Is the following add() function referentially transparent?
const appState = {
runningTotal: 0
}
function add(x, y) {
const total = x + y;
appState.runningTotal += total;
return total;
}
I'm unsure of the answer due to a handful of definitions I've found for referential transparency. Here are some in the order of my confidence of their correctness.
A function is referentially transparent if:
It can be replaced by its value and the behavior of the program remains the same
Given some input it will always produce the same output
It only depends on its input
It is stateless
Given each of the definitions above I would think the answer is:
Maybe - I think it depends on how appState.runningTotal is used elsewhere in the program, but I'm not sure.
Yes
I'm not sure - It only depends on its input to produce the output, but it also uses appState in the body of the function
No
Back to the specific question: is add() referentially transparent?
Thanks in advance!
P.S. - please let me know if I'm conflating multiple concepts, namely the concept of a pure function.
No, it isn't a referentially transparent function.
Referential transparency refers specifically to the first criteria you have listed, namely that you can freely substitute the values on the left and right hand side of an expression without changing the behaviour of the program.
add(2,3) returns the value 5 but you cannot replace instances of add(2,3) with 5 in your program because add(2, 3) also has the side effect of incrementing runningTotal by 5. Substituting add(2, 3) for 5 would result in runningTotal not being incremented, changing the behaviour of your program.
I'd go with
Maybe - It depends on how appState.runningTotal is used
as when it is not used, then it can be ignored. Obviously it is global state, but is it just for debugging or is it part of your actual application state? If the latter, then the function is not pure of course - it does change the state and replacing a call with the result value (or doing unnecessary calls whose result is dropped) would change the behaviour of your program.
But if you do consider appState.runningTotal to not be part of the semantics of your program, and non of its functionality depends on it, you might as well ignore this side effect. We do this all the time, every real world computation affects the state of the computer it runs on, and we choose to ignore that when we consider the purity of our functions.
A pure function is referentially transparent. I call it "copypastability", aka you can copy paste each part of referentially transparent code around, and it'll still work as originally intended.
All of the four criteria have to be fulfilled, although you can shrink them to the first statement. The others can all be inferred from that one.
If a function can be reasonably replaced, that means you can replace it with a map/dictionary which has input as keys and outputs as values. So it'll always return the same thing on the same input. The same analogy works just fine with the "only depends on input" and "stateless".
I am suddenly in a recursive language class (sml) and recursion is not yet physically sensible for me. I'm thinking about the way a floor of square tiles is sometimes a model or metaphor for integer multiplication, or Cuisenaire Rods are a model or analogue for addition and subtraction. Does anyone have any such models you could share?
Imagine you're a real life magician, and can make a copy of yourself. You create your double a step closer to the goal and give him (or her) the same orders as you were given.
Your double does the same to his copy. He's a magician too, you see.
When the final copy finds itself created at the goal, it has nowhere more to go, so it reports back to its creator. Which does the same.
Eventually, you get your answer back – without having moved an inch – and can now create the final result from it, easily. You get to pretend not knowing about all those doubles doing the actual hard work for you. "Hmm," you're saying to yourself, "what if I were one step closer to the goal and already knew the result? Wouldn't it be easy to find the final answer then ?" (*)
Of course, if you were a double, you'd have to report your findings to your creator.
More here.
(also, I think I saw this "doubles" creation chain event here, though I'm not entirely sure).
(*) and that is the essence of the recursion method of problem solving.
How do I know my procedure is right? If my simple little combination step produces a valid solution, under assumption it produced the correct solution for the smaller case, all I need is to make sure it works for the smallest case – the base case – and then by induction the validity is proven!
Another possibility is divide-and-conquer, where we split our problem in two halves, so will get to the base case much much faster. As long as the combination step is simple (and preserves validity of solution of course), it works. In our magician metaphor, I get to create two copies of myself, and combine their two answers into one when they are finished. Each of them creates two copies of themselves as well, so this creates a branching tree of magicians, instead of a simple line as before.
A good example is the Sierpinski triangle which is a figure that is built from three quarter-sized Sierpinski triangles simply, by stacking them up at their corners.
Each of the three component triangles is built according to the same recipe.
Although it doesn't have the base case, and so the recursion is unbounded (bottomless; infinite), any finite representation of S.T. will presumably draw just a dot in place of the S.T. which is too small (serving as the base case, stopping the recursion).
There's a nice picture of it in the linked Wikipedia article.
