shows Error in optim(start_val[i, ], g) :
function cannot be evaluated at initial parameters
that is my code:
g <- function(x) (3*x[1]+2*x[2]+4*x[3]-4)^2 + (4*x[1]+2*x[2]+4*x[3]-2)^2 + (1*x[1]+1*x[2]+4*x[3]-4)^2
start_val <- expand.grid(c(-10,0,10),c(-10,0,10),c(-10,0,10))
optim_on_a_multiple_grid <- function(start_val, fun, ...) {
opt_result <- sapply(1:nrow(start_val),
function(i) {
res <- optim(start_val[i,], g)
c(res[[1]], res[[2]], res[[4]])
})
rownames(opt_result) <-
c(paste("x_", 1:ncol(start_val),
"_start_val", sep = ""),
paste("x_", 1:ncol(start_val),
"_sol", sep = ""),
paste(c(deparse(substitute(
fun
)), "_min"), collapse = ""),
"convergence")
opt_result
}
round(optim_on_a_multiple_grid(expand.grid(c(-10, 0, 10), c(-10, 0, 10)), g), 3)
Please, point me at my mistakes and explain how to fix them, I am stuck on it for quite a while now
I do not know why you have alot of objects while your aim is to optimize:
Do
# Define g
g <- function(x){
a <- (3 * x[1] + 2 * x[2] + 4 * x[3] - 4)^2
b <- (4 * x[1] + 2 * x[2] + 4*x[3] - 2)^2
d <- (x[1] + x[2] + 4*x[3] - 4)^2
a +b +d
}
optim(par=c(0,0,1), fn=g)
$par
[1] -1.9998762 3.9996836 0.5000453
$value
[1] 8.468819e-09
$counts
function gradient
160 NA
$convergence
[1] 0
$message
NULL
If you need your code:
The problem lies at the very end of it:
You should have:
round(optim_on_a_multiple_grid(start_val, g), 3)
I have a character string:
FUN.n = "exp( 3 * x^2 + 2 * x + 1)";
I want to cast it as a function:
myFunction = castAsFunction ( FUN.n );
So that I can access it like:
myFunction(x)
and it will evaluate appropriately.
FUN.n = "exp( 3 * x^2 + 2 * x + 1)";
myFunction = castAsFunction ( FUN.n );
# [...]
myFunction = function(x)
{
exp( 3 * x^2 + 2 * x + 1);
}
x = -3:3;
myFunction(x);
# [1] 3.6e+09 8.1e+03 7.4e+00 2.7e+00 4.0e+02 2.4e+07 5.8e+14
I have tried as.function and eval(parse(text and none of them behave as I would expect.
I am looking for a variadic solution.
We could actually create a function called castAsFunction. We would need to give it not only a string as function body, but also the formal arguments. It feels like the function could be simplified, but it works with the example above.
FUN.n = "exp( 3 * x^2 + 2 * x + 1)"
x = -3:3
castAsFunction <- function(body, ...) {
dots <- match.call(expand.dots = FALSE)$...
form_ls <- rep(list(bquote()), length(dots))
names(form_ls) <- as.character(dots)
f <- function(){}
formals(f) <- form_ls
body(f) <- str2lang(body)
environment(f) <- parent.frame()
f
}
myfun <- castAsFunction(FUN.n, x)
myfun
#> function (x)
#> exp(3 * x^2 + 2 * x + 1)
myfun(x)
#> [1] 3.584913e+09 8.103084e+03 7.389056e+00 2.718282e+00 4.034288e+02
#> [6] 2.415495e+07 5.834617e+14
Created on 2021-02-18 by the reprex package (v0.3.0)
I would like to hide printed output when saving output of my own function.
f2 <- function(x) {
cat("x + 5 = ", x + 5)
invisible(x + 5)
}
f2(1) # prints
a <- f2(1) # also prints
In other words I would like to make my function print
x + 5 = 6
when calling f2(1) but in case of calling a <- f2(1) I dont want to show any printed output. Is there any easy way how to do that?
You can use a class system for this. Here's a simple S3 example:
f2 <- function(x) {
names(x) <- paste(x, "+ 5")
class(x) <- c(class(x), 'foo')
x + 5
}
print.foo <- function(x) { cat(names(x), "=", x)}
In practice:
> x <- 3
> f2(x)
3 + 5 = 8
> y <- f2(x)
>
Note that the print.foo function does not handle vectors of length > 1 gracefully. That could be fixed, if desired.
I have 3 vectors of equal length y, h and hp defined as follows:
y <- c(2, 5, 6)
h <- c(4, 25, 35)
hp <- c(3, 10, 12)
The values are simply illustrative.
