I really like how the pheatmap package creates very nice looking heatmaps in R. However, I am trying to add x and y axis labels to the output (if one were just in plot(), one would use: xlab = 'stuff'). A simple example is as follows.
require(pheatmap)
## Generate some data
d <- matrix(rnorm(25), 5, 5)
colnames(d) = paste("bip", 1:5, sep = "")
rownames(d) = paste("blob", 1:5, sep = "")
## Create the heatmap:
pheatmap(d)
The above yields the following heatmap:
I cannot for the life of me figure out how to add an 'xlab' or 'ylab' to this plot. Thoughts?
The main issue here is that pheatmap, which uses grid package, creates a new grid page each time it is called. The solution I've found is:
library(pheatmap)
library(grid)
## Generate some data
d <- matrix(rnorm(25), 5, 5)
colnames(d) = paste("bip", 1:5, sep = "")
rownames(d) = paste("blob", 1:5, sep = "")
## Create the heatmap:
setHook("grid.newpage", function() pushViewport(viewport(x=1,y=1,width=0.9, height=0.9, name="vp", just=c("right","top"))), action="prepend")
pheatmap(d)
setHook("grid.newpage", NULL, "replace")
grid.text("xlabel example", y=-0.07, gp=gpar(fontsize=16))
grid.text("ylabel example", x=-0.07, rot=90, gp=gpar(fontsize=16))
Related
I was wondering if anyone knows of a package that allows partial row labeling of heatmaps. I am currently using pheatmap() to construct my heatmaps, but I can use any package that has this functionality.
I have plots with many rows of differentially expressed genes and I would like to label a subset of them. There are two main things to consider (that I can think of):
The placement of the text annotation depends on the height of the row. If the rows are too narrow, then the text label will be ambiguous without some sort of pointer.
If multiple adjacent rows are significant (i.e. will be labelled), then these will need to be offset, and again, a pointer will be needed.
Below is an example of a partial solution that really only gets maybe halfway there, but I hope illustrates what I'd like to be able to do.
set.seed(1)
require(pheatmap)
require(RColorBrewer)
require(grid)
### Data to plot
data_mat <- matrix(sample(1:10000, 300), nrow = 50, ncol = 6)
rownames(data_mat) <- paste0("Gene", 1:50)
colnames(data_mat) <- c(paste0("A", 1:3), paste0("B", 1:3))
### Set how many genes to annotate
### TRUE - make enough labels that some overlap
### FALSE - no overlap
tooMany <- T
### Select a few genes to annotate
if (tooMany) {
sigGenes_v <- paste0("Gene", c(5,20,26,42,47,16,28))
newMain_v <- "Too Many Labels"
} else {
sigGenes_v <- paste0("Gene", c(5,20,26,42))
newMain_v <- "OK Labels"
}
### Make color list
colors_v <- brewer.pal(8, "Dark2")
colors_v <- colors_v[c(1:length(sigGenes_v), 8)]
names(colors_v) <- c(sigGenes_v, "No")
annColors_lsv <- list("Sig" = colors_v)
### Column Metadata
colMeta_df <- data.frame(Treatment = c(rep("A", 3), rep("B", 3)),
Replicate = c(rep(1:3, 2)),
stringsAsFactors = F,
row.names = colnames(data_mat))
### Row metadata
rowMeta_df <- data.frame(Sig = rep("No", 50),
stringsAsFactors = F,
row.names = rownames(data_mat))
for (gene_v in sigGenes_v) rowMeta_df[rownames(rowMeta_df) == gene_v, "Sig"] <- gene_v
### Heatmap
heat <- pheatmap(data_mat,
annotation_row = rowMeta_df,
annotation_col = colMeta_df,
annotation_colors = annColors_lsv,
cellwidth = 10,
main = "Original Heat")
### Get order of genes after clustering
genesInHeatOrder_v <- heat$tree_row$labels[heat$tree_row$order]
whichSigInHeatOrder_v <- which(genesInHeatOrder_v %in% sigGenes_v)
whichSigInHeatOrderLabels_v <- genesInHeatOrder_v[whichSigInHeatOrder_v]
sigY <- 1 - (0.02 * whichSigInHeatOrder_v)
### Change title
whichMainGrob_v <- which(heat$gtable$layout$name == "main")
heat$gtable$grobs[[whichMainGrob_v]] <- textGrob(label = newMain_v,
gp = gpar(fontsize = 16))
### Remove rows
whichRowGrob_v <- which(heat$gtable$layout$name == "row_names")
heat$gtable$grobs[[whichRowGrob_v]] <- textGrob(label = whichSigInHeatOrderLabels_v,
y = sigY,
vjust = 1)
grid.newpage()
grid.draw(heat)
Here are a few outputs:
original heatmap:
ok labels:
ok labels, with flags:
too many labels
too many labels, with flags
The "with flags" outputs are the desired final results.
