Here is a MATLAB code for performing Gram Schmidt in page 1
http://web.mit.edu/18.06/www/Essays/gramschmidtmat.pdf
I am trying for hours and hours to perform this with R since I don't have MATLAB
Here is my R
f=function(x){
m=nrow(x);
n=ncol(x);
Q=matrix(0,m,n);
R=matrix(0,n,n);
for(j in 1:n){
v=x[,j,drop=FALSE];
for(i in 1:j-1){
R[i,j]=t(Q[,i,drop=FALSE])%*%x[,j,drop=FALSE];
v=v-R[i,j]%*%Q[,i,drop=FALSE]
}
R[j,j]=max(svd(v)$d);
Q[,j,,drop=FALSE]=v/R[j,j]}
return(list(Q,R))
}
}
It keeps on saying there is errors in either:
v=v-R[i,j]%*%Q[,i,drop=FALSE]
or
R[j,j]=max(svd(v)$d);
What is it that I am doing wrong translating MATLAB code to R???
Just for fun I added an Armadillo version of this code and benchmark it
Armadillo code :
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
//[[Rcpp::export]]
List grahm_schimdtCpp(arma::mat A) {
int n = A.n_cols;
int m = A.n_rows;
arma::mat Q(m, n);
Q.fill(0);
arma::mat R(n, n);
R.fill(0);
for (int j = 0; j < n; j++) {
arma::vec v = A.col(j);
if (j > 0) {
for(int i = 0; i < j; i++) {
R(i, j) = arma::as_scalar(Q.col(i).t() * A.col(j));
v = v - R(i, j) * Q.col(i);
}
}
R(j, j) = arma::norm(v, 2);
Q.col(j) = v / R(j, j);
}
return List::create(_["Q"] = Q,
_["R"] = R
);
}
R code not optimized (directly based on algorithm)
grahm_schimdtR <- function(A) {
m <- nrow(A)
n <- ncol(A)
Q <- matrix(0, nrow = m, ncol = n)
R <- matrix(0, nrow = n, ncol = n)
for (j in 1:n) {
v <- A[ , j, drop = FALSE]
if (j > 1) {
for(i in 1:(j-1)) {
R[i, j] <- t(Q[,i,drop = FALSE]) %*% A[ , j, drop = FALSE]
v <- v - R[i, j] * Q[ ,i]
}
}
R[j, j] = norm(v, type = "2")
Q[ ,j] = v / R[j, j]
}
list("Q" = Q, "R" = R)
}
Native QR decomposition in R
qrNative <- function(A) {
qrdec <- qr(A)
list(Q = qr.R(qrdec), R = qr.Q(qrdec))
}
We will test it with the same matrix as in original document (link in the post above)
A <- matrix(c(4, 3, -2, 1), ncol = 2)
all.equal(grahm_schimdtR(A)$Q %*% grahm_schimdtR(A)$R, A)
## [1] TRUE
all.equal(grahm_schimdtCpp(A)$Q %*% grahm_schimdtCpp(A)$R, A)
## [1] TRUE
all.equal(qrNative(A)$Q %*% qrNative(A)$R, A)
## [1] TRUE
Now let's benchmark it
require(rbenchmark)
set.seed(123)
A <- matrix(rnorm(10000), 100, 100)
benchmark(qrNative(A),
grahm_schimdtR(A),
grahm_schimdtCpp(A),
order = "elapsed")
## test replications elapsed relative user.self
## 3 grahm_schimdtCpp(A) 100 0.272 1.000 0.272
## 1 qrNative(A) 100 1.013 3.724 1.144
## 2 grahm_schimdtR(A) 100 84.279 309.849 95.042
## sys.self user.child sys.child
## 3 0.000 0 0
## 1 0.872 0 0
## 2 72.577 0 0
I really love how easy to port code into Rcpp....
If you are translating code in Matlab into R, then code semantics (code logic) should remain same. For example, in your code, you are transposing Q in t(Q[,i,drop=FALSE]) as per the given Matlab code. But Q[,i,drop=FALSE] does not return the column in column vector. So, we can make it a column vector by using the statement:
matrix(Q[,i],n,1); # n is the number of rows.
There is no error in R[j,j]=max(svd(v)$d) if v is a vector (row or column).
Yes, there is an error in
v=v-R[i,j]%*%Q[,i,drop=FALSE]
because you are using a matrix multiplication. Instead you should use a normal multiplication:
v=v-R[i,j] * Q[,i,drop=FALSE]
Here R[i,j] is a number, whereas Q[,i,drop=FALSE] is a vector. So, dimension mismatch arises here.
