Storing the mean square resulted from CVlm - r

I am trying to create a script in R for automatically assessing the predictive power of various possible linear models. To assess the predictive power of a model, I use as a quality indicator their overall mean square which comes from a cross-validation for which I use the function CVlm from package DAAG. My question is how can I retrieve the value of the overall mean square resulted from CVlm in an automated way (without having to observed the textual output of CVlm)?
For example the following code from http://maths-people.anu.edu.au/~johnm/r-book/3edn/scripts/reg1.R
houseprices.lm <- lm(sale.price ~ area, data=houseprices)
CVlm(houseprices, houseprices.lm, plotit=TRUE)
has an output in the form
fold 1
Observations in test set: ...
fold 2
Observations in test set: ...
Overall ms
2023
How can I access/store the value of ms (2023) of each run?

You have to store the result of CVlm in a variable and access the ms attribute:
houseprices.lm <- lm(sale.price ~ area, data=houseprices)
cv <- CVlm(houseprices, houseprices.lm, plotit=TRUE)
attr(cv, "ms")
# [1] 3934

Related

How to estimate less conservative standard errors when using post-stratified weights without full information in the survey package?

I'm encountering (very) huge standard errors in my analysis of proportions with post-stratified data when using the survey package.
I'm working with a data set including (normalized) weights calculated via raking by another party. I don't know exactly how the strata have been defined (e.g. "ageXgender" has been used, but it's unclear which categorization has been used). Let's assume a simple random sample with a considerable amount of non-response.
Is there any way to estimate reduced standard errors due to post-stratification without the exact information about the procedure in survey? I could recallibrate the weights with rake() if I can exactly define the strata but I don't have enough information for this.
I have tried to infer the strata by grouping all equal weights together and thought that I would at least get an upper bound of the reduction in standard errors this way but using them did only lead to marginally reduced standard errors and sometimes even increased standard errors:
# An example with the api datasets, pretending that pw are post-stratification weights of unknown origin
library(survey)
data(api)
apistrat$pw <-apistrat$pw/mean(apistrat$pw) #normalized weights
# Include some more extreme weights to simulate my data
mins <- which(apistrat$pw == min(apistrat$pw))
maxs <- which(apistrat$pw == max(apistrat$pw))
apistrat[mins[1:5], "pw"] <- 0.1
apistrat[maxs[1:5], "pw"] <- 10
apistrat[mins[6:10], "pw"] <- 0.2
apistrat[maxs[6:10], "pw"] <- 5
dclus1<-svydesign(id=~1, weights=~pw, data=apistrat)
# "Estimate" stratas from the weights
apistrat$ps_est <- as.factor(apistrat$pw)
dclus_ps_est <-svydesign(id=~1, strata=~ps_est, weights=~pw, data=apistrat)
svymean(~api00, dclus1)
svymean(~api00, dclus_ps_est)
#this actually increases the se instead of reducing it
My real weights are also much more complex with 700 unique values in 1000 cases.
Is it possible to somehow approximate the reduction of standard errors due to post-stratification without knowing the real variables and categories and -especially- population values for rake? Could I use rake with some assumptions about the variables and categories used in the strata definitions but without the population totals in some way?
If your data are already raked, then you know the population totals exactly: raking makes the estimated population totals equal the true population totals for the raking variables. So, if you know the raking variables you can estimate the population totals then rake. The raking won't change the weights (because ex hypothesi these were already raked) but it will change the standard error estimates
(The next version of the survey package will have an option in svydesign to do exactly this.)

How to test efficiently for spatial/temporal autocorrelatian in a time series

I am looking at count data over a period of 31 years and 274 connected plots. I suspect this data to have spatial/temporal autocorrelation and I am looking for a well arranged method for testing this.
So far I used DHARMa to check my model residuals which returned the following message:
testing for spatial autocorrelation requires unique x,y values - if
you have several observations per location, either use the
recalculateResiduals function to aggregate residuals per location, or
extract the residuals from the fitted object, and plot / test each of
them independently for spatially repeated subgroups (a typical
scenario would repeated spatial observation, in which case one could
plot / test each time step separately for temporal autocorrelation).
Note that the latter must be done by hand, outside
testSpatialAutocorrelation
As aggregating is not an option I’ve decided to test each of them independently. The following output is the result of testing a single year for spatial autocorrelation:
> Moran.I(spat$Residuals, dists.inv)
$observed
[1] -0.007104585
$expected
[1] -0.003663004
$sd
[1] 0.004742504
$p.value
[1] 0.4680297
How can I interpret this output? And what would be a good method of testing every single year in my dataset? I thought about writing a loop which would make things very hard to read.
The same thing applies to testing for temporal autocorrelation. This is one of the 274 plots:
> lmtest::dwtest(temp$Residuals ~ 1, order.by = temp$year)
Durbin-Watson test
data: temp$Residuals ~ 1
DW = 2.1637, p-value = 0.6775
alternative hypothesis: true autocorrelation is greater than 0
Is there a smart method of running multiple tests to quickly identify the affected years/plots?
Also how would I include the strength of the spatial/temporal autocorrelation separately per year or plot in the final model?