I just saved these as images from the Rstudio plot viewer. I recognize that I could save them as pdfs and provide a larger file size to get rid of the label overlap, but then the individual cells would be larger than I want.
Based on your code, you seem fairly comfortable with gtables & grobs. A (relatively) straightforward way to achieve the look you want is to zoom in on the row label grob, & make some changes there:
replace unwanted labels with "";
evenly spread out labels within the available space;
add line segments joining the old and new label positions.
I wrote a wrapper function for this, which works as follows:
# heat refers to the original heatmap produced from the pheatmap() function
# kept.labels should be a vector of labels you wish to show
# repel.degree is a number in the range [0, 1], controlling how much the
# labels are spread out from one another
add.flag(heat,
kept.labels = sigGenes_v,
repel.degree = 0)
add.flag(heat,
kept.labels = sigGenes_v,
repel.degree = 0.5)
add.flag(heat,
kept.labels = sigGenes_v,
repel.degree = 1)
Function (explanations in annotations):
add.flag <- function(pheatmap,
kept.labels,
repel.degree) {
# repel.degree = number within [0, 1], which controls how much
# space to allocate for repelling labels.
## repel.degree = 0: spread out labels over existing range of kept labels
## repel.degree = 1: spread out labels over the full y-axis
heatmap <- pheatmap$gtable
new.label <- heatmap$grobs[[which(heatmap$layout$name == "row_names")]]
# keep only labels in kept.labels, replace the rest with ""
new.label$label <- ifelse(new.label$label %in% kept.labels,
new.label$label, "")
# calculate evenly spaced out y-axis positions
repelled.y <- function(d, d.select, k = repel.degree){
# d = vector of distances for labels
# d.select = vector of T/F for which labels are significant
# recursive function to get current label positions
# (note the unit is "npc" for all components of each distance)
strip.npc <- function(dd){
if(!"unit.arithmetic" %in% class(dd)) {
return(as.numeric(dd))
}
d1 <- strip.npc(dd$arg1)
d2 <- strip.npc(dd$arg2)
fn <- dd$fname
return(lazyeval::lazy_eval(paste(d1, fn, d2)))
}
full.range <- sapply(seq_along(d), function(i) strip.npc(d[i]))
selected.range <- sapply(seq_along(d[d.select]), function(i) strip.npc(d[d.select][i]))
return(unit(seq(from = max(selected.range) + k*(max(full.range) - max(selected.range)),
to = min(selected.range) - k*(min(selected.range) - min(full.range)),
length.out = sum(d.select)),
"npc"))
}
new.y.positions <- repelled.y(new.label$y,
d.select = new.label$label != "")
new.flag <- segmentsGrob(x0 = new.label$x,
x1 = new.label$x + unit(0.15, "npc"),
y0 = new.label$y[new.label$label != ""],
y1 = new.y.positions)
# shift position for selected labels
new.label$x <- new.label$x + unit(0.2, "npc")
new.label$y[new.label$label != ""] <- new.y.positions
# add flag to heatmap
heatmap <- gtable::gtable_add_grob(x = heatmap,
grobs = new.flag,
t = 4,
l = 4
)
# replace label positions in heatmap
heatmap$grobs[[which(heatmap$layout$name == "row_names")]] <- new.label
# plot result
grid.newpage()
grid.draw(heatmap)
# return a copy of the heatmap invisibly
invisible(heatmap)
}
I want to skip a empty panel using lattice package in R.
set.seed(1)
df1 <- data.frame("treatment" = c(rep("A",16),rep("B",16),rep("C",16)),
"disease_type" = c(rep("1",8),rep("2",8)),
"days_after_application" = rep(c(rep("10-24",4),rep("24-48",4)),6),
"severity" = rnorm(48, mean = 80, sd = 5))
df1[(df1$disease_type == "2" & df1$days_after_application == "24-48"),"severity"] <- NA
library(lattice)
figure1 <- bwplot(treatment~severity|days_after_application+disease_type,
data = df1,layout = c(2,2),
strip = strip.custom(strip.names = TRUE))
jpeg("figure1.jpeg")
print(figure1)
dev.off()
Here is what I get
My question is how I can remove/skip empty panel in the top right WITHOUT changing layout?