One more thing, if j is 3 , then 1:j-1 returns [0,1,2]. So, it should be changed to 1:(j-1), which returns [1,2] for the same value for j. But there is a catch. If j is 2, then 1:(j-1) returns [1,0]. So, 0th index is undefined for a vector or a matrix. So, we can bypass 0 value by putting a conditional expression.
Here is a working code for Gram Schmidt algorithm:
A = matrix(c(4,3,-2,1),2,2)
m = nrow(A)
n = ncol(A)
Q = matrix(0,m,n)
R = matrix(0,n,n)
for(j in 1:n)
{
v = matrix(A[,j],n,1)
for(i in 1:(j-1))
{
if(i!=0)
{
R[i,j] = t(matrix(Q[,i],n,1))%*%matrix(A[,j],n,1)
v = v - (R[i,j] * matrix(Q[,i],n,1))
}
}
R[j,j] = svd(v)$d
Q[,j] = v/R[j,j]
}
If you need to wrap the code into a function, you can do so as per your convenience.
You could simply use Hans W. Borchers' pracma package, which provides many Octave/Matlab functions translated in R.
> library(pracma)
> gramSchmidt
function (A, tol = .Machine$double.eps^0.5)
{
stopifnot(is.numeric(A), is.matrix(A))
m <- nrow(A)
n <- ncol(A)
if (m < n)
stop("No. of rows of 'A' must be greater or equal no. of colums.")
Q <- matrix(0, m, n)
R <- matrix(0, n, n)
for (k in 1:n) {
Q[, k] <- A[, k]
if (k > 1) {
for (i in 1:(k - 1)) {
R[i, k] <- t(Q[, i]) %*% Q[, k]
Q[, k] <- Q[, k] - R[i, k] * Q[, i]
}
}
R[k, k] <- Norm(Q[, k])
if (abs(R[k, k]) <= tol)
stop("Matrix 'A' does not have full rank.")
Q[, k] <- Q[, k]/R[k, k]
}
return(list(Q = Q, R = R))
}
<environment: namespace:pracma>
Here a version very similar to yours but without the use of the extra variabale v. I use directly the Q matrix. So no need to use drop. Of course since you have j-1 in the index you need to add the condition j>1.
f=function(x){
m <- nrow(x)
n <- ncol(x)
Q <- matrix(0, m, n)
R <- matrix(0, n, n)
for (j in 1:n) {
Q[, j] <- x[, j]
if (j > 1) {
for (i in 1:(j - 1)) {
R[i, j] <- t(Q[, i]) %*% Q[, j]
Q[, j] <- Q[, j] - R[i, j] * Q[, i]
}
}
R[j, j] <- max(svd(Q[, j])$d)
Q[, j] <- Q[, j]/R[j, j]
}
return(list(Q = Q, R = R))
}
EDIT add some benchmarking:
To get some real case I use the Hilbert matrix from the Matrix package.
library(microbenchmark)
library(Matrix)
A <- as.matrix(Hilbert(100))
microbenchmark(grahm_schimdtR(A),
grahm_schimdtCpp(A),times = 100L)
Unit: milliseconds
expr min lq median uq max neval
grahm_schimdtR(A) 330.77424 335.648063 337.443273 343.72888 601.793201 100
grahm_schimdtCpp(A) 1.45445 1.510768 1.615255 1.66816 2.062018 100
As expected CPP solution is really fster.
A verbatim implementation of the following matlab code (shown in the next figure) in base R to obtain orthonormal basis vectors with Gram-Schmidt algorithm is shown below:
Gram_Schmidt <- function(A) {
n <- ncol(A)
Q <- 0*A
R <- matrix(rep(0, n*n), nrow=n)
for (j in 1:n) {
v <- A[,j]
if (j > 1) # the first basis vector to be included in Q anyway (after normalization)
for (i in 1:(j-1)) {
R[i, j] <- t(Q[,i]) %*% A[,j]
v <- v - R[i,j] * Q[,i] # subtract the projections on other orthonormal basis vectors constructed so far
}
R[j,j] <- sqrt(v %*% v)
Q[,j] <- v / R[j,j]
}
return(list(Q=Q, R=R))
}
Given the matrix A, we obtain the following results as expected:
A <- matrix(c(4,3,-2,1), nrow=2)
Gram_Schmidt(A)
#$Q
# [,1] [,2]
# [1,] 0.8 -0.6
# [2,] 0.6 0.8
#$R
# [,1] [,2]
#[1,] 5 -1
#[2,] 0 2
Using QR decomposition with base R again,
Gram_Schmidt_QR <- function(A) {
res <- qr(A)
return(list(Q=qr.Q(res), R=qr.R(res)))
}
Gram_Schmidt_QR(A)
#$Q
# [,1] [,2]
# [1,] 0.8 -0.6
# [2,] 0.6 0.8
#$R
# [,1] [,2]
#[1,] 5 -1
#[2,] 0 2
Also, we could use R library matlib's implementation, it only outputs the orthonormal Q matrix though and not the upper triangular matrix R:
library(matlib)
GramSchmidt(A)
# [,1] [,2]
#[1,] 0.8 -0.6
#[2,] 0.6 0.8
Finally, some performance benchmarking gives the following result:
library(ggplot2)
library(microbenchmark)
autoplot(microbenchmark(Gram_Schmidt(A),
Gram_Schmidt_QR(A),
GramSchmidt(A), times=1000L))
Related
I have a piece of working code that is taking too many hours (days?) to compute.
