Having the following table which comprises some key columns which are: customer ID | order ID | product ID | Quantity | Amount | Order Date.
All this data is in LONG Format, in that you will get multi line items for the 1 Customer ID.
I can get the first date last date using R DateDiff but converting the file to WIDE format using Plyr, still end up with the same problem of getting multiple orders by customer, just less rows and more columns.
Is there an R function that extends R DateDiff to work out how to get the time interval between purchases by Customer ID? That is, time between order 1 and 2, order 2 and 3, and so on assuming these orders exists.
CID Order.Date Order.DateMY Order.No_ Amount Quantity Category.Name Locality
1 26/02/13 Feb-13 zzzzz 1 r MOSMAN
1 26/05/13 May-13 qqqqq 1 x CHULLORA
1 28/05/13 May-13 wwwww 1 r MOSMAN
1 28/05/13 May-13 wwwww 1 x MOSMAN
2 19/08/13 Aug-13 wwwwww 1 o OAKLEIGH SOUTH
3 3/01/13 Jan-13 wwwwww 1 x CURRENCY CREEK
4 28/08/13 Aug-13 eeeeeee 1 t BRISBANE
4 10/09/13 Sep-13 rrrrrrrrr 1 y BRISBANE
4 25/09/13 Sep-13 tttttttt 2 e BRISBANE
It is not clear what do you want to do since you don't give the expected result. But I guess you want to the the intervals between 2 orders.
library(data.table)
DT <- as.data.table(DF)
DT[, list(Order.Date,
diff = c(0,diff(sort(as.Date(Order.Date,'%d/%m/%y')))) ),CID]
CID Order.Date diff
1: 1 26/02/13 0
2: 1 26/05/13 89
3: 1 28/05/13 2
4: 1 28/05/13 0
5: 2 19/08/13 0
6: 3 3/01/13 0
7: 4 28/08/13 0
8: 4 10/09/13 13
9: 4 25/09/13 15
Split the data frame and find the intervals for each Customer ID.
df <- data.frame(customerID=as.factor(c(rep("A",3),rep("B",4))),
OrderDate=as.Date(c("2013-07-01","2013-07-02","2013-07-03","2013-06-01","2013-06-02",
"2013-06-03","2013-07-01")))
dfs <- split(df,df$customerID)
lapply(dfs,function(x){
tmp <-diff(x$OrderDate)
tmp
})
Or use plyr
library(plyr)
dfs <- dlply(df,.(customerID),function(x)return(diff(x$OrderDate)))
I know this question is very old, but I just figured out another way to do it and wanted to record it:
> library(dplyr)
> library(lubridate)
> df %>% group_by(customerID) %>%
mutate(SinceLast=(interval(ymd(lag(OrderDate)),ymd(OrderDate)))/86400)
# A tibble: 7 x 3
# Groups: customerID [2]
customerID OrderDate SinceLast
<fct> <date> <dbl>
1 A 2013-07-01 NA
2 A 2013-07-02 1.
3 A 2013-07-03 1.
4 B 2013-06-01 NA
5 B 2013-06-02 1.
6 B 2013-06-03 1.
7 B 2013-07-01 28.
Related
I have a two data.frames (call them dataset.new and dataset.old) that both contain information about some individuals. These individuals all have a identification number (a variable we can call ”individual”) that occurs in both of the data.frames and each frame has information on when the data was collected, stored in a column that we can call ”some.date”.
The second of these two data.frames (dataset.old) contains historical data for the individuals, i.e. values of some other variables measured at other times and thus each individual appears many times in dataset.old.
What I wish to do is the following. For each individual in dataset.new, find the rows from dataset.old that are the newest but still older than the observations in dataset.new. For the individuals that have no such date present in dataset.old, I want it to return NA.
This is perhaps easiest illustrated through some example data, presented below.
dataset.new
individual some.date
1 1 2016-05-01
2 2 2016-01-28
3 7 2016-03-03
dataset.old
individual some.date
1 1 2016-01-12
2 1 2015-12-30
3 1 2016-04-27
4 1 2016-05-02
5 2 2015-11-15
6 2 2012-01-27
7 2 2016-02-06
8 3 2016-04-30
9 3 2016-01-27
10 4 2016-03-01
11 4 2011-01-16
In this example, I am looking for a way get the following output:
individual row.nr
1 1 3
2 2 5
3 7 NA
since those rows correspond to the newest data in dataset.old that still is older than the data in dataset.new.
