opencl global_work_size of clEnqueueNDRangeKernel - opencl

In the clEnqueueNDRangeKernel should global_work_size parameter be a power of 2?
If not and it is not power of two which error (if at all) is returned?
UPD
Based on the answers : global and local work sizes should not be power of two.
What aabout relation between workgroup size and wavefront size?:
if wavefront size is 64 and local_work_size < 64 - in each lock-step 64 work-item will execute,while (64 - local_work_size) will be work_items which "do nothing".
if 128 > local_work_size > 64 - how will the execution be? In even lock-step entire wavefront will be executed (64 work-items) and in one one local_work_size % 64

Its not necessary that that global work size is a power of 2, it can be any positive integer and less than the maximum number of work items allowed by the device.

The values doesn't need to be a power of 2 but it has to be a number divisible by the work group size.

As it is already said, it does not have to be a power of 2. But in order to have a good performance, you have to choose a local work size that is a multiple of 32 (see this related question: Questions about global and local work size)
Therefore, as your local work size must be a divider of your global work size, you will likely have a power of two (one source of optimization is to choose a global work size bigger than necessary; in order to choose a good local work size, you have to try some)

Related

What causes and how can I check the number of work-groups limit in OpenCL?

I've shortly started using OpenCL to write programs for GPUs. I'm familiar with basic concepts that are required to write efficient programs in OpenCL, like work-items, work-groups, global-item-size, barriers, etc.
One of my programs involved making about 20 million work-groups with 360 work-items in each work-group. However, for some reason OpenCL couldn't handle that many number of work-groups. All elements of my output array simply remained 0. In addition, OpenCL didn't even start the calculations when I called clEnqueueNDRangeKernel(), since when I viewed the GPU usage stats I didn't see a "spike" that usually happens when I run an OpenCL kernel. I attempted to reduce the number work-groups, to see what is the maximum number of work-groups. It was 5965232 and it is always 5965232. Not more, not less.
I know that the problem is NOT with the number of work-items. It is with the number of work-groups. To prove this, here is my original code, where LIST_SIZE is 360.
global_item_size = 5965232*LIST_SIZE;
local_size = LIST_SIZE;
and a modified version of my code:
global_item_size = 5965232*LIST_SIZE*1.3;
local_size = LIST_SIZE*1.3;
In all the scenarios, the number of work-groups limit was 5965232.
I'm trying to find out what causes this limit and how to check this limit. I understand that there may be a limitation, but what causes this limitation and how can I check check this limit number in OpenCL? I've did a lot of research, but all sites are talking about work-group size limits and not about number of work-group limits.
I'm using the Intel Graphics HD 4000 GPU with an i5-3320M. It has 32 MB of integrated RAM.
5965232*320 = 2147483520 < 2147483647 = 2^31-1 = maximum 32-bit signed integer value
You are dealing with a classical 32-bit integer overflow in the multiplication in line
global_item_size = 5965232*LIST_SIZE;
Try global_item_size = 5965232ull*(uint64_t)LIST_SIZE; instead. Make sure global_item_size is data type uint64_t.

OpenCL - Setting up local memory for a large dataset

I have the following problem. I have 6000 * 1000 elements that i need to work on in parallel (for most of the part). However, at some part of the kernel, those 6000 items have to summed together.
When I tried to setup my kernel inputs where (globalThreads = 6000 * 1000, localThreads = 6000), it seemed to throw an error (CL_INVALID_WORK_GROUP_SIZE). It seems that the maximum number of local elements in a workgroup is limited.
How can I work around this problem?
You can't set local threads that high. Most hardware can only do 128 to 1024 or so local threads (clGetDeviceInfo with CL_DEVICE_MAX_WORK_GROUP_SIZE will tell you for your device). You can leave the local size NULL and the runtime will pick a size for you, but if your global size is not multiple of your devices work group size, this might not give you optimal performance. For top performace you can experiment with different local sizes, and then specify both, but the global must be a multiple of the local size in OpenCL 1.x. Round up the global and then check the work item index in your kernel to see if it is below your real work size.