I have a sparse matrix of 1s and 0s, I need to subtract each row from any other row, in all possible combinations, multiply the resulting vector by another vector, and finally average the values in it so to get a single scalar which I need to insert in a matrix. What I have is:
m <- matrix(
c(0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0), nrow=4,ncol=4,
byrow = TRUE)
b <- c(1,2,3,4)
for (j in 1:dim(m)[1]){
for (i in 1:dim(m)[1]){
a <- m[j,] - m[i,]
a[i] <- 0L
a[a < 0] <- 0L
c <- a*b
d[i,j] <- mean(c[c > 0])
}
}
The desired output is matrix with the same dimensions of m, where each entry is the result of these operations.
This loop works, but are there any ideas on how to make this more efficient? Thank you
My stupid solution is to use apply or sapply function, instead of for loop to do the iterations:
sapply(1:dim(m)[1], function(k) {z <- t(apply(m, 1, function(x) m[k,]-x)); diag(z) <- 0; z[z<0] <- 0; apply(t(apply(z, 1, function(x) x*b)),1,function(x) mean(x[x>0]))})
I tried to compare your solution and this in terms of running time in my computer, yours takes
t1 <- Sys.time()
d1 <- m
for (j in 1:dim(m)[1]){
for (i in 1:dim(m)[1]){
a <- m[j,] - m[i,]
a[i] <- 0L
a[a < 0] <- 0L
c <- a*b
d1[i,j] <- mean(c[c > 0])
}
}
Sys.time()-t1
Yours needs Time difference of 0.02799988 secs. For mine, it is reduced a bit but not too much, i.e., Time difference of 0.01899815 secs, when you run
t2 <- Sys.time()
d2 <- sapply(1:dim(m)[1], function(k) {z <- t(apply(m, 1, function(x) m[k,]-x)); diag(z) <- 0; z[z<0] <- 0; apply(t(apply(z, 1, function(x) x*b)),1,function(x) mean(x[x>0]))})
Sys.time()-t2
You can try it on your own computer with larger matrix, good luck!
1) create test sparse matrix:
nc <- nr <- 100
p <- 0.001
require(Matrix)
M <- Matrix(0L, nr, nc, sparse = T) # 0 matrix
n1 <- ceiling(p * (prod(dim(M)))) # 1 count
M[1:n1] <- 1L # fill only first column, to approximate max non 0 row count
# (each row has at maximum 1 positive element)
sum(M)/(prod(dim(M)))
b <- 1:ncol(M)
sum(rowSums(M))
So, if the proportion given is correct then we have at most 10 rows that contain non 0 elements
Based on this fact and your supplied calculations:
# a <- m[j, ] - m[i, ]
# a[i] <- 0L
# a[a < 0] <- 0L
# c <- a*b
# mean(c[c > 0])
we can see that the result will be meaningful only form[, j] rows which have at least 1 non 0 element
==> we can skip calculations for all m[, j] which contain only 0s, so:
minem <- function() { # write as function
t1 <- proc.time() # timing
require(data.table)
i <- CJ(1:nr, 1:nr) # generate all combinations
k <- rowSums(M) > 0L # get index where at least 1 element is greater that 0
i <- i[data.table(V1 = 1:nr, k), on = 'V1'] # merge
cat('at moust', i[, sum(k)/.N*100], '% of rows needs to be calculated \n')
i[k == T, rowN := 1:.N] # add row nr for 0 subset
i2 <- i[k == T] # subset only those indexes who need calculation
a <- M[i2[[1]],] - M[i2[[2]],] # operate on all combinations at once
a <- drop0(a) # clean up 0
ids <- as.matrix(i2[, .(rowN, V2)]) # ids for 0 subset
a[ids] <- 0L # your line: a[i] <- 0L
a <- drop0(a) # clean up 0
a[a < 0] <- 0L # the same as your line
a <- drop0(a) # clean up 0
c <- t(t(a)*b) # multiply each row with vector
c <- drop0(c) # clean up 0
c[c < 0L] <- 0L # for mean calculation
c <- drop0(c) # clean up 0
r <- rowSums(c)/rowSums(c > 0L) # row means
i[k == T, result := r] # assign results to data.table