Recursively drawing an S.T. without the size limit will never draw anything on screen! For mathematicians recursion may be great, engineers though should be more cautious about it. :)
Switching to corecursion ⁄ iteration (see the linked answer for that), we would first draw the outlines, and the interiors after that; so even without the size limit the picture would appear pretty quickly. The program would then be busy without any noticeable effect, but that's better than the empty screen.
I came across this piece from Edsger W. Dijkstra; he tells how his child grabbed recursions:
A few years later a five-year old son would show me how smoothly the idea of recursion comes to the unspoilt mind. Walking with me in the middle of town he suddenly remarked to me, Daddy, not every boat has a lifeboat, has it? I said How come? Well, the lifeboat could have a smaller lifeboat, but then that would be without one.
I love this question and couldn't resist to add an answer...
Recursion is the russian doll of programming. The first example that come to my mind is closer to an example of mutual recursion :
Mutual recursion everyday example
Mutual recursion is a particular case of recursion (but sometimes it's easier to understand from a particular case than from a generic one) when we have two function A and B defined like A calls B and B calls A. You can experiment this very easily using a webcam (it also works with 2 mirrors):
display the webcam output on your screen with VLC, or any software that can do it.
Point your webcam to the screen.
The screen will progressively display an infinite "vortex" of screen.
What happens ?
The webcam (A) capture the screen (B)
The screen display the image captured by the webcam (the screen itself).
The webcam capture the screen with a screen displayed on it.
The screen display that image (now there are two screens displayed)
And so on.
You finally end up with such an image (yes, my webcam is total crap):
"Simple" recursion is more or less the same except that there is only one actor (function) that calls itself (A calls A)
"Simple" Recursion
That's more or less the same answer as #WillNess but with a little code and some interactivity (using the js snippets of SO)
Let's say you are a very motivated gold-miner looking for gold, with a very tiny mine, so tiny that you can only look for gold vertically. And so you dig, and you check for gold. If you find some, you don't have to dig anymore, just take the gold and go. But if you don't, that means you have to dig deeper. So there are only two things that can stop you:
Finding some gold nugget.
The Earth's boiling kernel of melted iron.
So if you want to write this programmatically -using recursion-, that could be something like this :
// This function only generates a probability of 1/10
function checkForGold() {
let rnd = Math.round(Math.random() * 10);
return rnd === 1;
}
function digUntilYouFind() {
if (checkForGold()) {
return 1; // he found something, no need to dig deeper
}
// gold not found, digging deeper
return digUntilYouFind();
}
let gold = digUntilYouFind();
console.log(`${gold} nugget found`);
Or with a little more interactivity :
// This function only generates a probability of 1/10
function checkForGold() {
console.log("checking...");
let rnd = Math.round(Math.random() * 10);
return rnd === 1;
}
function digUntilYouFind() {
if (checkForGold()) {
console.log("OMG, I found something !")
return 1;
}
try {
console.log("digging...");
return digUntilYouFind();
} finally {
console.log("climbing back...");
}
}
let gold = digUntilYouFind();
console.log(`${gold} nugget found`);
If we don't find some gold, the digUntilYouFind function calls itself. When the miner "climbs back" from his mine it's actually the deepest child call to the function returning the gold nugget through all its parents (the call stack) until the value can be assigned to the gold variable.
Here the probability is high enough to avoid the miner to dig to the earth kernel. The earth kernel is to the miner what the stack size is to a program. When the miner comes to the kernel he dies in terrible pain, when the program exceed the stack size (causes a stack overflow), it crashes.
There are optimization that can be made by the compiler/interpreter to allow infinite level of recursion like tail-call optimization.
Take fractals as being recursive: the same pattern get applied each time, yet each figure differs from another.
As natural phenomena with fractal features, Wikipedia presents:
Moutain ranges
Frost crystals
DNA
and, even, proteins.
This is odd, and not quite a physical example except insofar as dance-movement is physical. It occurred to me the other morning. I call it "Written in Latin, solved in Hebrew." Huh? Surely you are saying "Huh?"
By it I mean that encoding a recursion is usually done left-to-right, in the Latin alphabet style: "Def fac(n) = n*(fac(n-1))." The movement style is "outermost case to base case."
But (please check me on this) at least in this simple case, it seems the easiest way to evaluate it is right-to-left, in the Hebrew alphabet style: Start from the base case and move outward to the outermost case:
(fac(0) = 1)
(fac(1) = 1)*(fac(0) = 1)
(fac(2))*(fac(1) = 1)*(fac(0) = 1)
(fac(n)*(fac(n-1)*...*(fac(2))*(fac(1) = 1)*(fac(0) = 1)
(* Easier order to calculate <<<<<<<<<<< is leftwards,
base outwards to outermost case;
more difficult order to calculate >>>>>> is rightwards,
outermost case to base *)
Then you do not have to suspend items on the left while awaiting the results of calculations further right. "Dance Leftwards" instead of "Dance rightwards"?