Writing syntax for bivariate survival censored data to fit copula models in R

library(Sunclarco)
library(MASS)
library(survival)
library(SPREDA)
library(SurvCorr)
library(doBy)
#Dataset
diabetes=data("diabetes")
data1=subset(diabetes,select=c("LASER","TRT_EYE","AGE_DX","ADULT","TIME1","STATUS1"))
data2=subset(diabetes,select=c("LASER","TRT_EYE","AGE_DX","ADULT","TIME2","STATUS2"))
#Adding variable which identify cluster
data1$CLUSTER<- rep(1,197)
data2$CLUSTER<- rep(2,197)
#Renaming the variable so that that we hve uniformity in the common items in the data
names(data1)[5] <- "TIME"
names(data1)[6] <- "STATUS"
names(data2)[5] <- "TIME"
names(data2)[6] <- "STATUS"
#merge the files
Total_data=rbind(data1,data2)
# Re arranging the database
diabete_full=orderBy(~LASER+TRT_EYE+AGE_DX,data=Total_data)
diabete_full
#using Sunclarco package for Clayton a nd Gumbel
Clayton_1step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=1,copula="Clayton",marginal="Weibull")
summary(Clayton_1step)
# Estimates StandardErrors
#lambda 0.01072631 0.005818201
#rho 0.79887565 0.058942208
#theta 0.10224445 0.090585891
#beta_LASER 0.16780224 0.157652947
#beta_TRT_EYE 0.24580489 0.162333369
#beta_ADULT 0.09324001 0.158931463
# Estimate StandardError
#Kendall's Tau 0.04863585 0.04099436
Clayton_2step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=2,copula="Clayton",marginal="Weibull")
summary(Clayton_1step)
# Estimates StandardErrors
#lambda 0.01131751 0.003140733
#rho 0.79947406 0.012428824
#beta_LASER 0.14244235 0.041845100
#beta_TRT_EYE 0.27246433 0.298184235
#beta_ADULT 0.06151645 0.253617142
#theta 0.18393973 0.151048024
# Estimate StandardError
#Kendall's Tau 0.08422381 0.06333791
Gumbel_1step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=1,copula="GH",marginal="Weibull")
# Estimates StandardErrors
#lambda 0.01794495 0.01594843
#rho 0.70636113 0.10313853
#theta 0.87030690 0.11085344
#beta_LASER 0.15191936 0.14187943
#beta_TRT_EYE 0.21469814 0.14736381
#beta_ADULT 0.08284557 0.14214373
# Estimate StandardError
#Kendall's Tau 0.1296931 0.1108534
Gumbel_2step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=2,copula="GH",marginal="Weibull")
Am required to fit copula models in R for different copula classes particularly the Gaussian, FGM,Pluckett and possibly Frank (if i still have time). The data am using is Diabetes data available in R through the package Survival and Survcorr.
Its my thesis am working on and its a study for the exploratory purposes to see how does copula class serves different purposes as in results they lead to having different results on the same. I found a package Sunclarco in Rstudio which i was able to fit Clayton and Gumbel copula class but its not available yet for the other classes.
The challenge am facing is that since i have censored data which has to be incorporated in likelihood estimation then it becomes harder fro me to write a syntax since as I don't have a strong programming background. In addition, i have to incorporate the covariates present in programming and see their impact on the association if it present or not. However, taking to my promoter he gave me insights on how to approach the syntax writing for this puzzle which goes as follows
• ******First of all, forget about the likelihood function. We only work with the log-likelihood function. In this way, you do not need to take the product of the contributions over each of the observations, but can take the sum of the log-contributions over the different observations.
• Next, since we have a balanced design, we can use the regular data frame structure in which we have for each cluster only one row in the data frame. The different variables such as the lifetimes, the indicators and all the covariates are the columns in this data frame.
• Due to the bivariate setting, there are only 4 possible ways to give a contribution to the log-likelihood function: both uncensored, both censored, first uncensored and second censored, or first censored and second uncensored. Well, to create the loglikelihood function, you create a new variable in your data frame in which you put the correct contribution of the log-likelihood based on which individual in the couple is censored. When you take the sum of this variable, you have the value of the log-likelihood function.
• Since this function depends on parameters, you can use any optimizer, like optim or nlm to get your optimal values. By careful here, optim and nlm look for the minimum of a function, not a maximum. This is easy solved since the minimum of a function -f is the same as the maximum of a function f.
• Since you have for each copula function, the different expressions for the derivatives, it should be possible to get the likelihood functions now.******
Am still struggling to find a way as for each copula class each of the likelihood changes as the generator function is also unique for the respective copula since it needs to be adapted during estimation. Lastly, I should run analysis for both one and two steps of copula estimations as i will use to compare results.
if someone could help me to figure it out then I will be eternally grateful. Even if for just one copula class e.g. Gaussian then I will figure it the rest based on the one that am requesting to be assisted since I tried everything and still i have nothing to show up for and now i feel time is running out to get answers by myself.