i[is.na(result), result := NaN] # set rest to NaN
d2 <- matrix(i$result, nr, nr, byrow = F) # create resulting matrix
t2 <- proc.time() # timing
cat(t2[3] - t1[3], 'sec \n')
d2
}
d2 <- minem()
# at most 10 % of rows needs to be calculated
# 0.05 sec
Test on smaller example if results matches
d <- matrix(NA, nrow(M), ncol(M))
for (j in 1:dim(M)[1]) {
for (i in 1:dim(M)[1]) {
a <- M[j, ] - M[i, ]
a[i] <- 0L
a[a < 0] <- 0L
c <- a*b
d[i, j] <- mean(c[c > 0])
}
}
all.equal(d, d2)
Can we get results for your real data size?:
# generate data:
nc <- nr <- 6663L
b <- 1:nr
p <- 0.0001074096 # proportion of 1s
M <- Matrix(0L, nr, nc, sparse = T) # 0 matrix
n1 <- ceiling(p * (prod(dim(M)))) # 1 count
M[1:n1] <- 1L
object.size(as.matrix(M))/object.size(M)
# storing this data in usual matrix uses 4000+ times more memory
# calculation:
d2 <- minem()
# at most 71.57437 % of rows needs to be calculated
# 28.33 sec
So you need to convert your matrix to sparse one with
M <- Matrix(m, sparse = T)
I am calculating the inverse of a Vandermonde Matrix. I have written the codes to calculate the inverse explicitly by its formula as below:
library(gtools)
#input is the generation vector of terms of Vandermonde matrix.
FMinv <- function(base){
n=length(base)
inv=matrix(nrow=n,ncol=n)
for (i in 1:n){
for (j in 1:n){
if(j<n){
a=as.matrix(combinations(n,n-j,repeats.allowed = F))
arow.tmp=nrow(a) #this is in fact a[,1]
b=which(a==i)%%length(a[,1])
nrowdel=length(b)
b=replace(b,b==0,length(a[,1]))
a=a[-b,]
if(arow.tmp-nrowdel>1){
a=as.matrix(a)
nrowa=nrow(a)
prod=vector()
for(k in 1:nrowa){
prod[k]=prod(base[a[k,]])
}
num=sum(prod)
}
if(arow.tmp-nrowdel==1){
num=prod(base[a])
}
den=base[i]*prod(base[-i]-base[i])
inv[i,j]=(-1)^(j-1)*num/den
}
if(j==n){
inv[i,j]=1/(base[i]*prod(base[i]-base[-i]))
}
}
}
return(inv)
}
And I define a base as follow:
> library(Rmpfr)
> a=mpfr(c(10:1),1000)/Rmpfr::mpfr(sum(1:10),1000)
> a
10 'mpfr' numbers of precision 1000 bits
[1] 0.18181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181819
[2] 0.16363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363637
[3] 0.14545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545456
[4] 0.12727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727274
[5] 0.10909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909091
[6] 0.090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909094
[7] 0.072727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727272727278
[8] 0.054545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545455
[9] 0.036363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363639
[10] 0.018181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181818181819
However, when I was attempting to put the "a" into the function, I got:
> FMinv(a)
Error in sum(prod) : invalid 'type' (list) of argument
By checking its type,
> typeof(a)
[1] "list"
The only thing that I know to transform it to values is asNumeric() in Rmpfr. However,
> asNumeric(a)
[1] 0.18181818 0.16363636 0.14545455 0.12727273 0.10909091 0.09090909 0.07272727 0.05454545 0.03636364 0.01818182
it lost the remaining digits.
Is there anyway to put the "a" into my function without losing decimals?
Thanks!
The trick is to use S3 methods.
Define a generic, a default method to be called with your "normal" numbers, meaning, objects of class "numeric" and the function the question is asking for.