I want to create an output list final_list of functions in x as follows
function(x) y + (h - hp) * x
(only ideal illustrative output shown):
[[1]]
[1] function(x) 2 + (1) * x
[[2]]
[1] function(x) 5 + (15) * x
[[3]]
[1] function(x) 6 + (23) * x
I am aware that this can be done with eval/parse, but this does not produce transparent output for the functions.
I would like to create the functions from these 3 vectors and output without using eval/parse. If this is possible I would be really happy to learn and be impressed!
You can use Map() with substitute(). The middle expressions are not yet evaluated, but I don't think that's such a big deal. They will be evaluated when the functions are called. Basically we just assemble the function in parts.
funs <- Map(
function(a, b, c) {
f <- function(x) x
body(f) <- substitute(y + (h - hp) * x, list(y = a, h = b, hp = c))
f
},
a = y, b = h, c = hp
)
funs
# [[1]]
# function (x)
# 2 + (4 - 3) * x
# <environment: 0x4543fd0>
#
# [[2]]
# function (x)
# 5 + (25 - 10) * x
# <environment: 0x4549e20>
#
# [[3]]
# function (x)
# 6 + (35 - 12) * x
# <environment: 0x454e5d8>
Now let's call the functions -
sapply(funs, function(a) a(1))
# [1] 3 20 29
Note: If you really need those middle expressions evaluated in the function bodies, you can use the following instead.
make <- function(a, b, c) {
d <- b - c
f <- function(x) x
body(f) <- substitute(y + (e) * x, list(y = a, e = d))
f
}
funs <- Map(make, y, h, hp)
y <- c(2,5,6)
h <- c(4, 25, 35)
hp <- c(3, 10, 12)
fun_create <- function(y, h, hp){
fun <- function(x){y + (h - hp)*x}
return(fun)
}
out <- mapply(y, h, hp, FUN = fun_create)
The output doesn't give what you might expect but it works correctly:
> out
[[1]]
function (x)
{
y + (h - hp) * x
}
<environment: 0x282ee40>
[[2]]
function (x)
{
y + (h - hp) * x
}
<environment: 0x282e610>
[[3]]
function (x)
{
y + (h - hp) * x
}
<environment: 0x282dde0>
> out[[1]](1)
[1] 3
Just using the function-function will succeed if it is executed in the correct environment.
> mapply( function(y,h,hp) function(x){ y+(h-hp)*x }, y,h,hp)
[[1]]
function (x)
{
y + (h - hp) * x
}
<environment: 0x7fb570828710>
[[2]]
function (x)
{
y + (h - hp) * x
}
<environment: 0x7fb570823718>
[[3]]
function (x)
{
y + (h - hp) * x
}
<environment: 0x7fb57081b5c8>
> myfuns[[1]](x=1:10)
[1] 3 4 5 6 7 8 9 10 11 12
> 2+(h[1]-hp[1])*1:10
[1] 3 4 5 6 7 8 9 10 11 12
> myfuns[[2]](x=1:10)
[1] 20 35 50 65 80 95 110 125 140 155
Each of those function definitions (actually closures) carries along the first matching values that existed at the time of its creation when the interpreted traveled along the search path.
> environment(myfuns[[1]])[["y"]]
[1] 2
> environment(myfuns[[1]])[["h"]]
[1] 4
> environment(myfuns[[1]])[["hp"]]
[1] 3
I'm trying to create a custom function that has an arugment that requires the arguments of another function. For instance, something like this:
funct1 <- function(x,y,z){
x + y + z
}
funct2 <- function(funct1, multiplier) {
print("first arg is ": [funct1 x arg]
print("second arg is ": [funct1 y arg]
print("third arg is ": [funct1 z arg]
}
first <- funct1(1,2,3)
funct2(first1, 2)
#first arg is 1
#second arg is 2
#third arg is 3
first <- funct1(3,4,5) #12
funct2(first1, 2)
#first arg is 3
#second arg is 4
#third arg is 5
If you want to be able to pass the function and arguments into the new function without having to define what those arguments are then you can use ...
f1 <- function(x, y, z){x + y + z}
f2 <- function(x, y){x * y}
doubler <- function(func, ...){
func(...) * 2
}
f1(1, 2, 3)
# 6
doubler(f1, 1, 2, 3)
# 12
f2(3, 4)
# 12
doubler(f2, 3, 4)
# 24
You simply need to have the same variable in each. What is the end game for this though?
funct1 <- function(x,y,z){
x + y + z
}
funct2 <- function(x,y,z) {
funct1(x,y,z) * 2
}
funct2(3,4,5)
> 24