I have a code that solves the problem, but it is too slow for the data that I have in mind (which has well over 20 000 rows in dataset.new and many, many more in dataset.old). My solution is basically a loop over all individuals, subsetting the data at each stage.
find.previous <- function(dataset.old, individual, some.new.date){
subsetted.dataset <- dataset.old[dataset.old[, "individual"] == individual, ] # We only look at the individual in question.
subsetted.dataset <- subsetted.dataset[subsetted.dataset[, "some.date"] < some.new.date, ]# Here we get all the rows that have data that are measured BEFORE timepoint.
row.index <- which.min(some.new.date - subsetted.dataset[, "some.date"]) # This can be done, since we have already made sure that fromdatum < timepoint.
ifelse(length(row.index)!= 0, as.integer(rownames(subsetted.dataset[row.index,])), NA) # Then we output the row that had that information.
}
output <- matrix(ncol=2, nrow=0)
for(i in 1:nrow(dataset.new)){
output <- rbind(output, cbind(dataset.new[, "individual"][i], find.previous(dataset.old, dataset.new[, "individual"][i], dataset.new[, "some.date"][i])))
}
colnames(output) <- c("individual", "row.nr")
output
Any help on how to solve this problem would be greatly appreciated. I have tried using my Google skills as well as reading other posts on here stackoverflow, but without success.
The example data can be replicated by copying the following lines of code:
dataset.new <- data.frame(individual=c(1, 2, 7), some.date=as.Date(c("2016-05-01", "2016-01-28", "2016-03-03")))
dataset.old <- data.frame(individual=c(1,1,1,1,2,2,2,3,3,4,4), some.date=as.Date(c("2016-01-12", "2015-12-30", "2016-04-27", "2016-05-02", "2015-11-15", "2012-01-27", "2016-02-06", "2016-04-30", "2016-01-27", "2016-03-01", "2011-01-16")))
You can solve this efficiently with a merge.
First make the rownumber variable you want in dataset.old. Then merge dataset.new with dataset.old on individual (left join, or merge(lhs, rhs, all.x = TRUE)). This can get you:
dataset.old
individual new.date old.date old.rownumber
1 1 2016-05-01 2016-01-12 1
2 1 2016-05-01 2015-12-30 2
3 1 2016-05-01 2016-04-27 3
4 1 2016-05-01 2016-05-02 4
5 2 2016-01-28 2015-11-15 5
6 2 2016-01-28 2012-01-27 6
7 2 2016-01-28 2016-02-06 7
8 7 2016-03-03 NA NA
Subset to new.date > old.date or is.na(old.date):
dataset.old
individual new.date old.date old.rownumber
1 1 2016-05-01 2016-01-12 1
2 1 2016-05-01 2015-12-30 2
3 1 2016-05-01 2016-04-27 3
5 2 2016-01-28 2015-11-15 5
6 2 2016-01-28 2012-01-27 6
8 7 2016-03-03 NA NA
Subset to old.date == max(old.date) or is.na(old.date) grouped by individual.
dataset.old
individual new.date old.date old.rownumber
3 1 2016-05-01 2016-04-27 3
6 2 2016-01-28 2012-01-27 5
8 7 2016-03-03 NA NA
Edit:
I'm partial to data.table. The code would look something like:
dataset.old[, old.rownumber := 1:.N]
setnames(dataset.old, "some.date", "old.date")
setnames(dataset.new, "some.date", "new.date")
dataset.merge <- merge(dataset.old, dataset.new, by = "individual", all.x = TRUE)
dataset.merge <- dataset.merge[, new.date > old.date]
dataset.merge[old.date == max(old.date) | is.na(old.date), by = individual]
We can skip the NA search by finding the minimum square root. The negative values will be coerced to missing for us:
dataset.old$rn <- 1:nrow(dataset.old)
minp <- function(x) if(!length(m <- which.min(as.numeric(x)^.5))) NA else m
mrg <- merge(dataset.new, dataset.old, by="individual", all.x=TRUE)
mrg %>% group_by(individual) %>%
summarise(row.nr=rn[minp(some.date.x - some.date.y)])
# A tibble: 3 x 2
# individual row.nr
# <int> <int>
# 1 1 3
# 2 2 5
# 3 7 NA
It could be a very easy question, I have a data.table with key and more than 1000 rows, two of which could be set as key. I want to calculate the number of the groups for this dataset.