That is the problem one. It took a while but I believe the code below is right.
library(OBsMD)
FMinv <- function(...) UseMethod("FMinv")
FMinv.default <- function(base) {
# Your function
# unchanged
}
FMinv.mpfr <- function(base, precBits = getPrec(base)) {
n <- length(base)
inv <- mpfr(rep(0, n*n), precBits = precBits)
inv <- matrix(inv, nrow = n, ncol = n)
for (i in 1:n) {
for (j in 1:n) {
if (j < n) {
a <- combinations(n, n - j, repeats.allowed = F)
a <- as.matrix(a)
arow.tmp <- nrow(a) # this is in fact a[, 1]
b <- which(a == i) %% length(a[, 1])
nrowdel <- length(b)
b <- replace(b, b == 0, length(a[, 1]))
a <- a[-b, ]
num <- mpfr(0, precBits[1])
if (arow.tmp - nrowdel > 1) {
a <- as.matrix(a)
nrowa <- nrow(a)
for (k in 1:nrowa) {
num <- num + prod(base[a[k, ]])
}
}
if (arow.tmp - nrowdel == 1) {
num <- num + prod(base[a])
}
den <- base[i] * prod(base[-i] - base[i])
inv[i, j] <- (-1)^(j - 1) * num/den
}
if (j == n) {
inv[i, j] <- 1/(base[i] * prod(base[i] - base[-i]))
}
}
}
return(inv)
}
Now test both methods and compare some of the results' values.
library(Rmpfr)
a <- mpfr(c(10:1),1000)/Rmpfr::mpfr(sum(1:10),1000)
inv1 <- FMinv(asNumeric(a))
inv2 <- FMinv(a)
inv1[10, 10]
#[1] -6.98014e+11
inv2[10, 10]
#1 'mpfr' number of precision 1000 bits
#[1] -698013564040.84166942239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906525573192239858906474
I have a random vector vec and want make a new vector L without using a loop. New element of L depends on old elements of L and vec.
set.seed(0)
vec <- rnorm(20,0)
i = 2;
N <- length(vec) -1
L <- numeric(N-1)
constant <- 0.6
while (i < N){
L[i] = vec[i + 1] - vec[i] - constant * L[i - 1]
i <- i + 1
}
L
# [1] 0.0000000 1.6560326 -1.0509895 -0.2271942 -1.8182750 1.7023480 -0.3875622 0.5214906 2.0975262 -2.8995756 0.1771427
# [12] -0.4549334 1.1311555 -0.6884468 0.3007724 0.4832709 -1.4341071 2.1880687
You want
L[1] = 0
L[i] = -constant * L[i - 1] + (vec[i + 1] - vec[i]), i = 2, 3, ...,
Let dv <- diff(vec), the 2nd line becomes
L[i] = -constant * L[i - 1] + dv[i], i = 2, 3, ...
an AR1 process with lag-1 auto-correlation -constant and innovation dv[-1]. AR1 process can be efficiently generated by filter with "recursive" method.
dv <- diff(vec)
L <- c(0, filter(dv[-1], -constant, "recursive"))
# [1] 0.0000000 1.6560326 -1.0509895 -0.2271942 -1.8182750 1.7023480
# [7] -0.3875622 0.5214906 2.0975262 -2.8995756 0.1771427 -0.4549334
#[13] 1.1311555 -0.6884468 0.3007724 0.4832709 -1.4341071 2.1880687
#[19] -2.9860629
I guess you mean while (i <= N) in your question. If you do want i < N, then you have to get rid of the last element above. Which can be done by
dv <- diff(vec)
L <- c(0, filter(dv[2:(length(dv) - 1)], -constant, "recursive"))
hours later...
I was brought to attention by Rui Barradas's benchmark. For short vec, any method is fast enough. For long vec, filter is definitely faster, but practically suffers from coercion as filter expects and returns a "ts" (time series) object. It is better to call its workhorse C routine straightaway:
AR1_FILTER <- function (x, filter, full = TRUE) {
n <- length(x)
AR1 <- .Call(stats:::C_rfilter, as.double(x), as.double(filter), double(n + 1L))
if (!full) AR1 <- AR1[-1L]
AR1
}
dv <- diff(vec)
L <- AR1_FILTER(dv[-1], -constant)
#L <- AR1_FILTER(dv[2:(length(dv) - 1)], -constant)
I am not interested in comparing AR1_FILTER with R-level loop. I will just compare it with filter.
library(microbenchmark)
v <- runif(100000)
microbenchmark("R" = c(0, filter(v, -0.6, "recursive")),
"C" = AR1_FILTER(v, -0.6))
Unit: milliseconds
expr min lq mean median uq max neval
R 6.803945 7.987209 11.08361 8.074241 9.131967 54.672610 100
C 2.586143 2.606998 2.76218 2.644068 2.660831 3.845041 100
When you have to compute values based on previous values the general purpose answer is no, there is no way around a loop.