Generally, I have a headache because something is wrong with my reasoning:
For 1 set of arguments, referential transparent function will always return 1 set of output values.
that means that such function could be represented as a truth table (a table where 1 set of output parameters is specified for 1 set of arguments).
that makes the logic behind such functions is combinational (as opposed to sequential)
that means that with pure functional language (that has only rt functions) it is possible to describe only combinational logic.
The last statement is derived from this reasoning, but it's obviously false; that means there is an error in reasoning. [question: where is error in this reasoning?]
UPD2. You, guys, are saying lots of interesting stuff, but not answering my question. I defined it more explicitly now. Sorry for messing up with question definition!
Question: where is error in this reasoning?
A referentially transparent function might require an infinite truth table to represent its behavior. You will be hard pressed to design an infinite circuit in combinatory logic.
Another error: the behavior of sequential logic can be represented purely functionally as a function from states to states. The fact that in the implementation these states occur sequentially in time does not prevent one from defining a purely referentially transparent function which describes how state evolves over time.
Edit: Although I apparently missed the bullseye on the actual question, I think my answer is pretty good, so I'm keeping it :-) (see below).
I guess a more concise way to phrase the question might be: can a purely functional language compute anything an imperative one can?
First of all, suppose you took an imperative language like C and made it so you can't alter variables after defining them. E.g.:
int i;
for (i = 0; // okay, that's one assignment
i < 10; // just looking, that's all
i++) // BUZZZ! Sorry, can't do that!
Well, there goes your for loop. Do we get to keep our while loop?
while (i < 10)
Sure, but it's not very useful. i can't change, so it's either going to run forever or not run at all.
How about recursion? Yes, you get to keep recursion, and it's still plenty useful:
int sum(int *items, unsigned int count)
{
if (count) {
// count the first item and sum the rest
return *items + sum(items + 1, count - 1);
} else {
// no items
return 0;
}
}
Now, with functions, we don't alter state, but variables can, well, vary. Once a variable passes into our function, it's locked in. However, we can call the function again (recursion), and it's like getting a brand new set of variables (the old ones stay the same). Although there are multiple instances of items and count, sum((int[]){1,2,3}, 3) will always evaluate to 6, so you can replace that expression with 6 if you like.
Can we still do anything we want? I'm not 100% sure, but I think the answer is "yes". You certainly can if you have closures, though.
You have it right. The idea is, once a variable is defined, it can't be redefined. A referentially transparent expression, given the same variables, always yields the same result value.
I recommend looking into Haskell, a purely functional language. Haskell doesn't have an "assignment" operator, strictly speaking. For instance:
my_sum numbers = ??? where
i = 0
total = 0
Here, you can't write a "for loop" that increments i and total as it goes along. All is not lost, though. Just use recursion to keep getting new is and totals:
my_sum numbers = f 0 0 where
f i total =
if i < length numbers
then f i' total'
else total
where
i' = i+1
total' = total + (numbers !! i)
(Note that this is a stupid way to sum a list in Haskell, but it demonstrates a method of coping with single assignment.)
Now, consider this highly imperative-looking code:
main = do
a <- readLn
b <- readLn
print (a + b)
It's actually syntactic sugar for:
main =
readLn >>= (\a ->
readLn >>= (\b ->
print (a + b)))
The idea is, instead of main being a function consisting of a list of statements, main is an IO action that Haskell executes, and actions are defined and chained together with bind operations. Also, an action that does nothing, yielding an arbitrary value, can be defined with the return function.
Note that bind and return aren't specific to actions. They can be used with any type that calls itself a Monad to do all sorts of funky things.
To clarify, consider readLn. readLn is an action that, if executed, would read a line from standard input and yield its parsed value. To do something with that value, we can't store it in a variable because that would violate referential transparency:
a = readLn
If this were allowed, a's value would depend on the world and would be different every time we called readLn, meaning readLn wouldn't be referentially transparent.
Instead, we bind the readLn action to a function that deals with the action, yielding a new action, like so:
readLn >>= (\x -> print (x + 1))
The result of this expression is an action value. If Haskell got off the couch and performed this action, it would read an integer, increment it, and print it. By binding the result of an action to a function that does something with the result, we get to keep referential transparency while playing around in the world of state.