For example, the simple data is(ID and Act is key)
ID ValueDate Act Volume
1 2015-01-01 EUR 21
1 2015-02-01 EUR 22
1 2015-01-01 MAD 12
1 2015-02-01 MAD 11
2 2015-01-01 EUR 5
2 2015-02-01 EUR 7
3 2015-01-01 EUR 4
3 2015-02-01 EUR 2
3 2015-03-01 EUR 6
Here is a code to generate test data:
dd <- data.table(ID = c(1,1,1,1,2,2,3,3,3),
ValueDate = c("2015-01-01", "2015-02-01", "2015-01- 01","2015-02-01", "2015-01-01","2015-02-01","2015-01-01","2015-02-01","2015-03-01"),
Act = c("EUR","EUR","MAD","MAD","EUR","EUR","EUR","EUR","EUR"),
Volume=c(21,22,12,11,5,7,4,2,6))
in this case, we can see that there are a total of 4 subsets.
I tried to set the key for this table as first,
setkey(dd, ID, Act)
Then I thought the function of count could be working to count the groups.
Is it right to use the function of count, or there could be a simple method?
Thanks a lot !
nrow(dd[, .(cnt= sum(.N)), by= c("ID", "Act")])
# or using base R
{t <- table(interaction(dd$ID, dd$Act)); length(t[t>0])}
# or for the counts:
dd[, .(cnt= sum(.N)), by= c("ID", "Act")]
ID Act cnt
1: 1 EUR 2
2: 1 MAD 2
3: 2 EUR 2
4: 3 EUR 3
The fastest way should be uniqueN.
library(data.table)
dd <- data.table(ID = c(1,1,1,1,2,2,3,3,3),
ValueDate = c("2015-01-01", "2015-02-01", "2015-01-01","2015-02-01", "2015-01-01","2015-02-01","2015-01-01","2015-02-01","2015-03-01"),
Act = c("EUR","EUR","MAD","MAD","EUR","EUR","EUR","EUR","EUR"),
Volume=c(21,22,12,11,5,7,4,2,6))
uniqueN(dd, by = c("ID", "Act"))
#[1] 4
Hi I am puzzled with a problem concerning duplicates in R. I have looked around a lot and don't seem to find any help. I have a dataset like that
x = data.frame( id = c("A","A","A","A","A","A","A","B","B","B","B"),
StartDate = c("09/07/2006", "09/07/2006", "09/07/2006", "08/10/2006",
"08/10/2006", "09/04/2007", "02/03/2011","05/05/2005", "08/06/2009", "07/09/2009", "07/09/2009"),
EndDate = c("06/08/2006", "06/08/2006", "06/08/2006", "19/11/2006", "19/11/2006", "07/05/2007", "30/03/2011",
"02/06/2005", "06/07/2009", "05/10/2009", "05/10/2009"),
Group = c(1,1,1,2,2,3,4,2,3,4,4),
TestDate = c("09/06/2006", "08/09/2006", "08/10/2006", "08/09/2006", "08/10/2006", "NA", "02/03/2011",
"NA", "07/09/2009", "07/09/2009", "08/10/2009"),
Code = c(4,4,4858,4,4858,NA,4,NA, 795, 795, 4)
)
> x
id StartDate EndDate Group TestDate Code
1 A 09/07/2006 06/08/2006 1 09/06/2006 4
2 A 09/07/2006 06/08/2006 1 08/09/2006 4
3 A 09/07/2006 06/08/2006 1 08/10/2006 4858
4 A 08/10/2006 19/11/2006 2 08/09/2006 4
5 A 08/10/2006 19/11/2006 2 08/10/2006 4858
6 A 09/04/2007 07/05/2007 3 NA NA
7 A 02/03/2011 30/03/2011 4 02/03/2011 4
8 B 05/05/2005 02/06/2005 2 NA NA
9 B 08/06/2009 06/07/2009 3 07/09/2009 795
10 B 07/09/2009 05/10/2009 4 07/09/2009 795
11 B 07/09/2009 05/10/2009 4 08/10/2009 4
So basically what I am trying to do is to identify duplicates in the TestDate variable by ID. For example dates 08/09/2006 and 08/10/2006 seem to be repeated in the same person but for different Group and I don't want the same Testdate to be in different Group by ID. The criteria to choose which TestDate to choose is to take the difference in days of TestDate with StartDate and EndDate for the different groups and then keep the one with the smallest difference in days. For example, about the date 08/10/2006 I would like to keep row 5 as the TestDate there is closer to the StartDate, than compared with the same differences in row 3. Eventually, I would like to get with a dataset like that