Optimal Local/Global worksizes in OpenCL

I am wondering how to chose optimal local and global work sizes for different devices in OpenCL?
Is it any universal rule for AMD, NVIDIA, INTEL GPUs?
Should I analyze physical build of the devices (number of multiprocessors, number of streaming processors in multiprocessor, etc)?
Does it depends on the algorithm/implementation? Because I saw that some libraries (like ViennaCL) to assess correct values just tests many combination of local/global work sizes and chose best combination.
NVIDIA recommends that your (local)workgroup-size is a multiple of 32 (equal to one warp, which is their atomic unit of execution, meaning that 32 threads/work-items are scheduled atomically together). AMD on the other hand recommends a multiple of 64(equal to one wavefront). Unsure about Intel, but you can find this type of information in their documentation.
So when you are doing some computation and let say you have 2300 work-items (the global size), 2300 is not dividable by 64 nor 32. If you don't specify the local size, OpenCL will choose a bad local size for you. What happens when you don't have a local size which is a multiple of the atomic unit of execution is that you will get idle threads which leads to bad device utilization. Thus, it can be benificial to add some "dummy" threads so that you get a global size which is a multiple of 32/64 and then use a local size of 32/64 (the global size has to be dividable by the local size). For 2300 you can add 4 dummy threads/work-items, because 2304 is dividable by 32. In the actual kernel, you can write something like:
int globalID = get_global_id(0);
if(globalID >= realNumberOfThreads)
globalID = 0;
This will make the four extra threads do the same as thread 0. (it is often faster to do some extra work then to have many idle threads).
Hope that answered your question. GL HF!
If you're essentially making processing using little memory (e.g. to store kernel private state) you can choose the most intuitive global size for your problem and let OpenCL choose the local size for you.
See my answer here : https://stackoverflow.com/a/13762847/145757
If memory management is a central part of your algorithm and will have a great impact on performance you should indeed go a little further and first check the maximum local size (which depends on the local/private memory usage of your kernel) using clGetKernelWorkGroupInfo, which itself will decide of your global size.

Causes for CL_INVALID_WORK_GROUP_SIZE

when I change the work group size from 16 to 32 or something bigger I get an CL_INVALID_WORK_GROUP_SIZE error. matrix_size is 64.
localWorkSize[0] = groupsize;
localWorkSize[1] = localWorkSize[0];
globalWorkSize[0] = matrix_size;
globalWorkSize[1] = globalWorkSize[0];
First I checked the documentation for clEnqueueNDRangeKernel which states four (five) different causes CL_INVALID_WORK_GROUP_SIZE, but I think non of them apply. Please check my conclusions. (I hope you don't mind my QA style)
Q CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and number of work-items specified by global_work_size is not evenly divisable by size of work-group given by local_work_size
A 64 % 32 = 0
Q or does not match the work-group size specified for kernel using the __attribute__((reqd_work_group_size(X, Y, Z))) qualifier in program source.
A As I understood the help, I did not use __attribute__.
Q CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and the total number of work-items in the work-group computed as local_work_size[0] *... local_work_size[work_dim - 1] is greater than the value specified by CL_DEVICE_MAX_WORK_GROUP_SIZE in the table of OpenCL Device Queries for clGetDeviceInfo.
A I queried clGetDeviceInfo and CL_DEVICE_MAX_WORK_GROUP_SIZE is 512, 512, 64
Q CL_INVALID_WORK_GROUP_SIZE if local_work_size is NULL and the __attribute__((reqd_work_group_size(X, Y, Z))) qualifier is used to declare the work-group size for kernel in the program source.
A local_work_size is not NULL.
Q CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of local_work_size[0], ... local_work_size[work_dim - 1] is greater than the corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], .... CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim - 1].
A 32 < 512
I hope, I haven't overlooked something. Please tell me, when you have an idea what could cause the CL_INVALID_WORK_GROUP_SIZE or found a error in my conclusions.
Thanks for taking the time to read all this :)
CL_DEVICE_MAX_WORK_GROUP_SIZE should return a single size_t value (for example 512, but I don't know what it'd be on your system). This is the maximum number of work-items in a work-group, not the maximum in each dimension. So in your case you are trying to make a 2D work-group with 32*32 = 1024 work-items, and presumably CL_DEVICE_MAX_WORK_GROUP_SIZE is less than 1024 on your system.
See the OpenCL 1.1 spec, table 4.3, page 37, the definition of CL_DEVICE_MAX_WORK_GROUP_SIZE:
Maximum number of work-items in a work-group executing a kernel using the data parallel execution model.
I had the same problem when I was trying to run my kernel on CPU. I couldn't set work group size more than 128, while CL_DEVICE_MAX_WORK_GROUP_SIZE was returning 1024.
After a little bit of search to find out where 128 is coming from it turned out CL_KERNEL_WORK_GROUP_SIZE was giving the proper value.