As far as I understand it, referential transparency just means: A given function will always yield the same result when invoked with the same arguments. So, the mathematical functions you learned about in school are referentially transparent.
A language you could check out in order to learn how things are done in a purely functional language would be Haskell. There are ways to use "updateable storage possibilities" like the Reader Monad, and the State Monad for example. If you're interested in purely functional data structures, Okasaki might be a good read.
And yes, you're right: Order of evaluation in a purely functional language like haskell does not matter as in non-functional languages, because if there are no side effects, there is no reason to do someting before/after something else -- unless the input of one depends on the output of the other, or means like monads come into play.
I don't really know about the truth-table question.
Here's my stab at answering the question:
Any system can be described as a combinatorial function, large or small.
There's nothing wrong with the reasoning that pure functions can only deal with combinatorial logic -- it's true, just that functional languages hide that from you to some extent or another.
You could even describe, say, the workings of a game engine as a truth table or a combinatorial function.
You might have a deterministic function that takes in "the current state of the entire game" as the RAM occupied by the game engine and the keyboard input, and returns "the state of the game one frame later". The return value would be determined by the combinations of the bits in the input.
Of course, in any meaningful and sane function, the input is parsed down to blocks of integers, decimals and booleans, but the combinations of the bits in those values is still determining the output of your function.
Keep in mind also that basic digital logic can be described in truth tables. The only reason that that's not done for anything more than, say, arithmetic on 4-bit integers, is because the size of the truth table grows exponentially.
The error in Your reasoning is the following:
"that means that such function could be represented as a truth table".
You conclude that from a functional language's property of referential transparency. So far the conclusion would sound plausible, but You oversee that a function is able to accept collections as input and process them in contrast to the fixed inputs of a logic gate.
Therefore a function does not equal a logic gate but rather a construction plan of such a logic gate depending on the actual (at runtime determined) input!
To comment on Your comment: Functional languages can - although stateless - implement a state machine by constructing the states from scratch each time they are being accessed.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I've read the Wikipedia article on reactive programming. I've also read the small article on functional reactive programming. The descriptions are quite abstract.
What does functional reactive programming (FRP) mean in practice?
What does reactive programming (as opposed to non-reactive programming?) consist of?
My background is in imperative/OO languages, so an explanation that relates to this paradigm would be appreciated.
If you want to get a feel for FRP, you could start with the old Fran tutorial from 1998, which has animated illustrations. For papers, start with Functional Reactive Animation and then follow up on links on the publications link on my home page and the FRP link on the Haskell wiki.
Personally, I like to think about what FRP means before addressing how it might be implemented.
(Code without a specification is an answer without a question and thus "not even wrong".)
So I don't describe FRP in representation/implementation terms as Thomas K does in another answer (graphs, nodes, edges, firing, execution, etc).
There are many possible implementation styles, but no implementation says what FRP is.
I do resonate with Laurence G's simple description that FRP is about "datatypes that represent a value 'over time' ".
Conventional imperative programming captures these dynamic values only indirectly, through state and mutations.
The complete history (past, present, future) has no first class representation.
Moreover, only discretely evolving values can be (indirectly) captured, since the imperative paradigm is temporally discrete.
In contrast, FRP captures these evolving values directly and has no difficulty with continuously evolving values.
FRP is also unusual in that it is concurrent without running afoul of the theoretical & pragmatic rats' nest that plagues imperative concurrency.
Semantically, FRP's concurrency is fine-grained, determinate, and continuous.
(I'm talking about meaning, not implementation. An implementation may or may not involve concurrency or parallelism.)
Semantic determinacy is very important for reasoning, both rigorous and informal.
While concurrency adds enormous complexity to imperative programming (due to nondeterministic interleaving), it is effortless in FRP.
So, what is FRP?
You could have invented it yourself.
Start with these ideas:
Dynamic/evolving values (i.e., values "over time") are first class values in themselves. You can define them and combine them, pass them into & out of functions. I called these things "behaviors".
Behaviors are built up out of a few primitives, like constant (static) behaviors and time (like a clock), and then with sequential and parallel combination. n behaviors are combined by applying an n-ary function (on static values), "point-wise", i.e., continuously over time.
To account for discrete phenomena, have another type (family) of "events", each of which has a stream (finite or infinite) of occurrences. Each occurrence has an associated time and value.
To come up with the compositional vocabulary out of which all behaviors and events can be built, play with some examples. Keep deconstructing into pieces that are more general/simple.