> xfinal
id StartDate EndDate Group TestDate Code
1 A 09/07/2006 06/08/2006 1 09/06/2006 4
4 A 08/10/2006 19/11/2006 2 08/09/2006 4
5 A 08/10/2006 19/11/2006 2 08/10/2006 4858
6 A 09/04/2007 07/05/2007 3 NA NA
7 A 02/03/2011 30/03/2011 4 02/03/2011 4
8 B 05/05/2005 02/06/2005 2 NA NA
10 B 07/09/2009 05/10/2009 4 07/09/2009 795
11 B 07/09/2009 05/10/2009 4 08/10/2009 4
Any help on that will be much appreciated. Thanks
x$StartDate <- as.Date(x$StartDate,format="%d/%m/%Y")
x$EndDate <- as.Date(x$EndDate,format="%d/%m/%Y")
x$TestDate <- as.Date(x$TestDate,format="%d/%m/%Y")
x$Diff <- difftime(x$EndDate,x$StartDate,"days")
x <- x[order(x$id,x$Diff),]
x <- x[!duplicated(x[,c("id","TestDate")]),]
x$Diff <- NULL
x
Have a look at the simplified table below. I want for each product a vector containing the quantities sold within each delivery time. A delivery time is defined as 4 days. So if we look at product A, we see that it starts at 03/12/15 and within the first delivery term (until 07/12/15) it has sold a quantity of 4. The second delivery term starts at 08/12/15 and ends at 12/12/15. So for this period there is 1 quantity sold. The following delivery term starts at 13/12/15 and ends at 17/12/15. During these period there are no quantities sold and thus for this period the vector must have a value of 0. In the last period, finally, 2 products are sold. So basically the problem here is that information regarding the periods were no products are sold is missing.
Any ideas on how the vector I want can be created using R? I've been thinking of for or while loops, but these do not seem to give the requested results. Note that the code must be applicable on a real dataset containing over 1000 product categories, so it has to be 'automatized' in one way.
I would be very gratefull if somebody could point me in the right direction.
Product Quantity Date
A 1 03/12/15
A 2 04/12/15
A 1 05/12/15
A 1 08/12/15
A 1 17/12/16
A 1 18/12/16
B 1 19/12/15
B 2 10/05/15
B 2 11/05/15
C 1 01/06/15
C 1 02/06/15
C 1 12/06/15
Assume that dt is the dataset you provided. You'll get a better understanding of the process if you run it step by step (and maybe with an even simpler dataset).
library(lubridate)
library(dplyr)
# create date time columns
dt$Date = dmy(dt$Date)
dt %>%
group_by(Product) %>%
do(data.frame(days = seq(min(.$Date), max(.$Date), by="1 day"))) %>% # create all combinations between product and days
mutate(dist = as.numeric(difftime(days,min(days), units="days"))) %>% # create distance of each day with min date
ungroup() %>%
left_join(dt, by=c("Product"="Product","days"="Date")) %>% # join info to get quantities for each day
mutate(Quantity = ifelse(is.na(Quantity), 0, Quantity), # replace NAs with 0s
id = floor(dist/5 + 1)) %>% # create the 4 period id
group_by(Product, id) %>%
summarise(Sum = sum(Quantity),
min_date = min(days),
max_date = max(days)) %>%
ungroup
# Product id Sum min_date max_date
# 1 A 1 4 2015-12-03 2015-12-07
# 2 A 2 1 2015-12-08 2015-12-12
# 3 A 3 0 2015-12-13 2015-12-17
# 4 A 4 0 2015-12-18 2015-12-22
# 5 A 5 0 2015-12-23 2015-12-27
# 6 A 6 0 2015-12-28 2016-01-01
# 7 A 7 0 2016-01-02 2016-01-06
# 8 A 8 0 2016-01-07 2016-01-11
# 9 A 9 0 2016-01-12 2016-01-16
# 10 A 10 0 2016-01-17 2016-01-21
# .. ... .. ... ... ...
First row of the output tells you that for product A in the first 4 days period (id = 1) you had 4 quantities in total and the period is from 3/12 to 7/12.