In your case I would use a for loop. It's simpler.
M <- numeric(N - 1)
for(i in seq_len(N)[-N])
M[i] = vec[i + 1] - vec[i] - constant*M[i - 1]
identical(L, M)
#[1] TRUE
Note the use of seq_len, not 2:(N - 1).
Edit.
I have timed the solutions by myself and by user 李哲源. The results are clearly favorable to my solution.
f1 <- function(vec, constant = 0.6){
N <- length(vec) - 1
M <- numeric(N - 1)
for(i in seq_len(N)[-c(1, N)]){
M[i] = vec[i + 1] - vec[i] - constant*M[i - 1]
}
M
}
f2 <- function(vec, constant = 0.6){
dv <- diff(vec)
c(0, c(stats::filter(dv[2:(length(dv) - 1)], -constant, "recursive")) )
}
L1 <- f1(vec)
L2 <- f2(vec)
identical(L, L1)
identical(L, L2)
microbenchmark::microbenchmark(
loop = f1(vec),
filter = f2(vec)
)
On my PC the ratio of the medians gives my code 11 times faster.
I was thinking about using Rcpp for this, but one of the answer mentioned rfilter built internally in R, so I had a check:
/* recursive filtering */
SEXP rfilter(SEXP x, SEXP filter, SEXP out)
{
if (TYPEOF(x) != REALSXP || TYPEOF(filter) != REALSXP
|| TYPEOF(out) != REALSXP) error("invalid input");
R_xlen_t nx = XLENGTH(x), nf = XLENGTH(filter);
double sum, tmp, *r = REAL(out), *rx = REAL(x), *rf = REAL(filter);
for(R_xlen_t i = 0; i < nx; i++) {
sum = rx[i];
for (R_xlen_t j = 0; j < nf; j++) {
tmp = r[nf + i - j - 1];
if(my_isok(tmp)) sum += tmp * rf[j];
else { r[nf + i] = NA_REAL; goto bad3; }
}
r[nf + i] = sum;
bad3:
continue;
}
return out;
}
This function is already pretty look and I don't think I could write an Rcpp one to beat it with great improvement. I did a benchmark with this rfilter and the f1 function in the accepted answer:
f1 <- function(vec, constant = 0.6){
N <- length(vec) - 1
M <- numeric(N - 1)
for(i in seq_len(N)[-c(1, N)]){
M[i] = vec[i + 1] - vec[i] - constant*M[i - 1]
}
M
}
AR1_FILTER <- function (x, filter, full = TRUE) {
n <- length(x)
AR1 <- .Call(stats:::C_rfilter, as.double(x), as.double(filter), double(n + 1L))
if (!full) AR1 <- AR1[-1L]
AR1
}
f2 <- function (vec, constant) {
dv <- diff(vec)
AR1_FILTER(dv[2:(length(dv) - 1)], -constant)
}
library(microbenchmark)
Bench <- function (n) {
vec <- runif(n)
microbenchmark("R" = f1(vec, 0.6), "C" = f2(vec, 0.6))
}
For short vectors with length 100, I got
Bench(100)
Unit: microseconds
expr min lq mean median uq max neval
R 68.098 69.8585 79.05593 72.456 74.6210 244.148 100
C 66.423 68.5925 73.18702 69.793 71.1745 150.029 100
For large vectors with length 10000, I got
Bench(10000)
Unit: microseconds
expr min lq mean median uq max neval
R 6168.742 6699.9170 6870.277 6786.0415 6997.992 8921.279 100
C 876.934 904.6175 1192.000 931.9345 1034.273 2962.006 100
Yeah, there is no way that R is going to beat a compiled language.
library(dplyr)
L2 <- c(0,lead(vec) - vec - constant * lag(L))
L2 <- L2[!is.na(L2)]
L2
[1] 0.00000000 1.09605531 -0.62765133 1.81529867 -2.10535596 3.10864280 -4.36975556 1.41375965
[9] -1.08809820 2.16767510 -1.82140234 1.14748512 -0.89245650 0.03962074 -0.10930073 1.48162072
[17] -1.63074832 2.21593009
all.equal(L,L2)
[1] TRUE
I am implementing the following function in the R code:
So far I used:
sig.TOM <- function(adj, sig.adj) {
out <- matrix(nrow = nrow(adj), ncol = ncol(adj))
for (i in 1:nrow(adj)) {
for (j in 1:ncol(adj)) {
out[i,j] <- abs(adj[i, j] + sum(sig.adj[i, -c(i, j)]*sig.adj[-c(i, j), i]))/(
min(sum(sig.adj[-i, i]), sum(sig.adj[-j, j])) + 1 - abs(adj[i,j]))
}
}
return(out)
}
where ~a is the following mock matrix:
sig.adj <- structure(c(1, -0.418913311940584, 1, 0.947013383275973, -1,
-0.418913311940584, 1, -0.207962861914701, 0.584386281408348,
-0.687223049826016, 1, -0.207962861914701, 1, 0.763551721347657,
-0.0327147711077901, 0.947013383275973, 0.584386281408348, 0.763551721347657,
1, 0.284466543760789, -1, -0.687223049826016, -0.0327147711077901,
0.284466543760789, 1), .Dim = c(5L, 5L))
and adj <- abs(sig.adj), where adj in the formula is described as a and sig.adj as ~a.