So that you know you're on solid ground, give the whole model a compositional foundation, using the technique of denotational semantics, which just means that (a) each type has a corresponding simple & precise mathematical type of "meanings", and (b) each primitive and operator has a simple & precise meaning as a function of the meanings of the constituents.
Never, ever mix implementation considerations into your exploration process. If this description is gibberish to you, consult (a) Denotational design with type class morphisms, (b) Push-pull functional reactive programming (ignoring the implementation bits), and (c) the Denotational Semantics Haskell wikibooks page. Beware that denotational semantics has two parts, from its two founders Christopher Strachey and Dana Scott: the easier & more useful Strachey part and the harder and less useful (for software design) Scott part.
If you stick with these principles, I expect you'll get something more-or-less in the spirit of FRP.
Where did I get these principles? In software design, I always ask the same question: "what does it mean?".
Denotational semantics gave me a precise framework for this question, and one that fits my aesthetics (unlike operational or axiomatic semantics, both of which leave me unsatisfied).
So I asked myself what is behavior?
I soon realized that the temporally discrete nature of imperative computation is an accommodation to a particular style of machine, rather than a natural description of behavior itself.
The simplest precise description of behavior I can think of is simply "function of (continuous) time", so that's my model.
Delightfully, this model handles continuous, deterministic concurrency with ease and grace.
It's been quite a challenge to implement this model correctly and efficiently, but that's another story.
In pure functional programming, there are no side-effects. For many types of software (for example, anything with user interaction) side-effects are necessary at some level.
One way to get side-effect like behavior while still retaining a functional style is to use functional reactive programming. This is the combination of functional programming, and reactive programming. (The Wikipedia article you linked to is about the latter.)
The basic idea behind reactive programming is that there are certain datatypes that represent a value "over time". Computations that involve these changing-over-time values will themselves have values that change over time.
For example, you could represent the mouse coordinates as a pair of integer-over-time values. Let's say we had something like (this is pseudo-code):
x = <mouse-x>;
y = <mouse-y>;
At any moment in time, x and y would have the coordinates of the mouse. Unlike non-reactive programming, we only need to make this assignment once, and the x and y variables will stay "up to date" automatically. This is why reactive programming and functional programming work so well together: reactive programming removes the need to mutate variables while still letting you do a lot of what you could accomplish with variable mutations.
If we then do some computations based on this the resulting values will also be values that change over time. For example:
minX = x - 16;
minY = y - 16;
maxX = x + 16;
maxY = y + 16;
In this example, minX will always be 16 less than the x coordinate of the mouse pointer. With reactive-aware libraries you could then say something like:
rectangle(minX, minY, maxX, maxY)
And a 32x32 box will be drawn around the mouse pointer and will track it wherever it moves.
Here is a pretty good paper on functional reactive programming.
An easy way of reaching a first intuition about what it's like is to imagine your program is a spreadsheet and all of your variables are cells. If any of the cells in a spreadsheet change, any cells that refer to that cell change as well. It's just the same with FRP. Now imagine that some of the cells change on their own (or rather, are taken from the outside world): in a GUI situation, the position of the mouse would be a good example.
That necessarily misses out rather a lot. The metaphor breaks down pretty fast when you actually use a FRP system. For one, there are usually attempts to model discrete events as well (e.g. the mouse being clicked). I'm only putting this here to give you an idea what it's like.
To me it is about 2 different meanings of symbol =:
In math x = sin(t) means, that x is different name for sin(t). So writing x + y is the same thing as sin(t) + y. Functional reactive programming is like math in this respect: if you write x + y, it is computed with whatever the value of t is at the time it's used.
In C-like programming languages (imperative languages), x = sin(t) is an assignment: it means that x stores the value of sin(t) taken at the time of the assignment.
OK, from background knowledge and from reading the Wikipedia page to which you pointed, it appears that reactive programming is something like dataflow computing but with specific external "stimuli" triggering a set of nodes to fire and perform their computations.
This is pretty well suited to UI design, for example, in which touching a user interface control (say, the volume control on a music playing application) might need to update various display items and the actual volume of audio output. When you modify the volume (a slider, let's say) that would correspond to modifying the value associated with a node in a directed graph.
Various nodes having edges from that "volume value" node would automatically be triggered and any necessary computations and updates would naturally ripple through the application. The application "reacts" to the user stimulus. Functional reactive programming would just be the implementation of this idea in a functional language, or generally within a functional programming paradigm.