I would suggest {dplyr}'s summarise(),mutate() and group_by() functions. group_by() groups your data by desired variables (in your case - product and delivery term),mutate() allows operations on grouped columns, and summarise() applies a summarising function over these groups (in your case sum(Quantity)).
So this is how it will look:
convert date into proper format:
library(dplyr)
df=tbl_df(df)
df$Date=as.Date(df$Date,format="%d/%m/%y")
calculating delivery terms
df=group_by(df,Product) %>% arrange(Date)
df=mutate(df,term=1+unclass((Date-min(Date)))%/%4)
group by product and terms and calculate sum of quantity:
df=group_by(df,Product,term)
summarise(df,sum=sum(Quantity))
Here's a base R way:
df$groups <- ave(as.numeric(df$Date), df$Product, FUN=function(x) {
intrvl <- findInterval(x, seq(min(x), max(x),4))
as.numeric(factor(intrvl))
})
df
# Product Quantity Date groups
# 1 A 1 2015-12-03 1
# 2 A 2 2015-12-04 1
# 3 A 1 2015-12-05 1
# 4 A 1 2015-12-08 2
# 5 A 1 2016-12-17 3
# 6 A 1 2016-12-18 3
# 7 B 1 2015-12-19 2
# 8 B 2 2015-05-10 1
# 9 B 2 2015-05-11 1
# 10 C 1 2015-06-01 1
# 11 C 1 2015-06-02 1
# 12 C 1 2015-06-12 2
The dates should be converted to one of the date classes. I chose as.Date. When it converts to numeric, the output will be the number of days from a specified date. From there, we are able to group by 4 day increments.
Data
df$Date <- as.Date(df$Date, format="%d/%m/%y")
I have a data.table which contains multiple columns, which is well represented by the following:
DT <- data.table(date = as.IDate(rep(c("2012-10-17", "2012-10-18", "2012-10-19"), each=10)),
session = c(1,2,3), price = c(10, 11, 12,13,14),
volume = runif(30, min=10, max=1000))
I would like to extract a multiple column table which shows the volume traded at each price in a particular type of session -- with each column representing a date.
At present, i extract this data one date at a time using the following:
DT[session==1,][date=="2012-10-17", sum(volume), by=price]
and then bind the columns.
Is there a way of obtaining the end product (a table with each column referring to a particular date) without sticking all the single queries together -- as i'm currently doing?
thanks
Does the following do what you want.
A combination of reshape2 and data.table
library(reshape2)
.DT <- DT[,sum(volume),by = list(price,date,session)][, DATE := as.character(date)]
# reshape2 for casting to wide -- it doesn't seem to like IDate columns, hence
# the character DATE co
dcast(.DT, session + price ~ DATE, value.var = 'V1')
session price 2012-10-17 2012-10-18 2012-10-19
1 1 10 308.9528 592.7259 NA
2 1 11 649.7541 NA 816.3317
3 1 12 NA 502.2700 766.3128
4 1 13 424.8113 163.7651 NA
5 1 14 682.5043 NA 147.1439
6 2 10 NA 755.2650 998.7646
7 2 11 251.3691 695.0153 NA
8 2 12 791.6882 NA 275.4777
9 2 13 NA 111.7700 240.3329
10 2 14 230.6461 817.9438 NA
11 3 10 902.9220 NA 870.3641
12 3 11 NA 719.8441 963.1768
13 3 12 361.8612 563.9518 NA
14 3 13 393.6963 NA 718.7878
15 3 14 NA 871.4986 582.6158
If you just wanted session 1
dcast(.DT[session == 1L], session + price ~ DATE)
session price 2012-10-17 2012-10-18 2012-10-19
1 1 10 308.9528 592.7259 NA
2 1 11 649.7541 NA 816.3317
3 1 12 NA 502.2700 766.3128
4 1 13 424.8113 163.7651 NA
5 1 14 682.5043 NA 147.1439