PLS in R: Extracting PRESS statistic values

I'm relatively new to R and am currently in the process of constructing a PLS model using the pls package. I have two independent datasets of equal size, the first is used here for calibrating the model. The dataset comprises of multiple response variables (y) and 101 explanatory variables (x), for 28 observations. The response variables, however, will each be included seperately in a PLS model. The code current looks as follows:
# load data
data <- read.table("....txt", header=TRUE)
data <- as.data.frame(data)
# define response variables (y)
HEIGHT <- as.numeric(unlist(data[2]))
FBM <- as.numeric(unlist(data[3]))
N <- as.numeric(unlist(data[4]))
C <- as.numeric(unlist(data[5]))
CHL <- as.numeric(unlist(data[6]))
# generate matrix containing the explanatory (x) variables only
spectra <-(data[8:ncol(data)])
# calibrate PLS model using LOO and 20 components
library(pls)
refl.pls <- plsr(N ~ as.matrix(spectra), ncomp=20, validation = "LOO", jackknife = TRUE)
# visualize RMSEP -vs- number of components
plot(RMSEP(refl.pls), legendpos = "topright")
# calculate explained variance for x & y variables
summary(refl.pls)
I have currently arrived at the point at which I need to decide, for each response variable, the optimal number of components to include in my PLS model. The RMSEP values already provide a decent indication. However, I would also like to base my decision on the PRESS (Predicted Residual Sum of Squares) statistic, in accordance various studies comparable to the one I am conducting. So in short, I would like to extract the PRESS statistic for each PLS model with n components.
I have browsed through the pls package documentation and across the web, but unfortunately have been unable to find an answer. If there is anyone out here that could help me get in the right direction that would be greatly appreciated!
You can find the PRESS values in the mvr object.
refl.pls$validation$PRESS
You can see this either by exploring the object directly with str or by perusing the documentation more thoroughly. You will notice if you look at ?mvr you will see the following:
validation if validation was requested, the results of the
cross-validation. See mvrCv for details.
Validation was indeed requested so we follow this to ?mvrCv where you will find:
PRESS a matrix of PRESS values for models with 1, ...,
ncomp components. Each row corresponds to one response variable.

Preprocess data in R

Im using R to create logistic regression classifier model.
Here is the code sample:
library(ROCR)
DATA_SET <- read.csv('E:/1.csv')
classOneCount= 4000
classZeroCount = 4000
sample.churn <- sample(which(DATA_SET$Class==1),classOneCount)
sample.nochurn <- sample(which(DATA_SET$Class==0),classZeroCount )
train.set <- DATA_SET[c(sample.churn,sample.nochurn),]
test.set <- DATA_SET[c(-sample.churn,-sample.nochurn),]
full.logit <- glm(Class~., data = train.set, family = binomial)
And it works fine, but I would like to preprocess the data to see if it improves classification model.
What I would like to do would be to divide input vector variables which are continuoes into intervals. Lets say that one variable is height in centimeters in float.
Sample values of height:
183.23
173.43
163.53
153.63
193.27
and so on, and I would like to split it into lets say 3 different intervals: small, medium, large.
And do it with all variables from my set - there are 32 variables.
What's more I would like to see at the end correlation between value of the variables (this intervals) and classification result class.
Is this clear?
Thank you very much in advance
The classification model creates some decision boundary and existing algorithms are rather good at estimating it. Let's assume that you have one variable - height - and linear decision boundary. Your algorithm can then decide between what values put decision boundary by estimating error on training set. If you perform quantization and create few intervals your algorithm have fewer places to put boundary(data loss). It will likely perform worse on such cropped dataset than on original one. It could help if your learning algorithm is suffering from high variance (is overfitting data) but then you could also try getting more training examples, use smaller set (subset) of features or use algorithm with regularization and increase regularization parameter
There are also many questions about how to choose number of intervals and how to divide data into them like: should all intervals be equally frequent or of equal width or most similar to each other inside each interval?
If you want just to experiment use some software like f.e. free version of RapidMiner Studio (it can read CSV and Excel files and have some quick quantization options) to convert your data

Resources