For more on "dataflow computing", search for those two words on Wikipedia or using your favorite search engine. The general idea is this: the program is a directed graph of nodes, each performing some simple computation. These nodes are connected to each other by graph links that provide the outputs of some nodes to the inputs of others.
When a node fires or performs its calculation, the nodes connected to its outputs have their corresponding inputs "triggered" or "marked". Any node having all inputs triggered/marked/available automatically fires. The graph might be implicit or explicit depending on exactly how reactive programming is implemented.
Nodes can be looked at as firing in parallel, but often they are executed serially or with limited parallelism (for example, there may be a few threads executing them). A famous example was the Manchester Dataflow Machine, which (IIRC) used a tagged data architecture to schedule execution of nodes in the graph through one or more execution units. Dataflow computing is fairly well suited to situations in which triggering computations asynchronously giving rise to cascades of computations works better than trying to have execution be governed by a clock (or clocks).
Reactive programming imports this "cascade of execution" idea and seems to think of the program in a dataflow-like fashion but with the proviso that some of the nodes are hooked to the "outside world" and the cascades of execution are triggered when these sensory-like nodes change. Program execution would then look like something analogous to a complex reflex arc. The program may or may not be basically sessile between stimuli or may settle into a basically sessile state between stimuli.
"non-reactive" programming would be programming with a very different view of the flow of execution and relationship to external inputs. It's likely to be somewhat subjective, since people will likely be tempted to say anything that responds to external inputs "reacts" to them. But looking at the spirit of the thing, a program that polls an event queue at a fixed interval and dispatches any events found to functions (or threads) is less reactive (because it only attends to user input at a fixed interval). Again, it's the spirit of the thing here: one can imagine putting a polling implementation with a fast polling interval into a system at a very low level and program in a reactive fashion on top of it.
After reading many pages about FRP I finally came across this enlightening writing about FRP, it finally made me understand what FRP really is all about.
I quote below Heinrich Apfelmus (author of reactive banana).
What is the essence of functional reactive programming?
A common answer would be that “FRP is all about describing a system in
terms of time-varying functions instead of mutable state”, and that
would certainly not be wrong. This is the semantic viewpoint. But in
my opinion, the deeper, more satisfying answer is given by the
following purely syntactic criterion:
The essence of functional reactive programming is to specify the dynamic behavior of a value completely at the time of declaration.
For instance, take the example of a counter: you have two buttons
labelled “Up” and “Down” which can be used to increment or decrement
the counter. Imperatively, you would first specify an initial value
and then change it whenever a button is pressed; something like this:
counter := 0 -- initial value
on buttonUp = (counter := counter + 1) -- change it later
on buttonDown = (counter := counter - 1)
The point is that at the time of declaration, only the initial value
for the counter is specified; the dynamic behavior of counter is
implicit in the rest of the program text. In contrast, functional
reactive programming specifies the whole dynamic behavior at the time
of declaration, like this:
counter :: Behavior Int
counter = accumulate ($) 0
(fmap (+1) eventUp
`union` fmap (subtract 1) eventDown)
Whenever you want to understand the dynamics of counter, you only have
to look at its definition. Everything that can happen to it will
appear on the right-hand side. This is very much in contrast to the
imperative approach where subsequent declarations can change the
dynamic behavior of previously declared values.
So, in my understanding an FRP program is a set of equations:
j is discrete: 1,2,3,4...
f depends on t so this incorporates the possiblilty to model external stimuli
all state of the program is encapsulated in variables x_i
The FRP library takes care of progressing time, in other words, taking j to j+1.
I explain these equations in much more detail in this video.
EDIT:
About 2 years after the original answer, recently I came to the conclusion that FRP implementations have another important aspect. They need to (and usually do) solve an important practical problem: cache invalidation.
The equations for x_i-s describe a dependency graph. When some of the x_i changes at time j then not all the other x_i' values at j+1 need to be updated, so not all the dependencies need to be recalculated because some x_i' might be independent from x_i.
Furthermore, x_i-s that do change can be incrementally updated. For example let's consider a map operation f=g.map(_+1) in Scala, where f and g are List of Ints. Here f corresponds to x_i(t_j) and g is x_j(t_j). Now if I prepend an element to g then it would be wasteful to carry out the map operation for all the elements in g. Some FRP implementations (for example reflex-frp) aim to solve this problem. This problem is also known as incremental computing.
In other words, behaviours (the x_i-s ) in FRP can be thought as cache-ed computations. It is the task of the FRP engine to efficiently invalidate and recompute these cache-s (the x_i-s) if some of the f_i-s do change.