I have tried following code. However, it doesn't work.
figure2 <- bwplot(treatment~severity|days_after_application+disease_type,
data = df1,layout = c(2,2),
strip = strip.custom(strip.names = TRUE),
skip = c(FALSE,FALSE,FALSE,TRUE))
jpeg("figure2.jpeg")
print(figure2)
dev.off()
Here is what I got
I also tried following codes. But it is not what I want since I do want 2 levels strips.
df1[(df1$disease_type == "2" & df1$days_after_application == "24-48"),] <- NA
bwplot(treatment~severity|interaction(days_after_application,disease_type),
data = df1,layout = c(2,2),
strip = strip.custom(strip.names = TRUE))
Thank you!
Get help from a Professor in Temple University.
Here is his solution:
figure4 <- bwplot(treatment~severity|days_after_application+disease_type,
data = df1,layout = c(2,2),
strip = strip.custom(strip.names = TRUE),
skip = c(FALSE,FALSE,FALSE,TRUE),
scales=list(alternating=FALSE), ## keep x-scale on bottom
between=list(x=1, y=1)) ## space between panels
pdf("figure4%03d.pdf",onefile = FALSE) ## force two pages in file.
print(figure4)
dev.off()
I am using igraph in R for network analysis. I want to display an edge attribute on each line in the plot. An example is below
df <- data.frame(a = c(0,1,2,3,4),b = c(3,4,5,6,7))
nod <- data.frame(node = c(0:7),wt = c(1:8))
pg <- graph_from_data_frame(d = df, vertices = nod,directed = F)
plot(pg)
I want the value of the "wt" feature to show up between each node on the line, or preferably, in a little gap where the line breaks.
Is it possible to make this happen?
Use the parameter edge.label to assign labels of the edges, I used - probably wrong - nod$wt. Of course, you could assign other labels.
You could use the following code:
# load the package
library(igraph)
# your code
df <- data.frame(a = c(0,1,2,3,4),b = c(3,4,5,6,7))
nod <- data.frame(node = c(0:7),wt = c(1:8))
pg <- graph_from_data_frame(d = df, vertices = nod,directed = F)
# plot function with edge.label added
plot(pg, edge.label = nod$wt)
Please, let me know whether this is what you want.
I have made a loop for making multiply plots, however i have no way of saving them, my code looks like this:
#----------------------------------------------------------------------------------------#
# RING data: Mikkel
#----------------------------------------------------------------------------------------#
# Set working directory
setwd()
#### Read data & Converting factors ####
dat <- read.table("Complete RING.txt", header =TRUE)
str(dat)
dat$Vial <- as.factor(dat$Vial)
dat$Line <- as.factor(dat$Line)
dat$Fly <- as.factor(dat$Fly)
dat$Temp <- as.factor(dat$Temp)
str(dat)
datSUM <- summaryBy(X0.5_sec+X1_sec+X1.5_sec+X2_sec+X2.5_sec+X3_sec~Vial_nr+Concentration+Sex+Line+Vial+Temp,data=dat, FUN=sum)
fl<-levels(datSUM$Line)
colors = c("#e41a1c", "#377eb8", "#4daf4a", "#984ea3")
meltet <- melt(datSUM, id=c("Concentration","Sex","Line","Vial", "Temp", "Vial_nr"))
levels(meltet$variable) <- c('0,5 sec', '1 sec', '1,5 sec', '2 sec', '2,5 sec', '3 sec')
meltet20 <- subset(meltet, Line=="20")
meltet20$variable <- as.factor(meltet20$variable)
AllConcentrations <- levels(meltet20$Concentration)
for (i in AllConcentrations) {
meltet.i <- meltet20[meltet20$Concentration ==i,]
quartz()
print(dotplot(value~variable|Temp, group=Sex, data = meltet.i ,xlab="Time", ylab="Total height pr vial [mm above buttom]", main=paste('Line 20 concentration ', meltet.i$Concentration[1]),
key = list(points = list(col = colors[1:2], pch = c(1, 2)),
text = list(c("Female", "Male")),
space = "top"), col = colors, pch =c(1, 2))) }
I have tried with the quartz.save function, but that just overwrites the files. Im using a mac if that makes any difference.