But the result is not symmetric as expected so I must have implemented it wrong, I have doubts on the summation part.
How can that sum of products of values when the indices are not i or j be implemented?
The proposed solutions:
spec.mult1 <- function(A,B) {
rA <- nrow(A); cB <- ncol(B)
C <- A %*% B
for (i in 1:rA) for (j in 1:cB)
C[i,j] <- C[i,j] - A[i,i]*B[i,j] - A[i,j]*B[j,j] + ifelse(i==j, A[i,i]*B[j,j], 0)
C
}
spec.mult2 <- function(A) {
dA.A <- diag(A)*A
crossprod(A) - dA.A - t(dA.A) + diag(diag(A)^2)
}
spec.mult3 <- function(A,B) {
rA <- nrow(A); cB <- ncol(B)
C <- A %*% B
for (i in 1:rA) for (j in 1:cB)
C[i,j] <- C[i,j] - A[i,i]*B[i,j] - A[i,j]*B[j,j]
C
}
spec.mult4 <- function(A) {
dA.A <- diag(A)*A
crossprod(A) - dA.A - t(dA.A)
}
spec.mult5 <- function(sig.adj) {
nr <- nrow(sig.adj); nc <- ncol(sig.adj)
C <- matrix(NA, nr, nc)
for (i in 1:nr) for (j in 1:nc)
C[i,j] <- sum(sig.adj[i, -c(i, j)]*sig.adj[-c(i, j), j])
C
}
Comparing the results of each function :
all(res1 == res2)
[1] TRUE
> all(res1 == res3)
[1] FALSE
> all(res1 == res4)
[1] FALSE
> all(res1 == res5)
[1] FALSE
> all(res2 == res3)
[1] FALSE
> all(res2 == res4)
[1] FALSE
> all(res2 == res5)
[1] FALSE
> all(res3 == res4)
[1] TRUE
> all(res3 == res5)
[1] FALSE
> all(res4 == res5)
[1] FALSE
Results that, spec.mult1 == spec.mult2 and spec.mult3 == spec.mult4 but spec.mult5 (the one I understand, and hope it is correct) doesn't appear
I think you indexed incorrectly in the sum over u!=i, j. The part
sum(sig.adj[i, -c(i, j)]*sig.adj[-c(i, j), i])
should be
sum(sig.adj[i, -c(i, j)]*sig.adj[-c(i, j), j])
With your example the output is then a symmetric matrix for me.
$C_{ij} = \sum_{u} a_{iu} b_{uj})$ is a normal matrix multiplication. So you can get $\sum_{u \ne i,j} a_{iu} b_{uj}$ by correcting the result of a matrix multiplication (i.e. subtracting the unwanted parts of the sum).
Take care of the fact that in the case of i==j only one part of $\sum_{u} a_{iu} b_{uj})$ has to be neglected.
something about omitted indicies:
A <- matrix(c(1:4, 2,5:7, 3,6,8:9, 4,7,9,10), 4,4)
A[1, -c(1,1)]
The element is omitted only once.