The paper Simply efficient functional reactivity by Conal Elliott (direct PDF, 233 KB) is a fairly good introduction. The corresponding library also works.
The paper is now superceded by another paper, Push-pull functional reactive programming (direct PDF, 286 KB).
Disclaimer: my answer is in the context of rx.js - a 'reactive programming' library for Javascript.
In functional programming, instead of iterating through each item of a collection, you apply higher order functions (HoFs) to the collection itself. So the idea behind FRP is that instead of processing each individual event, create a stream of events (implemented with an observable*) and apply HoFs to that instead. This way you can visualize the system as data pipelines connecting publishers to subscribers.
The major advantages of using an observable are:
i) it abstracts away state from your code, e.g., if you want the event handler to get fired only for every 'n'th event, or stop firing after the first 'n' events, or start firing only after the first 'n' events, you can just use the HoFs (filter, takeUntil, skip respectively) instead of setting, updating and checking counters.
ii) it improves code locality - if you have 5 different event handlers changing the state of a component, you can merge their observables and define a single event handler on the merged observable instead, effectively combining 5 event handlers into 1. This makes it very easy to reason about what events in your entire system can affect a component, since it's all present in a single handler.
An Observable is the dual of an Iterable.
An Iterable is a lazily consumed sequence - each item is pulled by the iterator whenever it wants to use it, and hence the enumeration is driven by the consumer.
An observable is a lazily produced sequence - each item is pushed to the observer whenever it is added to the sequence, and hence the enumeration is driven by the producer.
Dude, this is a freaking brilliant idea! Why didn't I find out about this back in 1998? Anyway, here's my interpretation of the Fran tutorial. Suggestions are most welcome, I am thinking about starting a game engine based on this.
import pygame
from pygame.surface import Surface
from pygame.sprite import Sprite, Group
from pygame.locals import *
from time import time as epoch_delta
from math import sin, pi
from copy import copy
pygame.init()
screen = pygame.display.set_mode((600,400))
pygame.display.set_caption('Functional Reactive System Demo')
class Time:
def __float__(self):
return epoch_delta()
time = Time()
class Function:
def __init__(self, var, func, phase = 0., scale = 1., offset = 0.):
self.var = var
self.func = func
self.phase = phase
self.scale = scale
self.offset = offset
def copy(self):
return copy(self)
def __float__(self):
return self.func(float(self.var) + float(self.phase)) * float(self.scale) + float(self.offset)
def __int__(self):
return int(float(self))
def __add__(self, n):
result = self.copy()
result.offset += n
return result
def __mul__(self, n):
result = self.copy()
result.scale += n
return result
def __inv__(self):
result = self.copy()
result.scale *= -1.
return result
def __abs__(self):
return Function(self, abs)
def FuncTime(func, phase = 0., scale = 1., offset = 0.):
global time
return Function(time, func, phase, scale, offset)
def SinTime(phase = 0., scale = 1., offset = 0.):
return FuncTime(sin, phase, scale, offset)
sin_time = SinTime()
def CosTime(phase = 0., scale = 1., offset = 0.):
phase += pi / 2.
return SinTime(phase, scale, offset)
cos_time = CosTime()
class Circle:
def __init__(self, x, y, radius):
self.x = x
self.y = y
self.radius = radius
#property
def size(self):
return [self.radius * 2] * 2
circle = Circle(
x = cos_time * 200 + 250,
y = abs(sin_time) * 200 + 50,
radius = 50)
class CircleView(Sprite):
def __init__(self, model, color = (255, 0, 0)):
Sprite.__init__(self)
self.color = color
self.model = model
self.image = Surface([model.radius * 2] * 2).convert_alpha()
self.rect = self.image.get_rect()
pygame.draw.ellipse(self.image, self.color, self.rect)
def update(self):
self.rect[:] = int(self.model.x), int(self.model.y), self.model.radius * 2, self.model.radius * 2
circle_view = CircleView(circle)
sprites = Group(circle_view)
running = True
while running:
for event in pygame.event.get():
if event.type == QUIT:
running = False
if event.type == KEYDOWN and event.key == K_ESCAPE:
running = False
screen.fill((0, 0, 0))
sprites.update()
sprites.draw(screen)
pygame.display.flip()
pygame.quit()
In short: If every component can be treated like a number, the whole system can be treated like a math equation, right?
Paul Hudak's book, The Haskell School of Expression, is not only a fine introduction to Haskell, but it also spends a fair amount of time on FRP. If you're a beginner with FRP, I highly recommend it to give you a sense of how FRP works.