Questions about global and local work size

Searching through the NVIDIA forums I found these questions, which are also of interest to me, but nobody had answered them in the last four days or so. Can you help?
Original Forum Post
Digging into OpenCL reading tutorials some things stayed unclear for me. Here is a collection of my questions regarding local and global work sizes.
Must the global_work_size be smaller than CL_DEVICE_MAX_WORK_ITEM_SIZES?
On my machine CL_DEVICE_MAX_WORK_ITEM_SIZES = 512, 512, 64.
Is CL_KERNEL_WORK_GROUP_SIZE the recommended work_group_size for the used kernel?
Or is this the only work_group_size the GPU allows?
On my machine CL_KERNEL_WORK_GROUP_SIZE = 512
Do I need to divide into work groups or can I have only one, but not specifying local_work_size?
To what do I have to pay attention, when I only have one work group?
What does CL_DEVICE_MAX_WORK_GROUP_SIZE mean?
On my machine CL_DEVICE_MAX_WORK_GROUP_SIZE = 512, 512, 64
Does this mean, I can have one work group which is as large as the CL_DEVICE_MAX_WORK_ITEM_SIZES?
Has global_work_size to be a divisor of CL_DEVICE_MAX_WORK_ITEM_SIZES?
In my code global_work_size = 20.
In general you can choose global_work_size as big as you want, while local_work_size is constraint by the underlying device/hardware, so all query results will tell you the possible dimensions for local_work_size instead of the global_work_size. the only constraint for the global_work_size is that it must be a multiple of the local_work_size (for each dimension).
The work group sizes specify the sizes of the workgroups so if CL_DEVICE_MAX_WORK_ITEM_SIZES is 512, 512, 64 that means your local_work_size can't be bigger then 512 for the x and y dimension and 64 for the z dimension.
However there is also a constraint on the local group size depending on the kernel. This is expressed through CL_KERNEL_WORK_GROUP_SIZE. Your cumulative workgoupsize (as in the product of all dimensions, e.g. 256 if you have a localsize of 16, 16, 1) must not be greater then that number. This is due to the limited hardware resources to be divided between the threads (from your query results I assume you are programming on a NVIDIA GPU, so the amount of local memory and registers used by a thread will limit the number of threads which can be executed in parallel).
CL_DEVICE_MAX_WORK_GROUP_SIZE defines the maximum size of a work group in the same manner as CL_KERNEL_WORK_GROUP_SIZE, but specific to the device instead the kernel (and it should be a a scalar value aka 512).
You can choose not to specify local_work_group_size, in which case the OpenCL implementation will choose a local work group size for you (so its not a guarantee that it uses only one workgroup). However it's generally not advisiable, since you don't know how your work is divided into workgroups and furthermore it's not guaranteed that the workgroupsize chosen will be optimal.
However, you should note that using only one workgroup is generally not a good idea performancewise (and why use OpenCL if performance is not a concern). In general a workgroup has to execute on one compute unit, while most devices will have more then one (modern CPUs have 2 or more, one for each core, while modern GPUs can have 20 or more). Furthermore even the one Compute Unit on which your workgroup executes might not be fully used, since several workgroup can execute on one compute unit in an SMT style. To use NVIDIA GPUs optimally you need 768/1024/1536 threads (depending on the generation, meaning G80/GT200/GF100) executing on one compute unit, and while I don't know the numbers for amd right now, they are in the same magnitude, so it's good to have more then one workgroup. Furthermore, for GPUs, it's typically advisable to have workgroups which at least 64 threads (and a number of threads divisible by 32/64 (nvidia/amd) per workgroup), because otherwise you will again have reduced performance (32/64 is the minimum granuaty for execution on gpus, so if you have less items in a workgroup, it will still execute as 32/64 threads, but discard the results from unused threads).

Resources