The part of the formula beside the special matrix multiplication is clear:
sig.TOM <- function(sig.adj) {
adj <- abs(sig.adj)
k <- colSums(adj) - abs(diag(adj))
abs(adj + spec.mult(sig.adj, sig.adj)) / (outer(k,k, pmin) +1 - abs(adj))
}
sig.TOM(sig.adj)
(or spec.mult(sig.adj) for a one-argument variant of the special matrix multiplication, see below)
p.s.: I copied the part ... +1 - abs(adj) from your question because I don't know if you want ... +1 - adj or ... +1 - sig.adj
Here are five variants of the special matrix multiplication:
A <- matrix(c(1:4, 2,5:7, 3,6,8:9, 4,7,9,10), 4,4)
A[1, -c(1,1)]
spec.mult1 <- function(A,B) {
rA <- nrow(A); cB <- ncol(B)
C <- A %*% B
for (i in 1:rA) for (j in 1:cB)
C[i,j] <- C[i,j] - A[i,i]*B[i,j] - A[i,j]*B[j,j] + ifelse(i==j, A[i,i]*B[j,j], 0)
C
}
spec.mult2 <- function(A) {
dA.A <- diag(A)*A
crossprod(A) - dA.A - t(dA.A) + diag(diag(A)^2)
}
spec.mult3 <- function(A,B) {
rA <- nrow(A); cB <- ncol(B)
C <- A %*% B
for (i in 1:rA) for (j in 1:cB)
C[i,j] <- C[i,j] - A[i,i]*B[i,j] - A[i,j]*B[j,j]
for (i in 1:rA) C[i,i] <- C[i,i] + A[i,i]*B[i,i]
C
}
spec.mult4 <- function(A) {
dA <- diag(A)
dA.A <- dA*A
crossprod(A) - dA.A - t(dA.A) + diag(dA^2)
}
spec.mult5 <- function(sig.adj) {
nr <- nrow(sig.adj); nc <- ncol(sig.adj)
C <- matrix(NA, nr, nc)
for (i in 1:nr) for (j in 1:nc)
C[i,j] <- sum(sig.adj[i, -c(i, j)]*sig.adj[-c(i, j), j])
C
}
spec.mult1(A, A) - spec.mult5(A)
spec.mult2(A) - spec.mult5(A)
spec.mult3(A, A) - spec.mult5(A)
spec.mult4(A) - spec.mult5(A)
Say I have a vector v = c(250,1200,700), a starting value n and a function e.g.
f = function(v){
g = function(v){
cases(
v <= 20 -> 0.1,
v > 20 & v <= 100 -> 0.075,
v > 100 -> .05
)
}
suppressWarnings(g(v))
}
f is written using cases from the memisc package - I'm still new to R and would be keen to hear if f can be coded in a 'better' way. Anyway, I am looking for code that will perform the following recursive process (including for vectors of a 'large' length):
f(n),
f(n)*v[1]+n,
f(f(n)*v[1]+n)*v[2] + f(n)*v[1]+n,
f(f(f(n)*v[1]+n)*v[2] + f(n)*v[1]+n)*v[3] + f(f(n)*v[1]+n)*v[2] + f(n)*v[1]+n
Ultimately I am interested in the value of the last line.
Cheers for any help
If I understood you right, this is the process you're talking about:
X1 = f(n)
X2 = X1*v[1] + n
X3 = F(X2)*v[2] + X2
X4 = F(X3)*v[3] + X3
...
If you need all in-between steps, a recursive function is rather useless as you need the in-between steps stored in the result as well. So you can easily code that using basic R :
Thefun <- function(v,n){
l <- length(v)
res <- numeric(l+1)
res[1] <- g(n)
res[2] <- res[1]*v[1] + n
for(i in seq(2,l)){
res[i+1] <- res[i] + g(res[i])*v[i]
}
return(res)
}
The last value of the result is the result you need. As you only needed the result of the last step, you can do it recursively using Recall:
Recfunc <- function(v,n){
l <- length(v)
if(l > 0){
res <- Recall(v[-l],n)
return(g(res)*v[l] + res)
} else {
return(n)
}
}
On a sidenote
You can define your function g different, like this (I call it fv) :
fv <- function(v){
0.1*(v <= 20) + 0.075*(v > 20 & v <=100) + 0.05*(v>100)
}
If compared to your function, you gain a 6 fold increase in speed.
vec <- sample(1:150,1e5,TRUE)
benchmark(
fv(vec),
g(vec),
columns=c("test","replications","elapsed","relative"),
replications = 1000
)
test replications elapsed relative
1 fv(vec) 1000 9.39 1.000
2 g(vec) 1000 56.30 5.996
I assume here that n is length of v.
I rewrite the recusrion like this :
y1 <- n ## slight change here
y2 <- f(y1)*v[1] +y1,
y3 <- f(y2)*v[2] +y2
y4 <- f(y3)*v[3] +y3
.... I can''t see the terms > length(v) so my first assumption
So for example you can implement this like :
filter.f <- function(func=f,coef=v){
n <- length(coef)
y <- numeric(n)
y[1] <- n
for(i in 2:n)
y[i] <- func(y[i-1])*coef[i-1]+y[i-1] ## here the recursion
y[1] <- f(n)
y
}
filter.f()
[1] 0.1 124.0 159.0 191.5
v=c(250, 1200, 700)
filter.f()
[1] 0.1 28.0 118.0