There is also what looks like a new rewrite of this book (released 2011, updated 2014), The Haskell School of Music.
According to the previous answers, it seems that mathematically, we simply think in a higher order. Instead of thinking a value x having type X, we think of a function x: T → X, where T is the type of time, be it the natural numbers, the integers or the continuum. Now when we write y := x + 1 in the programming language, we actually mean the equation y(t) = x(t) + 1.
Acts like a spreadsheet as noted. Usually based on an event driven framework.
As with all "paradigms", it's newness is debatable.
From my experience of distributed flow networks of actors, it can easily fall prey to a general problem of state consistency across the network of nodes i.e. you end up with a lot of oscillation and trapping in strange loops.
This is hard to avoid as some semantics imply referential loops or broadcasting, and can be quite chaotic as the network of actors converges (or not) on some unpredictable state.
Similarly, some states may not be reached, despite having well-defined edges, because the global state steers away from the solution. 2+2 may or may not get to be 4 depending on when the 2's became 2, and whether they stayed that way. Spreadsheets have synchronous clocks and loop detection. Distributed actors generally don't.
All good fun :).
I found this nice video on the Clojure subreddit about FRP. It is pretty easy to understand even if you don't know Clojure.
Here's the video: http://www.youtube.com/watch?v=nket0K1RXU4
Here's the source the video refers to in the 2nd half: https://github.com/Cicayda/yolk-examples/blob/master/src/yolk_examples/client/autocomplete.cljs
This article by Andre Staltz is the best and clearest explanation I've seen so far.
Some quotes from the article:
Reactive programming is programming with asynchronous data streams.
On top of that, you are given an amazing toolbox of functions to combine, create and filter any of those streams.
Here's an example of the fantastic diagrams that are a part of the article:
It is about mathematical data transformations over time (or ignoring time).
In code this means functional purity and declarative programming.
State bugs are a huge problem in the standard imperative paradigm. Various bits of code may change some shared state at different "times" in the programs execution. This is hard to deal with.
In FRP you describe (like in declarative programming) how data transforms from one state to another and what triggers it. This allows you to ignore time because your function is simply reacting to its inputs and using their current values to create a new one. This means that the state is contained in the graph (or tree) of transformation nodes and is functionally pure.
This massively reduces complexity and debugging time.
Think of the difference between A=B+C in math and A=B+C in a program.
In math you are describing a relationship that will never change. In a program, its says that "Right now" A is B+C. But the next command might be B++ in which case A is not equal to B+C. In math or declarative programming A will always be equal to B+C no matter what point in time you ask.
So by removing the complexities of shared state and changing values over time. You program is much easier to reason about.
An EventStream is an EventStream + some transformation function.
A Behaviour is an EventStream + Some value in memory.
When the event fires the value is updated by running the transformation function. The value that this produces is stored in the behaviours memory.
Behaviours can be composed to produce new behaviours that are a transformation on N other behaviours. This composed value will recalculate as the input events (behaviours) fire.
"Since observers are stateless, we often need several of them to simulate a state machine as in the drag example. We have to save the state where it is accessible to all involved observers such as in the variable path above."
Quote from - Deprecating The Observer Pattern
http://infoscience.epfl.ch/record/148043/files/DeprecatingObserversTR2010.pdf
The short and clear explanation about Reactive Programming appears on Cyclejs - Reactive Programming, it uses simple and visual samples.
A [module/Component/object] is reactive means it is fully responsible
for managing its own state by reacting to external events.
What is the benefit of this approach? It is Inversion of Control,
mainly because [module/Component/object] is responsible for itself, improving encapsulation using private methods against public ones.
It is a good startup point, not a complete source of knowlege. From there you could jump to more complex and deep papers.
Check out Rx, Reactive Extensions for .NET. They point out that with IEnumerable you are basically 'pulling' from a stream. Linq queries over IQueryable/IEnumerable are set operations that 'suck' the results out of a set. But with the same operators over IObservable you can write Linq queries that 'react'.
For example, you could write a Linq query like
(from m in MyObservableSetOfMouseMovements
where m.X<100 and m.Y<100
select new Point(m.X,m.Y)).
and with the Rx extensions, that's it: You have UI code that reacts to the incoming stream of mouse movements and draws whenever you're in the 100,100 box...
FRP is a combination of Functional programming(programming paradigm built upon the idea of everything is a function) and reactive programming paradigm (built upon the idea that everything is a stream(observer and observable philosophy)). It is supposed to be the best of the worlds.
Check out Andre Staltz post on reactive programming to start with.