When I want to save multiple plots in a loop I tend to do something like...
for(i in AllConcentrations){
meltet.i <- meltet20[meltet20$Concentration ==i,]
pdf(paste("my_filename", i, ".pdf", sep = ""))
dotplot(value~variable|Temp, group=Sex, data = meltet.i ,xlab="Time", ylab="Total height pr vial [mm above buttom]", main=paste('Line 20 concentration ', meltet.i$Concentration[1]),
key = list(points = list(col = colors[1:2], pch = c(1, 2)),
text = list(c("Female", "Male")),
space = "top"), col = colors, pch =c(1, 2))
dev.off()
}
This will create a pdf file for every level in AllConcentrations and save it in your working directory. It will paste together my_filename, the number of the iteration i, and then .pdf together to make each file unique. Of course, you will want to adjust height and width in the pdf function.
As the above screenshot showed, I used the function heatmap.2() here.
how can I change 'Value' in the color coded bar to any other name?
One can just use the data from gplots package:
library(gplots)
data(mtcars)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start=0, end=.3)
cc <- rainbow(ncol(x), start=0, end=.3)
heatmap.2(x, key=TRUE)
Many thanks :-)
The function heatmap.2 may have changed since #BondedDust answered, but its now possible to easily change the heatmap.2 key labels via:
key.xlab="New value"
First, your code from above (using the standard colors):
library(gplots)
data(mtcars)
x <- as.matrix(mtcars)
heatmap.2(x,key=TRUE)
Now replace the x and y labels:
library(gplots)
data(mtcars)
x <- as.matrix(mtcars)
heatmap.2(x, key=TRUE , key.xlab="New value", key.ylab="New count")
It's hard-coded. You will need to change it in the code. It appears about midway down the section that draws the key and the line is:
else mtext(side = 1, "Value", line = 2)
This is the section of the heatmap.2 code that creates the key (at least up to the point where the word "Value" appears) :
if (key) {
par(mar = c(5, 4, 2, 1), cex = 0.75)
tmpbreaks <- breaks
if (symkey) {
max.raw <- max(abs(c(x, breaks)), na.rm = TRUE)
min.raw <- -max.raw
tmpbreaks[1] <- -max(abs(x), na.rm = TRUE)
tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE)
}
else {
min.raw <- min(x, na.rm = TRUE)
max.raw <- max(x, na.rm = TRUE)
}
z <- seq(min.raw, max.raw, length = length(col))
image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks,
xaxt = "n", yaxt = "n")
par(usr = c(0, 1, 0, 1))
lv <- pretty(breaks)
xv <- scale01(as.numeric(lv), min.raw, max.raw)
axis(1, at = xv, labels = lv)
if (scale == "row")
mtext(side = 1, "Row Z-Score", line = 2)
else if (scale == "column")
mtext(side = 1, "Column Z-Score", line = 2)
else mtext(side = 1, "Value", line = 2)
.... lots more code below
You should type heatmap.2 , then copy the source code to an editor and then use the search function to find "Value". Change "Value" to something else (in quotes) and then type heatmap.2 <- and paste in the code and hit return. (Unless you save this it will only persist as long as the session continues.)
Just come across same task recently. Now there is an option "key.title" to set the title for scale inlet:
library(gplots)
data(mtcars)
x <- as.matrix(mtcars)
heatmap.2(x, key.title = "New Title", key.xlab="New value", key.ylab="New count")
Unfortunately, it do not propagate properly if there is no histogram in inlet:
library(gplots)
data(mtcars)
x <- as.matrix(mtcars)
heatmap.2(x, key.title = "New Title", key.xlab="New value", key.ylab="New count")
Well, key.xlab working as expected and can be used instead.
I've checked the source code on github and it is already fixed there.